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Social discrimination seems to be a persistent phenomenon in many cultures. It is important to understand
the mechanisms that lead people to judge others by the group to which they belong rather than individual
qualities. It was recently shown that evolutionary (imitation) dynamics can lead to a hierarchical discrimination
between agents marked with observable, but otherwise meaningless, labels. These findings suggest that it can
give useful insight to describe the phenomenon of social discrimination in terms of spontaneous symmetry
breaking. The investigations so far have, however, only considered binary labels. In this contribution we extend
the investigations to models with up to seven different labels. We find the features known from the binary label
model remain remarkably robust when the number of labels is increased. We also discover a new feature, namely
that it is more likely for neighbors to have strategies which are similar, in the sense that they agree on how to act
toward a subset of the labels.
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I. INTRODUCTION

Discrimination is often defined as treating individuals dif-
ferently because of the groups to which they belong rather
than individual traits (or qualities). Most of the empirically
observed discrimination can be explained by ingroup fa-
voritism [1,2]. That is, people tend to act in favor of those
who are similar to themselves at the expense of those who
are different. An increasing body of research, however, is
suggesting that discrimination cannot be explained by ingroup
favoritism alone. A number of experiments have shown that
many intergroup relations are asymmetric in the sense that
members of one of the groups show much less, sometimes
even negative, ingroup favoritism than members of the other
[3–8]. These findings seem to indicate that there exists a
sort of hierarchy of social status between different groups. In
this paper we will explore a minimalistic evolutionary game
theory model in which persistent hierarchical discrimination
can emerge through spontaneous symmetry breaking.

Most of the evolutionary game theory literature has been
a search for mechanisms which promote cooperative behavior
through evolutionary dynamics [9,10]. One mechanism which
has been thoroughly studied is the so-called tag-based coop-
eration [11–19]. This is of special interest to us, because the
introduction of observable tags makes it possible to define dis-
crimination in a very simple way. One can say that an agent’s
behavior—or strategy—is discriminating if it is different to-
ward peers who have different tags but identical behaviors.
Most of the models of tag-based cooperation are, however,
not directly applicable for describing persistent hierarchical
discrimination. Some papers have already been very explicit
about the close relation between tag-based cooperation and
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ingroup favoritism [17,20]. Also, the behavior of the tag-
based cooperation models tends to express cyclic or wavelike
dynamics, with a constant renewal of the dominating tags and
strategies known as the “chromodynamics of cooperation”
[13].

Recently, it was demonstrated that persistent hierarchical
discrimination can emerge if the evolutionary dynamics only
works on strategies but not on the labels [21]. By starting from
a spatially extended system—another well-known mechanism
for promoting cooperation [22–24]—it was shown that under
high selection pressure the cooperation would partially fail
in a way which breaks the symmetry between two groups of
agents distinguished only by an otherwise meaningless label.
It was shown that the proposed dynamics consistently leads to
a state where, dependent on parameters, either the minority
or the majority is systematically favored. Human societies,
however, consist of more than two types of people. Humans
can, for example, have many different religions, countries of
origin, eye colors, and so on. It is, therefore, natural to ask
whether the same mechanism can also lead to discrimination
if there are more than two different labels in the system.

In the literature on tag-based cooperation, it is quite com-
mon to define a model which allows for a large variation of
different tags, and some recent studies have been addressing
how phenotypic variation arises in the first place [18,19]. In
this paper we will examine an extension of the hierarchical
discrimination model [21] with up to seven different labels.
This leads to a richer set of possible model outcomes, as the
number of competing strategies grows exponentially with the
number of labels. We will show that much of the original
structure is preserved, in particular that the number of labels
have almost no impact on the parameter regions dominated
by unconditional cooperation or defection. This is a remark-
able result considering that the fraction of nondiscriminating
strategies decreases exponentially.
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II. MODEL

Consider a population of N agents occupying the nodes of
a graph. The graph edges represent an agent’s neighborhood.
Agents interact with their neighbors in a prisoner’s dilemma
type game where they can either cooperate or defect. Each
agent has one of L distinct labels which can be observed by its
neighbors. The label is the only observable difference between
agents. An agent may therefore discriminate by cooperating
with those neighbors who carry some labels while defecting
against those carrying others. A strategy specifies whether to
cooperate with or defect against neighbors with each of the L
labels. There are 2L different possible strategies since a strat-
egy can be represented by one binary variable for each label.

Cooperation costs an amount c for the donating agent and
gives a benefit b to the receiver. The payoff of an agent is
calculated as the sum of the benefits the agent receives minus
the sum of the costs the agent pays:

pi =
∑

j∈Ni

bσ j (λi ) − cσi(λ j ), (1)

where Ni is the set of neighbors of agent i, λi is the label of
agent i, and σi is a function describing its strategy. σi(λ j ) = 1
if the strategy is to cooperate with the label of agent j and
σi(λ j ) = 0 if it is to defect. It should be noted that the payoff
is a simple function of the state—the labels and strategies of
the agent and its neighbors—and that it is not accumulated
over time.

The dynamical variables in our model are the agents’
strategies. These change according to the following rule:
First, we choose a random agent with uniform probability
whose strategy will be updated. With a small probability μ

the agent will “mutate,” i.e., choose a new strategy at random
with uniform probability distribution. Most of the time, with
probability 1 − μ, the selected agent will copy the strategy
of one of its neighbors. That neighbor is chosen with a
probability proportional to its “fitness.” The fitness of agent i,
fi, is related to its payoff pi via the expression fi = exp(wpi ).
Here w is a global parameter which we will refer to as the
selection pressure. When the selection pressure is very small,
w → 0, it is almost equally likely to choose any neighbor
independent of their payoff. When the selection pressure
is large, w → ∞, the neighbor with the largest payoff will
almost certainly be chosen.

Notice that when an agent chooses a new strategy it is
indifferent to how the strategy matches with the labels. For
example, there is nothing to hinder that an agent with a blue
label copies a strategy from a neighbor with a green label
which dictates only to cooperate with green neighbors.

In the case where there are L = 2 different labels, our
model is the same as that studied in [21]. In the case where
there is only L = 1 type of agents, it is a slight variation of a
model presented in 2005 by Ohtsuki et al. [23], designed to
demonstrate that evolutionary dynamics can promote cooper-
ation in systems with spatial structure. Our model varies from
the one proposed by Ohtsuki et al. by using the exponential
function [ f = exp(wp)] in the relation between fitness and
payoff rather than an affine function ( f = 1 − w + wp). The
two functions converge in the limit of vanishing selection
pressure (w → 0).

III. RESULTS

The main results presented in this paper are all obtained
from a system with 100 × 100 agents arranged in a regular
square lattice with periodic boundary conditions. The labels
are randomly assigned to each agent with independent uni-
form probability. To reduce the number of parameters we
have used a small constant mutation rate of μ = 0.001. The
nonzero mutation rate prevents the system from getting stuck
in absorbing single-strategy fixed points. One benefit of this
is that we can start every simulation in the simplest strategy
configuration in which no agent cooperates with anyone. We
have also explored the model with agents arranged in both
random regular graphs and Erdős-Rényi graphs. These results
are collected in section A of the Supplemental Material [25]
for comparison.

A. Three labels

To build an understanding of how our model behaves, we
start by presenting five examples of typical dynamics arising
when agents are arranged in a square lattice and the number
of distinct labels is L = 3 (see Fig. 1). These examples illus-
trate the variety of behaviors observed at different values of
cooperation benefit b and selection pressure w. Each example
consists of two subfigures: One time series of the fraction of
the population following each of the eight possible strategies
and one snapshot showing how the strategies are distributed
on the lattice at the end of the time series. Because of the
nonzero mutation rate it is impossible for the model to have
any fixed points, but the time series clearly indicate that the
systems tend to reach an attractor in which the fractions of
agents following each strategy fluctuate with small variations
around some constant value. In the three examples A, B, and D
the stationary distributions are clearly dominated by a single
strategy. We find that this is a general result as long as the
selection pressure w is small (w � 0.2) and the dynamics run
long enough. This is reminiscent of the absorbing “single-
strategy” states in the voter model [26,27]. In example C the
system gets separated into two large “patches”, each domi-
nated by a single strategy. This type of state can remain for
a very long time, but once one of the strategies has displaced
the other, it is extremely unlikely for the other to return. In
that sense the dynamics between strategies favoring the same
number of labels appears to resemble that of voter models with
some amount of surface tension [28–30]. When the selection
pressure is large, such as in example E, we find that the lattice
tends to fracture into many small patches. This situation is
more complicated, and we will return to a more thorough
analysis later.

Each simulation was initiated with the strategy configura-
tion in which all agents are “not cooperating with anyone.”
The parameters chosen for each of the five examples are
marked in the phase diagram in Fig. 2.

A: Our first example has a low cooperation benefit b = 2
and intermediate selection pressure w = 0.1. At these param-
eters, the system stays dominated by the strategy C(none) (not
cooperating with anyone).

B: With a slightly higher cooperation benefit b = 3, the
system ends up with a majority of agents who cooperate with
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FIG. 1. Left: Time series of the strategy proportion for squared
lattices with periodic boundary conditions, 10 000 agents and three
labels (red, green, and blue) for different benefits b and selection
pressures w with constant cost c = 1 and constant mutation rate μ =
0.001. Starting with anyone having the strategy to not cooperate.
Right: Snapshots of the strategy distributions at the end of the
corresponding time series. Each color represents a different strategy,
e.g., red represents the strategy of cooperating with neighbors with
red labels only, C(r); yellow represents the strategy of cooperating
with neighbors if their labels are red or green, C(r, g); and so on. The
chosen values of b and w correspond to the different phases shown
in phase diagram in Fig. 2.

one of the three labels. In our example it is the agents with
green labels who receive the positive treatment by almost
everyone, but since the labels are defined symmetrically, the
dominant strategy could just as well have been only cooper-
ating with red, C(r), or with green, C(g). We say that these
strategies belong to strategy class 1—or C(1)—because they
single out one of the labels as the only receiver of cooperation.
Looking at the time series we see that all 3 C(1) strategies
are initially expanding by out-competing the C(none) strat-
egy. However, when there are no more complete defectors
to displace one of the C(1) strategies ends up suppressing
the others and eventually dominates the entire population.
This is an example of spontaneous symmetry breaking, as
the local dynamics result in a systemwide difference between

the outcome for agents with different labels, even though the
labels are symmetrically defined.

C: The dynamics at high cooperation benefit, b = 8, are
very similar to those described in example B, except that here
it is the C(2) strategies which are dominating the system.
These are the strategies which cooperate with two of the label,
e.g., cooperate with red and blue neighbors, but not those with
green labels. Again we see that the system ends up being
dominated by just one of these strategies. It is worth noting
that in the very early rounds, while most of the agents still
have the strategy not to cooperate with anyone, there is a brief
rise of agents cooperating with everyone, C(all).

D: If, compared to example C, the selection pressure is a
little smaller, w = 0.06, then the balance switches between
the strategies C(2) and C(all). Here the system ends up in a
state where the large majority of agents are cooperating with
all of their neighbors, independently of their label.

E: If, however, the selection pressure is increased to a high
value, w = 1, then the system fractures into small patches
each dominated by a single strategy. Globally, this results in a
mix of all strategies of strategy classes 1 and 2, with strategy
class 1 being more dominant. A number of experiments have
shown that many intergroup relations are asymmetric in the
sense that members of one of the groups show much less,
sometimes even negative, ingroup favoritism than members of
the other [3–8]. The nondiscriminating strategies are almost
nonexisting, so the label symmetry is broken locally almost
everywhere. However, the symmetry is restored at the macro-
scopic (systemwide) scale, because the patches of different
strategies from the same strategy class occur with the same
frequency and size distribution.

The examples above are representative of qualitatively
different model behaviors. In the next section we will focus
on how the behavior depend on the model parameters, by
looking at how examples are arranged in parameter space.
The left panel of Fig. 2 is a phase diagram showing which
strategy class is the most dominating as a function of the
cooperation benefit b and the selection pressure w. One can
clearly distinguish four of the five phases exemplified in
Fig. 1. While the distinction between B and E were clear in
the examples, it cannot be seen by looking at this measure
alone.

The two panels in the middle show parameter scans made
at fixed cooperation benefits, b = 8.0 and b = 2.0, respec-
tively, as indicated by the horizontal lines in the phase dia-
gram. These show what fractions of the population belong to
each strategy class as a function of the selection pressure w.
At b = 8 we observe two transitions between different phases:
One is a sharp transition at w ≈ 0.05 from the phase where
everyone cooperates with everyone else to the phase where
almost all agents has a strategy of class 2. The other is a
smooth transition at w ≈ 0.15 to the state where strategy class
1 and 2 coexist with class 1 being more common. For b = 2
we see just one sharp transition from the phase where nearly
nobody cooperates with anyone to a phase strongly dominated
by strategy class 1.

The two panels on the right show parameter scans similar
to those in the middle, but with varying cooperation benefit
b and fixed selection pressures, w = 0.1 and w = 1.0, as
marked by the vertical lines in the phase diagram. At w = 0.1
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FIG. 2. Left: Phase diagram. The color of each pixel correspond to the most frequent strategy class after 1.25 × 108 time steps in a single
simulation with the corresponding selection pressure w and cooperation benefit b. The parameters marked A–E correspond to the five examples
shown in Fig. 1. Middle: Parameter scans showing strategy class proportion as a function of selection pressure w for fixed cooperation benefit
b (top: b = 8.0, bottom: b = 2.0) corresponding to the horizontal lines in the phase diagram. Right: Parameter scans showing strategy class
proportion as a function of cooperation benefit b for fixed selection pressure w (top: w = 1.0, bottom: w = 0.1), corresponding to the vertical
lines in the phase diagram. The results are obtained on 100 × 100 squared lattices with periodic boundary conditions, in a system with L = 3
different labels, at a constant mutation rate μ = 0.001 and a constant cost of cooperation c = 1.

we observe three different phases separated by two sharp tran-
sition. The transition between almost no cooperation and the
phase dominated by strategy class 1 happens at b ≈ 2.8. The
phases dominated by strategy classes 1 and 2, respectively, are
separated by a transition at b ≈ 4.5 which is almost as sharp.
At w = 1.0 there is a sharp transition at b ≈ 1.3 between the
phase with almost no cooperation to one where almost all
agents have a strategy from class 1. When the cooperation
benefit b is increased above this transition, we observe a
smooth change where an increasing fraction of the agents ends
up with strategies from class 2, resulting in the “mixed phase”
as illustrated by example E in Fig. 1.

Based on these observations we can say that for a pop-
ulation with three different labels and agents arranged on a
squared lattice there are sharp transitions between the phases
represented by the examples A–D in Fig. 1 and smooth
transition from B to E and from C to E.

B. More labels

To learn how the model behaves in systems with L > 3
labels, Fig. 3 shows parameter scans for systems with up
to seven different labels. The plots show the most common
strategy class as a function of cooperation benefit b and
selection pressure w. We see that the regions of parameter
space in which the system is dominated by unconditional
cooperation or defection are almost unaffected when changing
the number of labels. As we increase the number of labels, the
number of strategy classes goes up as well. Consequently, the
discriminating parameter region is subdivided into an increas-
ing number of subregions, characterized by which strategy
class ends up dominating the system. This division follows
a very simple structure. Nearest to the region dominated by
unconditional defection, the system will be dominated by

a strategy which cooperates with one of the labels (e.g.,
cooperate only with blue). When going a little further, the
dominating strategies are those who cooperate with two of
the labels (e.g.. cooperate with blue and green but not with
the rest), and so on. Nearest to the region of unconditional
cooperation we find the system dominated by strategies which
discriminate negatively against a single label (e.g., cooperate
with all neighbors except the blue).

The phase diagrams in Fig. 3 only show which strategy
class ends up as the most abundant at a given parameter set.
Therefore, it hides the finer structures, such as whether the
system ends up being dominated by a single representative of
the strategy class or if the stationary state is a mixture of many
strategies as, for example, in example E in Fig. 1. In the L = 3
case, one can get a good sense of this transition by looking
at the one-dimensional parameter scans shown in Fig. 2 and
paying attention to how big a fraction of the agents follow
the most abundant strategy class. Similar figures, but with up
to L = 7 different labels, can be found in the Supplemental
Material section A [25]. They indicate that the parameter
region in which the system is characterized by fractured
coexistence (similar to example E) does not depend on the
number of labels.

In summary, the phase-diagram capturing the model’s
long-term behavior seems to be remarkably independent of
the number of labels.

C. Further analysis

The results presented so far have all been limited to the
case where agents have four neighbors. In this next section we
will characterize how the system changes when we change the
connectivity. Figure 4 shows simulation results from systems
with three labels and agents arranged in grids with three labels
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FIG. 3. Phase diagrams for systems with 4, 5, 6, and 7 possible labels (counting from left to right). The color of each pixel correspond to
the most frequent strategy class after 1.25 × 108 time steps in a single simulation with the corresponding selection pressure w and cooperation
benefit b. The results are obtained on 100 × 100 squared lattices with periodic boundary conditions, in systems with up to L = 7 different
labels, at a constant mutation rate μ = 0.001, and a constant cost of cooperation c = 1.

and up to 12 neighbors. Interested readers can find a detailed
description of the lattice structures in the Supplemental Mate-
rial section B [25].

Figure 4(a) shows three phase diagrams—similar to those
presented in the previous figures—with 4, 8, and 12 neighbors,
respectively. It can be seen that the cooperation benefit b have
to be kept proportional to the connectivity k to get similar
results. This was expected based on the results from Ohtsuki
et al. [23], who said that cooperation occurs if the benefit-to-
cost ratio exceeds the connectivity. It can also be seen that the
system’s stationary state is almost independent of cooperation
benefits, when this is above ∼2k (marked by the horizontal
lines). This means that when the cooperation benefit is high,
the transition point between phases of unconditional coop-
eration and discrimination is almost only controlled by the
selection pressure and the connectivity. It is clear to see that
when the connectivity is higher, the transition into a discrim-
inating phase happens at lower selection pressure. A more
detailed visualization of this can be seen in Fig. 4(b). Here
we compare parameter scans at varying the selection pressure
w for connectivities ranging from k = 3 to k = 12 and fixed
cooperation benefit b = 2k. It can be seen how reduction of
the selection pressure needed to increase discrimination has a
slightly convex course.

Figure 4(c) gives some more detail about how the strat-
egy distribution depends on connectivity at k when both the
selection pressure and cooperation benefit are high (w =
1 and b = 2k). The round dots show what fraction of the
population ends up in each strategy class, as measured on
the left axis. It can be seen that when the connectivity is
higher, the gap between the strategy classes 1 and 2 becomes
bigger. When k � 10, almost all agents end up with a C(1)
strategy, even though all other parameters are the same as
in example E in Fig. 1 where the stationary distribution
was a disorderly mixture of small patches with different
strategies. To further quantify this difference, the red crosses
show the fraction of neighbors who have different strate-
gies (boundary fraction). This is measured as the number of
links connecting agents with different strategies divided by
the total number of links. The “boundary fraction” is a lot
smaller when the connectivity is higher, as the system goes

toward a state dominated by a single strategy. This indicates
that increasing the connectivity pushes the smooth transition
between the phases represented by the examples E and B
in Fig. 2 toward higher selection pressure. To give a more
intuitive visualization of this difference, Fig. 4(d) shows three
snapshots of how the stationary strategy distribution look
for three different connectivities—k = 4, k = 8, and k = 12,
respectively.

It is not immediately obvious, but a careful study of snap-
shots like the one in Fig. 4 with connectivity k = 4 or example
E in Fig. 1 reveals an interesting pattern in how frequently
different strategies occupy neighboring nodes. Two different
strategies are more likely to occupy neighboring nodes if they
agree on their behavior towards more of the labels, i.e. their
Hamming distance is small. e.g., a patch with the yellow
strategy (cooperate with green and red) share, on average,
significantly more border with the green or red patches than
with patches of the blue strategy. In order to quantify this
observation we can draw graphs like the one in Fig. 5, where
each node represents one of the discriminating strategies, and
the thickness of the link between two nodes is proportional
to the number of neighbor pairs with one neighbor following
each of the corresponding strategies (on average over an
ensemble of individual simulations). The result varies with the
choice of parameters. Here we have chosen to emphasize an
example at cooperation benefit b = 8 and selection pressure
w = 10−0.54. This point is near the transition between the
phases dominated by C(1) and C(2) strategies, so all the
discriminating strategies are approximately equally abundant.
We have chosen not to include the unconditional strategies,
since they are almost nonexistent at these parameters. We
have also chosen not to visualize the self-links, because these
would be many times stronger than the links between different
strategies. The figure shows that strategies are more likely
to occupy neighboring when they agree on how to behave
toward more of the labels. A handful of other examples are
included in the Supplemental Material section C [25]. These
show that the result is qualitatively robust at for a wide
range of parameters near the transition between phases where
different strategy classes coexist, except for very low values
of selection pressure where the signal drowns in noise.
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FIG. 4. (a) Two-dimensional parameter scans similar to the one
shown in Fig. 2 but with different for connectivities k = 4, 8, and 12
(from left to right). (b) Parameter scans showing the most common
strategy class as a function of selection pressure w and connectivity
k for benefit b = 2k. (c) Round dots show the fraction of each
strategy class in the stationary state for different lattice-connectivities
k. Red crosses show the fraction of neighbor pairs with different
strategies. The simulations use cooperation benefit b = 2k and a
very high selection pressure w = 1.0. (d) Strategy distributions for
connectivity k = 4, 8, and 12 (from left to right), benefit b = 2k,
and selection pressure w = 1. The color-coding is the same as in
Fig. 1. The results are obtained on lattices with 100 agents and
periodic boundary conditions. The number of different labels is
L = 3, and the mutation rate and the cost of cooperation are both
constant, μ = 0.001 and c = 1, respectively. The colors in panels
(a)–(c) correspond to the different strategy classes. Each colors in
panels (d) correspond to a different strategy in the same way as in
Fig. 1.

While all the results presented in the so far have been
obtained from systems where the agents are arranged in
regular lattices, it is straightforward to apply our model to
other topologies. In the Supplemental Material section A [25]
we have included figures showing how the model behaves

FIG. 5. Left panel: Graphs representation visualizing the strat-
egy distributions. Each node represents one of the discriminating
strategies. The thickness of a link between two nodes is proportional
to the fraction of neighbor pairs with one agent following each of
the corresponding strategies after 108 time steps averaged over 100
simulations with the following parameters: Each agent is connected
to the k = 4 nearest neighbors in a 100 × 100 square lattice and
has one of L = 3 possible labels chosen independently with uniform
probability. We used cooperating benefit b = 8, selection pressure
w = 10−0.54, and mutation rate μ = 0.001, and we initiated all
simulations with all agents following the “defect all” strategy. Right
panel: Example of one of the 100 data points combined to make the
graph. Each color correspond to a different strategy in the same way
as in Fig. 1.

on both random regular graphs and Erdős-Rényi (binomial)
random graphs. The main results are very similar to those
obtained on regular graphs, but there are a few differences
worth mentioning. One difference is that without the low-
dimensional spatial grid structure, the model has an even
stronger tendency to end with almost all agents applying the
same strategy. This results in some expanded bistable parame-
ter regions around the transitions between the different phases.
In these regimes, the systems will end up being dominated
by one single strategy, but it is unpredictable from which
strategy class. Another difference is caused by the variation of
connectivities in the Erdős-Rényi graphs. Agents with more
neighbors can potentially end up with higher payoffs. Since
the model has a nonlinear tendency to select “the richest”
neighbors, the dynamics tend to being dominated by the local
structures around highly connected agents. This can lead to
scattered strategy distributions when the selection pressure is
high, w � 0.1.

IV. DISCUSSION

In this paper we have studied a spatial prisoner’s dilemma
model in which agents marked with meaningless labels im-
itate the strategies of their neighbors—preferably the richest
ones. If all agents are identical, i.e. in the special case with
only L = 1 label, it is a well-known result discovered by
Ohtsuki et al. [23], that cooperation is the evolutionarily
stable strategy when the cooperation benefit is greater than
the average connectivity, b > k. Our simulations confirm that
this simple rule also applies to systems with a multitude of
different labels, as long as the selection pressure is sufficiently
low. We have also confirmed that the dynamics can lead to
macroscopic states of persistent hierarchical discrimination,
which was previously only demonstrated in the case of binary
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labels (L = 2) [21]. This is an example of spontaneous sym-
metry breaking, since the model definition does not specify
any differences between the labels. We have investigated sys-
tems with up to L = 7 different labels, and we found that the
transition points between unconditional and discriminating
strategies are essentially independent of the number of labels.
This quantitative robustness is interesting when considering
that the two unconditional strategies (cooperate or defect
against all) constitute a rapidly decreasing fraction of the
number of possible strategies, which increases exponentially
with the number of labels.

While the main results known from the cases with L = 1
and L = 2 are essentially unchanged in systems with L >

2, our investigations have also revealed some new phenom-
ena. One finding is that the parameter region dominated by
discriminating strategies is subdivided into distinct phases
dominated by different strategy classes. While one cannot
know from the onset of a simulation which strategies are
going to dominate in the system, it is possible to make reliable
predictions about how many of the labels these strategies treat
with cooperation and defection. This is similar to two discrim-
inating phases “cooperate with the majority” and “cooperate
with the minority” which were detected in the binary-label
model.

Another fascinating phenomenon which can only be ob-
served when L > 2 is that neighbors are more likely to have
similar strategies. Since strategies are copied from neighbor
to neighbor, it is no surprise that the model forms patches
of agents agreeing on a single strategy. There are, however,
no mechanisms in our model which explicitly favor neighbors
with similar strategies. It is therefore surprising to observe that
it is more likely for neighbors to have more similar strategies,
when we measure similarity between two strategies as the
number of label toward which they agree on what action to
take. We do not yet understand this observation and finding
an explanation will require further research.

Our system shows qualitatively similar results when the
agents are arranged on random regular graphs, or even Erdős-
Rényi graphs, rather than square lattices (as demonstrated in
the Supplemental Material [25]). However, it is worth pointing
out that it is necessary to enforce some kind of population
structure for the model to express nontrivial dynamics. In a
well-mixed system—i.e., on a fully connected graphs—the
defect-all strategy would always be evolutionarily stable. The
purpose of the paper is not to demonstrate a new mechanism to
overcome the tragedy of the commons but rather to investigate
the process by which discrimination can reduce cooperation
asymmetrically in the presence of arbitrary labels.

The model described in this paper is not the only one in
the literature of evolutionary game theory which is designed
to investigate the combined effect of spatial structure and
distinguishable agents. One example is the work by García
et al. [15] who demonstrated that introducing tags may reduce
the amount of cooperation in a structured population through

a mechanism they have called “the evil green-beard effect.”
The cooperation-reducing effect of tags through negative dis-
crimination is closely related to results presented in this paper,
but the dynamics leading to this effect is quite different. Our
model tends to end up in a stationary state, whereas theirs
exhibits cyclic behavior which is characteristic for tag-based
cooperation [11–16,20]. One of the main differences is that
the models of tag-based cooperation treat the tags as a part
of the variable state subject to the evolution dynamics. Our la-
bels, on the other hand, are immutable properties of the agents,
determined at the beginning of the simulation. This can be
seen as an approximation of a system in which behaviors adapt
on a much faster timescale than physical appearances as, for
example, if the dynamics are thought of as a type of learning
via social imitation, while the labels represent genetically
determined physical traits. This is reminiscent of the close
connection between multiagent reinforcement learning and
evolutionary dynamics [31,32].

Another important assumption in our model is that agents
choose which of their neighbors to imitate solely based on
their fitness. In particular, it does not consider the labels—
neither its own nor those of the neighbors—or how they
interact with the imitated strategy. This can be interpreted as
if the agents are not aware of their own labels. It is difficult to
imagine that humans should carry easily observable markers
without being aware of them themselves. Our softer inter-
pretation is that the strategies represent subconscious biases
exempted from rational reasoning. Experimental evidence
suggesting that humans do exhibit ingroup devaluation (or
outgroup favoritism) [4,5,7] supports this viewpoint and finds
a possible representation in the model.

When our model dynamics are interpreted as agents at-
tempting to imitate the behaviors of their most successful
neighbors, then the model parameter w can be interpreted
as a kind of inverse temperature controlling noise level in
the system. When the system is very “hot” (low selection
pressure w → 0) no strategies are preferred over any other, so
the system will end up in a mixed state where all strategies are
equally present. When the system is very cold (high selection
pressure), we also observe a high coexistence of strategies. In
the intermediate regime, however, we find that one strategy is
likely to dominate the entire system. A similar nonmonotonic
relation between noise and the degree of coexistence has been
observed in spatial Lotka-Volterra systems with continuous
noise [33,34].

In conclusion, the model we investigated in this paper
demonstrates that imitating successful behaviors may lead to
the emergence of persistent hierarchical discrimination in a
population where agents are marked with observable, but oth-
erwise meaningless, labels. We found this to be a remarkably
robust phenomenon with respect to the number of labels. A
central mechanism of the emergence of hierarchical social
structures in the model is spontaneous symmetry breaking,
transforming initial randomness into persistent fates.
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