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Propagation of modulated waves in narrow-bandpass one-dimensional lattices
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We consider the problem of the propagation of modulated waves in one-dimensional discrete lattices with
linear bandpass-type dispersion relation. We are interested specifically in the cases where the gap frequency f0

and the cutoff frequency fmax verify 0 < f0 < fmax < 2 f0. Analytical investigations of such models commonly
use the rotating wave approximation in which only the fundamental harmonic is taken into consideration. This
approach is routinely justified by the physical argument that the zeroth and higher harmonic frequency terms
cannot propagate, being out of band. Using a simple model of electrical lattice as a case study, we show
analytically that accounting for the generation of those terms is indispensable for the accurate prediction of
modulated solitary waves supported by the model. Moreover, a carefully designed numerical investigation of the
propagation of an exact and consistent second-order approximation of such waves reveals that the second-order
harmonic included is transmitted throughout the network the same as the fundamental harmonic is. Thus, we
unveil the pitfall of the rotating wave approximation that is detrimental to its reliability for most of the models
to which it has commonly been employed. We also suggest how to avoid this pitfall.

DOI: 10.1103/PhysRevE.100.062209

I. INTRODUCTION

The probably first numerical experiment was performed as
a means of studying the thermalization of energy in solids.
A simple model consisting of a set of equal masses coupled
to nearest neighbors by weakly nonlinear springs was used
to check the conjecture that the energy imparted initially to
a single normal mode of the system will uniformly spread
throughout all its normal modes. Contrary to the expected
equipartition of energy, it was rather observed that, in a
periodic fashion, the energy spreads only to a few neighboring
modes and returns almost entirely to the originally excited
one. This phenomenon, nowadays called Fermi-Pasta-Ulam
(FPU) recurrence, has largely contributed to the renewal of
the attention devoted to the study of systems composed of a
large number of interacting subsystems which are ordered in
space. Since ever, nonlinear lattices have been at the heart of
many extensive studies and are now established as the subject
of a considerable multidisciplinary interest. This substantial
interest stems, however, not only from a purely theoretical
scientific curiosity such as understanding the FPU recurrence,
but also from the viewpoint of their many interesting fields
of application. In effect, one-dimensional monoatomic lattices
of nonlinear oscillators have been used to model the energy
transport in polypeptide chains in muscle proteins [1–3] or
the energy transport in DNA [4]. Chains of coupled nonlin-
ear electrical oscillators have been employed as equivalent
electrical circuits for the investigation of transmission lines
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or long Josephson junctions [5]. Other examples include
myelinated nerve fibers in biophysics [6], photonic crystals
[7] and waveguides in optical devices [8], and arrays of
microelectromechanical systems [9,10]. In this respect, arrays
of nonlinear coupled particles continue to warrant and receive
further attention.

As in the pioneering work of FPU, it is usually indis-
pensable to resort to numerical experiments to investigate
the numerous models that can be devised to describe actual
physical problems of concern. Nevertheless, the importance
of analytical investigation cannot be minimized. In fact, it is
through the soliton theory which emerged from the analytical
works of Zabusky and Kruskal that the FPU recurrence could
be explained. This means that analytical analyses are useful
for the appropriate interpretation of the results of numerical
simulations. They can additionally constitute a guide for the
latter as well as for experimental investigations. Yet, this
necessary analytical investigation appears to be very challeng-
ing in general, due precisely to the two intrinsic features of
these models, namely, the nonlinearity and the discreteness.
In effect, apart from very few exceptions such as the Toda
lattice [5], exactly integrable models which are also physically
relevant are extremely scarce in the scientific literature.

Then to tackle analytically the investigation of the dy-
namics of lattices, several approximate techniques have been
devised in order to manage to varied extents the intractability
of their equations of motion. One of them, which seems to be
among the best, is the so-called rotating wave approximation
(RWA). In effect, neither the small amplitude assumption
usually required by, e.g., the semidiscrete approximation nor
the long-wavelength assumption required by the continuous
medium approximation is a prerequisite for the application
of the RWA. Moreover its usage encompasses the continu-
ous envelope modulation in which it is combined with the
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FIG. 1. Schematic of the discrete electrical transmission line.

Gardner-Morikawa transformation [11], as well as the fully
discrete envelope modulation. We observe on the one hand
that due to the nonlinearities of the system, higher-order
harmonics are generated for each harmonic component of
any finite amplitude wave that would be propagating in that
system. On the other hand, RWA-based analyses consider
only the fundamental harmonic component of the Fourier
expansion of the wave function. Such analyses are usually
performed for bandpass systems for which the gap frequency
f0 and the cutoff frequency fmax verify 0 < f0 < fmax < 2 f0.
Then, the argument that the bias term and the generated
higher-order harmonic components cannot propagate because
they are out of band is invoked to justify the validity of the use
of the RWA for these narrow bandpass systems. To the best of
our knowledge, however, no careful verification of it has ever
been presented in these studies. One can then wonder whether
this intuitive argument is absolutely free of pitfalls.

In this paper, we aim to address the suitability of the RWA
for some of the models for which it has been employed in
the current literature [12–16]. To this end, we consider here a
simple model of a nonlinear electrical transmission line which
satisfies the above narrowness condition. Then, by using the
semidiscrete approximation we establish that it supports the
propagation of solitonlike waves that can hardly be predicted
using the RWA.

The organization of this paper is as follows. The specific
discrete system considered for our investigation and the cor-
responding differential difference equations are presented in
Sec. II. This is followed by the derivation, through a higher-
order analysis, of a system of partial differential equations
(PDEs) which govern the evolution of envelope waves in this
lattice. A brief review of the modulational instability (MI)
in the network based on these PDEs and the determination
of their exact analytical solutions constitute the subject of
Sec. III. These solutions are subsequently used to carry out
direct numerical investigations whose outcomes are reported
in Sec. IV. A brief discussion then follows in Sec. V to clarify
the forms of model equations for which the shortcoming of
the RWA shows up. In Sec. VI our conclusions are drawn.

II. MODEL AND EQUATION

Our model is the simple nonlinear discrete electrical trans-
mission line schematically depicted in Fig. 1. Its unit cell com-
prises a series branch containing an inductor Ls, and a parallel
branch containing another inductor Lp as well as a capacitor.
Both inductors are assumed to be linear (their inductances
are independent of voltage and current across them). But the
capacitor which consists of the BB112 reversed-biased diode

is, on the contrary, a nonlinear element. For the sake of clarity,
we assume for the moment, following [5, Eq. (3.10)], that
its capacitance-voltage relationship is approximated for low
voltages Vn around the dc bias voltage Vb by

Cb(Vn) = C0(1 − 2αVn), (1)

where C0 and α are constants and Vn is the voltage in the
nth cell. In this paper, the numerical values assumed by
the various electrical components mentioned above are as
follows [14]: Ls = 0.470 mH, Lp = 0.220 mH, C0 = 320 pF,
and α = 0.21 V−1; the values of C0 and α being determined
for Vb = 2 V.

By applying Kirchhoff’s laws, one can easily establish that
the time dependence of the voltage Vn is governed by the
following system of differential difference equations:

d2

dt2

(
Vn − αV 2

n

) + u2
0(2Vn − Vn+1 − Vn−1) + ω2

0Vn = 0,

1 � n � N (2)

with ω0 = (LpC0)−1/2, u0 = (LsC0)−1/2, and N the total num-
ber of cells in the lattice. In order to investigate the modulation
of a wave carrier with angular frequency ω and wave number
k in such lattices, it is customary [15,17–19] to introduce a
fast scale variable θ = kn − ωt and two additional, slow scale
variables ξ = ε(n − μt ) and τ = ε2t . Here ε is a dimension-
less quantity which is assumed small in the sense that 0 <

ε � 1. The parameter μ is the linear group velocity, defined
as the first derivative of a function ω = ω(k) called linear
dispersion relation. The latter is obtained by seeking plane-
wave solutions to the lattice equation while assuming their
amplitudes sufficiently small for the nonlinear terms to be
neglected. In the case of Eq. (2), the linear dispersion relation
and the corresponding group velocity are given, respectively,
by

ω2 = ω2
0 + 4u2

0 sin2

(
k

2

)
, μ = u2

0 sin (k)

ω
. (3)

This dispersion relation shows that admissible values for the
frequency f = ω/2π of small amplitude plane waves that
can propagate in the electrical lattice under consideration are
in the range f0 = ω0/2π � f � fmax = (ω2

0 + 4u2
0)1/2

/2π .
Thus, as illustrated in Fig. 2, our system is a bandpass
filter with a gap f0 which is the lower cutoff angular fre-
quency introduced by the parallel inductance Lp and an
upper cutoff angular frequency fmax which is due to the
discreteness effects. For the values of the line’s parameters
considered in this work, one has f0 = 0.600 MHz and fmax =
1.017 MHz, and correspondingly, ω0 = 3.77 × 106 rad/s and
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FIG. 2. Variations of the frequency (solid line) and group veloc-
ity (dashed line) as functions of wave number.

ωmax = 6.39 × 106 rad/s. So the bandwidth is narrow since
fmax = 1.69 f0 < 2 f0.

In this paper we seek approximate solutions to Eq. (2)
whose expressions in terms of the above fast and slow scale
variables are of the form

V (θ, ξ , τ ) = ε(Aeiθ + G10) + ε2(G20 + Beiθ + E22e2iθ )

+ ε3(G30 + Ceiθ + E32e2iθ + E33e3iθ
) + c.c.,

(4)

where i is the imaginary unit (i.e., i2 = −1) and all of A, B, C,
G10, G20, E22, G30, E32, and E33 are complex-valued functions
of ξ and τ to be determined. As usual, c.c. is shorthand for
complex conjugate of the preceding terms.

We remark that the fundamental harmonic eiθ is rarely
considered at higher order in the assumed forms of solution
(or Ansätze). That is, the B and C terms are usually omitted in
most of works found in the literature. Notable exceptions are
those where weak amplitude solutions that oscillate around
a steady state V (0) (which is zero in our case) are initially

assumed in the form

V (θ, ξ , τ ) = V (0) +
∞∑

m=1

εm
m∑

l=−m

V (m)
l (ξ, τ )eliθ , (5)

where V (m)
l is a complex function and V (m)

l (ξ, τ ) = V (m)
−l (ξ, τ )

with the overbar denoting complex conjugation. They include
the papers by Ichikawa and Watanabe [20, Eq. (20)], Kako
[21, Eq. (62)] and Taniuti [22, Eqs. (6.9)]. There, the summa-
tion over l in Eq. (5) extends harmlessly up to ∞. Though
not essential for the issues being investigated in this work,
taking the terms εmV (m)

1 eiθ , m ∈ N \ {0, 1} into consideration
is required for both the elimination of secular terms at higher
perturbation orders and the consistent truncation of the gen-
eral expansion Eq. (5) from which those Ansätze derive.

Due to the introduction of the fast and slow variables, the
time-derivative operator is transformed according to [23]

d

dt
= −ω

∂

∂θ
− εμ

∂

∂ξ
+ ε2 ∂

∂τ
. (6)

Upon substituting Eq. (4) into Eq. (2), and then using Eq. (6),
we obtain an equation which can be put in the form of a
complex Fourier series in the variable θ as follows:

F0(ξ, τ ; k, ε) +
∑
l�1

Fl (ξ, τ ; k, ε)eliθ + c.c. = 0. (7)

The fulfillment of this equation obviously requires that F0 =
Fl = 0. The latter actually form a system of coupled nonlinear
differential difference equations in ξ and τ whose analytical
solutions are not easy to obtain. But thanks to the assumed
smallness of ε, we reduce them to only PDEs by performing
power series expansion of the form

Z (ξ + ηε, τ ) = Z (ξ, τ ) +
∞∑

l=1

(ηε)l

l!

∂ lZ (ξ, τ )

∂ξ l
(8)

for any of the modulation quantities A, B, C, Gj0, and Ejl that
appear in Eq. (4). Then, keeping the linear relations in Eq. (3)
in mind and using the above with η = ±1, we find that F1 is
given to order ε4 by

2ε2αω2G10A + ε3

[
P̃

∂2A

∂ξ 2
− 2iω

∂A

∂τ
+ 2αω2(E22A + G20A) − 4iαμω

∂

∂ξ
(G10A) + 2αω2G10B

]
+ ε4

[
2αω2(E32A + E22AB + G20B + G30A) + P̃

∂2B

∂ξ 2
− 2iω

∂B

∂τ
− 2μ

∂2A

∂ξ∂τ
− i

μ

6

∂3A

∂ξ 3
− 4iαωμ

∂

∂ξ
(E22A + G20A)

+ 4iαω
∂

∂τ
(G10A) − 4iαμω

∂

∂ξ
(G10B)2αω2G10C − 2αμ2 ∂2

∂ξ 2
(G10A)

]
= 0, (9)

where P̃ = μ2 − u2
0 + (ω2 + ω2

0 )/2. It is worth noticing from
this stage that if the bias terms Gj0 and the coefficients of the
higher-order harmonics Ejl are taken a priori equal to zero
for any reason, including in particular the narrowness of the
bandpass, then the above equation reduces to one that contains
only linear terms involving partial derivatives of A and B.
Therefore, the equations that describe the propagation of
modulated waves in the electrical line in consideration would

be linear dispersive PDEs. We point out that this conclusion
still holds even if the Ansatz in Eq. (4) is of order ε0. This case
can in effect be deduced from Eq. (34) in Sec. V by taking the
limit when both of the coefficients a2 and a4 of the higher-
order nonlinear terms considered there equal zero. Similarly,
each of the various key envelope equations derived elsewhere
for a generalized version of our model [14,23] reduces to a
linear PDE if the additional model parameters that have not
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FIG. 3. Variation of the coefficient of the second harmonics with
the wave number. Its maximum is attained at kχ ≈ 1.15.

been considered here are equated to zero in the coefficients
of that equation. Clearly, such equations lack the nonlinearity
which is well known to be indispensable for sustaining the
propagation of modulated solitary waves predicted below by
our analysis and further confirmed in Sec. IV by our numerical
investigations.

With the expansion defined by Eq. (8), each of the Fourier
coefficients Fl in Eq. (7) is a power series similar to Eq. (9).
We obtain the expression of Gj0 and Ejl as functions of A and
B (and eventually their derivatives) by equating the coefficient
of ε j terms of Fl to zero. Thus we have

G10 = 0, G20 = 0, G30 = 0, E22 = χ0A2, (10a)

E32 = 2χ0AB + iχ1A
∂A

∂ξ
, E33 = χ2A3. (10b)

The quantities χ0 − χ2 are all real constants that depend
only on the electrical line parameters ω0, u0, and α as well
as on the angular frequency ω of the carrier wave. Their
expressions are explicitly given as follows:

χ0 = 4u2
0αω2

ω4 − 2ω2
0ω

2 + ω4
0 + 3ω2

0u2
0

,

χ1 = 8u2
0αωμ

(
ω4 − ω4

0 − 3ω2
0ω

2
)(

ω4 − 2ω2
0ω

2 + ω4
0 + 3ω2

0u2
0

)2 , (11a)

χ2 = − 72u6
0α

2ω4(
ω4 − 2ω2

0ω
2 + ω4

0 + 3ω2
0u2

0

)
�

with

� = (
ω2 − ω2

0

)3 − 6u2
0

(
ω2 − ω2

0

)2 − 8ω2
0u4

0. (11b)

The coefficient χ0 is of interest for the issue discussed in
this paper as it is a factor of the amplitude E22 of the second
harmonics. Its graphical representation is given in Fig. 3.

We note from Eqs. (10) that, when the reductive per-
turbation is consistently applied, the bias component of the
wave vanishes for the current model (up to the third order
of approximation: G10 = G20 = G30 = 0) as was pointed out
in Ref. [24]. This is, however, not linked to the narrowness
of our model, but rather to the specific form of its equation

of motion, Eq. (2), where the nonlinear term appears under
the time-derivative operator. The situation would be com-
pletely different for, e.g., the DNA models investigated in
Refs. [13,15] using the RWA.

By substituting Eqs. (10) above into Eq. (9), we find that
the dynamics of modulated waves in our model is governed
to second order of perturbations by the following system of
PDEs:

i
∂A

∂τ
+ P

∂2A

∂ξ 2
+ QA|A|2 = 0, (12a)

i
∂B

∂τ
+ P

∂2B

∂ξ 2
+ Q(2|A|2B + A2B)

= −R0
∂2A

∂ξ∂τ
− i

(
μ

6

∂3A

∂ξ 3
+ R1A2 ∂A

∂ξ
+ R2|A|2 ∂A

∂ξ

)
,

(12b)

where

P = ω2
0 + 2u2

0 − ω2 − 2μ2

4ω
,

Q = − 4α2ω3u2
0

ω4 − 2ω2
0ω

2 + ω4
0 + 3ω2

0u2
0

,

R0 = μ

ω
, (13)

R1 = 8μα2ω2u2
0

ω4 − 2ω2
0ω

2 + ω4
0 + 3ω2

0u2
0

,

R2 = 8μα2ω2u2
0

(
3ω4

0 + ω4 + 9ω2
0u2

0 − 4ω2
0ω

2
)(

ω4 − 2ω2
0ω

2 + ω4
0 + 3ω2

0u2
0

)2 .

In particular, Eq. (12a) is the standard nonlinear Schrödinger
(NLS) equation which is well known to be derivable at first
order of perturbations from similar models, using an Ansatz
that includes just the terms εAeiθ + ε2E22e2iθ + c.c. in our
notation [17]. Consistently with this fact, these two terms turn
out here to be the only ones of our more general Ansatz (4)
that effectively contribute to the standard NLS. In effect, we
obtain Eq. (12a) by setting the ε3 term of Eq. (9) to zero. The
latter appears to depend on G10, G20, and B in addition to E22.
But considering Eqs. (10), only E22 which is nonzero and not
proportional to the null terms G10 and G20 will be left. In fact,
letting the cubic coefficient β not considered here equal to
zero in Ref. [17, Eqs. (2.10)] and further eliminating the wave
number by appropriately exploiting Eqs. (2.3) and (2.5) of the
same paper reduce the expressions of P and Q therein to those
in Eq. (13) above.

Up to now, B remains arbitrary. It could then be taken
equal to zero as in existing works if our final solution were
to retain only the ε term of the assumed Ansatz. However, as
one of the aims of this work is to check whether higher-order
harmonic components of a given wave would propagate in
our narrow spectrum network, it is necessary to explicitly
include at least one such harmonic in the solution retained.
For simplicity, one can consider the second harmonic E22e2iθ

which happens to be already known. Now, all the terms of the
Ansatz that appear at the same order of perturbation as E22e2iθ

must equally be determined for mathematical consistency.
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This implies in our case that an equation that fixes B is needed.
Conforming rigorously with the spirit of perturbation theory
according to which each perturbation term of a given equation
must independently be equated to zero, we obtain the required
equation as Eq. (12b) from the ε4 term of Eq. (9); obviously
upon substitution of Eqs. (10).

It is interesting to observe that the process of equating
each ε term of Eq. (9) to zero would lead to a system of
two different nonlinear PDEs for the same quantity A if one
omits the B term in the Ansatz (4). In this case, the solution
of any of these PDEs must also verify the other PDEs in
order to be an acceptable approximate solution for the original
discrete equation (2). This is certainly a strong constraint
that can preclude the existence of solutions. For the low-pass
counterpart of our nonlinear transmission line (NLTL), which
is obtained by removing the parallel inductor Lp from the cir-
cuit (leading to ω0 = 0 in the corresponding model equation),
Ref. [18] presents a second-order analysis where the B term is
omitted. There, the constraint just mentioned is bypassed by
considering Eq. (9) as a whole, single equation that formally
consists of the left-hand side of Eq. (12a) equated to ε times
the right-hand side of Eq. (12b). Some similarities can thus
be expected between the coefficients in this paper and those
obtained therein. This is effectively the case: By letting ω0 =
0 in Eq. (13), the expressions of our P and Q become those in
Ref. [18, Eqs. (2.7)] while those of R0, R1, and R2 reduce to
the respective coefficients in the right-hand side of Eq. (2.6) of
the same paper. Under ω0 = 0, the expression of χ0 in Eq. (11)
of this paper is also reduced to the coefficient in the definition
of B in [18, Eqs. (2.8)]. One of the advantages of the coupled
form given by Eqs. (12) is that it enables one to obtain some
exact and fully explicit analytical solutions as will be seen in
the next section. This is contrary to [18, Eq. (2.6)] where the
effects of the higher-order analysis could be appreciated only

through some averaging procedure. The latter is approximate
and can easily be applied to bright solitons only.

Just like the necessity of including the terms εmV (m)
1 eiθ ,

m ∈ N \ {0, 1} in the Ansätze is recognized at least since
the 1970s [20–22], the approach whose developments have
led us to Eqs. (12) is nothing new. It was used by Ichikawa
et al. to investigate the contribution of higher-order terms
in the reductive perturbation theory for strongly dispersive
waves [25]. For the physical problem that they examined and
which consisted of an ion-plasma wave, they obtained their
Eq. (33.a) and Eq. (33.b) as the respective counterparts to our
Eqs. (12a) and (12b). In a relatively recent work by Demiray,
one can observe that the lowest-order term in the expansion
is governed by the nonlinear Schrödinger equation while the
second-order term is governed by the linear Schrödinger equa-
tion [26, Eqs. (15) and (19)]. This is once again in accordance
with our Eqs. (12a) and (12b), respectively.

III. EXACT ANALYTICAL SOLUTIONS

This section is devoted to the investigation of some solu-
tions of the system of coupled PDEs derived from the discrete
equation of our NLTL. In general, the dependent functions A
and B can be expressed in polar form according to

A(ξ, τ ) = a(ξ, τ )eiφ(ξ,τ ),

B(ξ, τ ) = b(ξ, τ )ei[φ(ξ,τ )+ψ (ξ,τ )], (14)

where a and φ are real-valued functions representing the
amplitude and phase of A while b is the amplitude of B and
ψ a possible phase difference relative to A. Introducing these
relations into Eqs. (12) and separating each of the latter into
real and imaginary parts lead to the system of PDEs given
below:

P
∂2a

∂ξ 2
− a

∂φ

∂τ
− Pa

(
∂φ

∂ξ

)2

+ Qa3 = 0, (15a)

∂a

∂τ
+ 2P

∂φ

∂ξ

∂a

∂ξ
+ Pa

∂2φ

∂ξ 2
= 0, (15b)

μ

6
a

[(
∂φ

∂ξ

)3

− ∂3φ

∂ξ 3

]
− μ

2

∂

∂ξ

(
∂φ

∂ξ

∂a

∂ξ

)
+ R0

(
∂2a

∂ξ∂τ
− a

∂φ

∂ξ

∂φ

∂τ

)
+ (R1 − R2)a3 ∂φ

∂ξ

−
[

Pb

(
∂2φ

∂ξ 2
+ ∂2ψ

∂ξ 2

)
+ ∂b

∂τ
+ 2P

(
∂φ

∂ξ
+ ∂ψ

∂ξ

)
∂b

∂ξ

]
sin (ψ )

+
[

3Qa2b − P

(
∂φ

∂ξ

)2

− P

(
∂ψ

∂ξ

)2

− b

(
∂φ

∂τ
+ ∂ψ

∂τ

)
− 2Pb

∂φ

∂ξ

∂ψ

∂ξ
+ P

∂2b

∂ξ 2

]
cos (ψ ) = 0, (15c)

(R1 + R2)a
∂a

∂ξ
+ μ

6

∂3a

∂ξ 3
+ R0

(
∂φ

∂τ

∂a

∂ξ
+ ∂φ

∂ξ

∂a

∂τ
+ a

∂2φ

∂ξ∂τ

)
− μ

2

[(
∂φ

∂ξ

)2
∂a

∂ξ
+ a

∂φ

∂ξ

∂2φ

∂ξ 2

]

+
[

P
∂2b

∂ξ 2
− b

(
∂φ

∂τ
+ ∂ψ

∂τ

)
− Pb

(
∂ψ

∂ξ

)2

− Pb

(
∂φ

∂ξ

)2

+ Qa2b − 2Pb
∂ψ

∂ξ

∂φ

∂ξ

]
sin (ψ )

+
[

Pb

(
∂2ψ

∂ξ 2
+ ∂2φ

∂ξ 2

)
+ ∂b

∂τ
+ 2P

(
∂φ

∂ξ
+ ∂ψ

∂ξ

)
∂b

∂ξ

]
cos (ψ ) = 0. (15d)
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A. Modulational instability

The simplest solutions worth of consideration for the anal-
ysis of wave propagation in our NLTL correspond to the so-
called plane waves. Their characteristics are the constancy of
their amplitudes and the linear dependency of their phases on
space and time. Seeking such solutions for Eqs. (15), we take
a(ξ, τ ) = A0, b(ξ, τ ) = B0, φ(ξ, τ ) = κξ − �τ and assume
a constant phase difference ψ (ξ, τ ) = ψ0. Then we find that
the amplitudes A0 and B0 of the plane waves and their angular
pulsation � and wave number κ verify

� = Pκ2 − QA2
0,

B0 =
[
6(R0Q − R1 + R2)A2

0 − (6R0P + μ)κ2
]
κ

12QA0 cos (ψ0)
. (16)

We see that the B0 can exist only for ψ0 �= ±π/2 and is
moreover relevant for κ �= 0.

To study the linear stability of these plane waves, we
consider small perturbations to their amplitudes and phases
according to

a(ξ, τ ) = A0 + εa1(x, t ), φ(ξ, τ ) = κξ − �τ + εφ1(x, t ),

b(ξ, τ ) = B0 + εb1(x, t ), φ(ξ, τ ) = ψ0 + εψ1(x, t ). (17)

We introduce these expressions into Eqs. (15) which we sub-
sequently expand in power series of ε. Taking Eqs. (16) into
account, the order ε0 of each of these series vanishes. Equating
the coefficients of the leading terms of what remain to zero
forms a system of linear PDEs that govern the dynamics of
the perturbations. The solutions of the latter system of PDEs
are sought in the form⎛⎜⎝a1(ξ, τ )

φ1(ξ, τ )
b1(ξ, τ )
ψ1(ξ, τ )

⎞⎟⎠ =

⎛⎜⎝a10

φ10

b10

ψ10

⎞⎟⎠ei(λξ−ντ ), (18)

where a10, φ10, b10, and ψ10 are constants. This leads to a
homogeneous system of linear algebraic equations⎛⎜⎝�1 �2 0 0

�3 �4 0 0
�5 �6 �7 �8

�9 �10 �11 �12

⎞⎟⎠
⎛⎜⎝a10

φ10

b10

ψ10

⎞⎟⎠ =

⎛⎜⎝0
0
0
0

⎞⎟⎠. (19)

The �’s are complex-valued expressions that are extremely
cumbersome and are not given to save space. Using these
expressions and taking Eqs. (16) into account, the solvability
condition of Eq. (19), namely, that the determinant of its
matrix vanishes identically, is found to be[

ν2 − 4Pλκν + Pλ2
(
2QA2

0 − Pλ2 + 4Pκ2
)]2 = 0. (20)

Equation (20) is equivalent to ν2 − 4Pλκν +
Pλ2(2QA2

0 − Pλ2 + 4Pκ2) = 0 and is merely the same
equation yielded by MI investigation for the standard NLS
equation alone.

We can then deduce that plane-wave solutions with proper-
ties given by Eqs. (16) can become modulationnally unstable
in our model only if the product of the two coefficients P and
Q of Eq. (12a) is positive. The graphs of the latter are given in
Fig. 4. It is observed that the coefficient P of linear dispersion
decreases monotonically from positive to negative values as
a function of the wave number, vanishing at a critical value
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]
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−4

−2
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8
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−1

ce
ll

2
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P

FIG. 4. Variation of the coefficients of linear dispersion P and of
cubic nonlinearity Q as functions of wave number. The product PQ is
seen to be negative for k < kc and positive for kc < k with kc ≈ 1.31.

kc ≈ 1.31 of the wave number (the corresponding frequency
is fc ≈ 0.781 MHz). As for the coefficient Q of the cubic
nonlinearity, it remains negative within the first Brillouin
zone. The MI of plane waves can thus develop for wave
numbers in the range kc < k � π.

B. Solitary wave solutions

The class of solutions we are mostly interested in is that of
localized nonlinear waves. We restrict ourselves to the cases
where the real amplitudes a(ξ, τ ) and b(ξ, τ ) are independent
of τ while φ(ξ, τ ) = στ and ψ (ξ, τ ) = π/2. Then, defining
a function f̃ in terms of a as

f̃ = μ

6
a′′′ + [(R1 + R2)a2 + R0σ ]a′, (21a)

the system of couples PDEs in Eqs. (15) reduces to the
following system of coupled ordinary differential equations:

Pa′′ − σa + Qa3 = 0, (21b)

Pb′′ + (Qa2 − σ )b + f̃ = 0. (21c)

Above, a prime (′) denotes a differentiation with respect to ξ .
Equation (21b) is the famous cubic Duffing oscillator equation
and is one of the most studied equations of physical sciences.
Depending on the signs of its coefficients, it can admit peri-
odic or bounded hyperbolic solutions. The expressions of each
of these types of solution can be obtained analytically in terms
of the Jacobian elliptic functions or hyperbolic functions,
respectively. On the other hand, it is easy to verify that a
solution, a, of Eq. (21b) is also a solution of the homogeneous
equation associated with Eq. (21c). Thus, by classical routine
[27,28], one obtains the complete solution of the latter for-
mally as

b(ξ ) =
[
ρ1 +

∫ ξ

ã(s) f̃ (s)ds

]
a(ξ )

+
[
ρ2 −

∫ ξ

a(s) f̃ (s)ds

]
ã(ξ ), (22a)
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where ρ1 and ρ2 are arbitrary constants and

ã(ξ ) = a(ξ )
∫

dξ

a2(ξ )
. (22b)

This last function is not bounded in general; so the con-
stants ρ1 and ρ2 have to be chosen appropriately in order to
keep the variation of b finite. The final approximate expression
for the voltage in our NLTL, valid to order O(ε3) is formally
given by

Vn(t ) = 2εa(ξ ) cos[kn − (ω − ε2σ )t]

− 2ε2b(ξ ) sin[kn − (ω − ε2σ )t]

+ 2χ0ε
2a2(ξ ) cos{2[kn − (ω − ε2σ )t]} (23)

with ξ = ε(n − μt ). In particular, for PQ > 0, we have

a(ξ ) = a0 sech

(
ξa0

√
Q

2P

)
, σ = a2

0Q

2
, (24a)

b(ξ ) =
[
δ0 − δ1a0ξ + δ2 tanh

(
ξa0

√
Q

2P

)]
a0a(ξ ), (24b)

which corresponds to the bright type soliton. Here, a0 is an
arbitrary constant that determines the amplitude of the pulse
while δ0, δ1, and δ2 depend on the parameters of Eqs. (12) as
follows:

δ0 = 12(R1 + R2)P − 7μQ − 6PQR0

48P2

√
2

PQ
,

δ1 = (μ + 6PR0)

24P3
,

δ2 = μQ − 2(R1 + R2)P

8P

√
2

PQ
.

(25)

We notice here that, if Eqs. (24) are substituted into Eq. (23),
the arbitrary parameter ε can be consistently absorbed into the
amplitude a0 of the pulse.

IV. NUMERICAL ANALYSIS

In this section, we conduct a numerical investigation of the
propagation status of the approximate solutions derived in the
preceding section. Our fundamental concern here is to check
whether the modulated wave given in Eq. (23), which has been
possible to predict analytically only by considering higher-
order harmonics as already pointed out herein, do effectively
propagate in our narrow bandpass NLTL. And in the case it
does, we also aim to know whether the second-order harmonic
retained is transmitted through this network.

The wave’s frequency obviously turns out to be the key
quantity to consider for this investigation. So the results pre-
sented below are obtained with the fixed value a0 = 0.1 V of
the wave’s amplitude parameter. They are nevertheless typical
and not qualitatively affected by changes of a0 that reasonably
maintain the smallness of amplitude assumed in the analytical
study (values up to a0 = 0.3 have been checked).

To proceed, we consider a network of N = 1200 effective
elementary cells. The discrete set of coupled equations gov-
erning the voltages in the cells as provided by Eq. (2) are
integrated numerically using an explicit Runge-Kutta (4),(5)

formula. Specifically, the Dormand-Prince pair [29] as imple-
mented in Matlab’s function ode45 is used with a stringent
relative tolerance of about 5 × 10−10. We choose the initial
conditions as

Vn(t0) = V̇n(t0) = 0, n = 1, . . . , N (26)

and excite the left end of the lattice with a signal V0(t ). We
employ two strategies in order to reduce as much as possible
the effects of the reflection of waves at the other end of the
lattice.

First, the forward time integration is performed only for a
duration just equal to the theoretical value Tmax = 0.75N/μ

required for an input wave to propagate through 75% of the
lattice. Assuming a possible mismatch between the theoretical
and the actual propagation speeds, we further implement
the so-called absorbing boundary condition [30]. Thus, the
effective network is extended with some 120 extra cells whose
dynamical equations additionally include a viscous damping
term γ (n)V̇n. The damping coefficient γ (n) increases with
position according to

γ (n) = 5

[
1 + tanh

(
n − N − 60

4

)]
, N < n � N + 120

(27)
so that any incoming wave is progressively damped out
beyond the last cell considered to be part of the effective
network.

We begin with a look at the behavior of a plane wave
whose parameters fulfill the theoretical condition required for
its modulational instability. For this purpose, the input signal
is taken following [18] in the form

V0(t ) = 2a0[1 + r cos (νt )] cos (� t ). (28)

Tracing from the definitions of the phase of the car-
rier wave (θ = kn − ωt ), the phase of the envelope wave
[φ(ξ, τ ) = κξ − �τ ] and Eqs. (16), we calculate here the
angular frequency � for a wave number k > kc according to
� = ω + κ2P − Qa2

0 with ω obeying the dispersion relation
in Eq. (3) and P and Q given by Eqs. (13). The modulating
signal of amplitude r and angular frequency ν figures a small
perturbation for 0 < r � 1. Theoretically, the quasi plane
wave respesented by Eq. (28) will develop an instability dur-
ing its propagation if the value of ν is such that Eq. (20) admits
complex solutions for λ. We present in Fig. 5 an illustration
of the confirmation of the predicted phenomenon. This figure
is obtained by numerically integrating Eq. (2) with the input
signal (28) and the initial conditions (26) with t0 = 0.

Turning now to the actual investigation of the propagation
of the modulated solution (23) and (24), the input signal V0(t )
is deduced from the expression of this solution by setting
n = 0. Then, the initial time t0 is (theoretically) taken to be
−∞ in order that the whole shape of the pulse forms from the
function V0(t ).

For a given value of the frequency fp, the first and elemen-
tary means we adopt for ascertaining the propagation consists
of recording the position of the wave front at different time in-
stants. An example of such a stroboscopic view is provided in
Fig. 6 for our electrical lattice. This plot, which corresponds to
fp = 1.015 MHz, or equivalently kp = 3, reveals undoubtedly
that the input pulse moves down the network as time evolves.
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FIG. 5. Development of MI in the network for the frequency value fp = 1.015 MHz and for κ = 0, a0 = 0.1, r = 0.001, and ν = π fp/50.

The subplots display the state of the network at (a) t = 0, (b) t = 0.25N/μ, (c) t = 0.50N/μ, and (d) t = 0.75N/μ.

We next consider the famous spectral analysis for a quan-
titative analysis of the propagation. Here we monitor the
amplitude |̃S( f )| of the Fourier transform (FT)

S̃( f ) = 1√
2π

∫ ∞

−∞
S(t )e−i2π f t dt (29)

of the wave signal S(t ). Concretely, we sample the time
dependence of the voltages in 50 distinct cells that are regu-
larly spaced along the effective network during the numerical
integration. The sampling time �t is calculated in a way to
collect a total of 32 768 data (for each of those 50 cells) evenly
distributed over the whole integration time defined above.
Finally, we use the standard fast Fourier transform algorithm

to numerically compute the FT for the data collected. Figure 7
illustrates the outcome of this procedure for the particular cell
n = 504. At first glance, the FT profile looks very similar to
that of a harmonic signal because its seems to contain a single
peak [see Fig. 7(b)]. The apparent absence of higher harmonic
components is well understandable from the analytical con-
siderations. In effect the second harmonic component, which
is expected to have the highest amplitude of them, scales as
the product χ0a2

0 with a0 � 1 and, for the current value of the
frequency, χ0 < 0.25 [see Eqs. (10a) and (23), and Fig. 3].
Actually, a closer look at the spectrum around the fundamental
and the second-order frequencies of the input signal reveals
the pulse-shaped form of the FT profile around each of these
frequencies, as can be seen from Figs. 7(c) and 7(d). One can
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FIG. 6. A three-dimensional representation of the stroboscopic view of the network status for the frequency value fp = 1.015 MHz.
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FIG. 7. Illustration of (a) the voltage waveform and (b) its Fourier transform at cell 504 for the frequency value fp = 1.015 MHz. Parts
(c) and (d) are zooms of (b) around f = fp and f = 2 fp, respectively. The distance between the symmetric points M1 and M2 located at half
maximum of the pulse constitutes the full width at half maximum.

characterize the quality of the propagation by studying the
variations of the amplitudes and full widths at half maximum
(FWHM) of these two pulses during the propagation of the
signal. Thus, we repeat the calculations just described for all
of the 50 cells of our sample and extract the characteristics
of interest to obtain the plots of Fig. 8. Figure 8(a) shows
that the amplitudes of the pulses at both the fundamental and

second frequencies are nonzero and constant for cells up to
approximately n ≈ 850, which are certainly those traversed
by the pulse. Beyond this interval, they decrease simulta-
neously and become zero in the same ranges. Figure 8(b)
proves that the first and second frequency FWHMs are equal
and, more importantly, also constant for cells traversed by
the electrical pulse signal. These two graphs conspicuously
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FIG. 9. Effect of frequency on the variation of the pulse amplitude at the (a) first and (b) second harmonics.

demonstrate that the second harmonic component of the wave
is transmitted with preservation of its shape and amplitude,
just like the first harmonic component.

The frequency value fp = 1.015 MHz considered up to
now is actually quite close to the cutoff frequency. So its first
multiple will be farther out of band. This makes it a very good
candidate for drawing some observations on the issue which
is the subject of this work. To turn these observations into
reliable conclusions we have repeated the analysis detailed
above for other frequencies. The main results are portrayed
in Figs. 9(a) and 9(b) confirming that the observations made
previously are not simple artifacts that are peculiar to the
frequency value fp = 1.015 MHz.

V. FURTHER DISCUSSION

Up to this point, our analysis has focused on the NLTL of
Fig. 1 when it is assumed to be governed by Eq. (2). In spite
of the fact that its linear spectrum is narrow, which makes it
suitable for investigation by the RWA according to currently
accepted claims, we have noted in Sec. II that this technique
is inappropriate for this purpose due to its stringent failure to
predict nonlinear modulated waves that are yet supported by
the model as demonstrated above. The following observation
further sheds light on the fact that the narrowness of the linear
spectrum band is not the prevailing reason that should prompt
the use of the RWA.

The capacitance voltage relationship of our model is often
taken as [31]

Cb(Vn) = C0

[
1 +

5∑
s=1

(−1)s(s + 1)asV
s

n

]
(30)

with

a1 = 0.2 V−1, a2 = 0.0257 V−2, a3 = 0.002 22 V−3,

a4 = 1.22 × 10−4 V−4, a5 = 3.5 × 10−6 V−5 (31)

still for the dc bias voltage Vb = 2 V. Equation (30) with the
values in Eq. (31) is considered to fit more accurately the
exact characteristic of the BB112 reversed-biased diode than
Eq. (1). For this higher-order polynomial approximation, the

discrete equations of motion of the NLTL of Fig. 1 become

d2

dt2

(
Vn +

5∑
s=1

(−1)sasV
s+1

n

)
+ u2

0(2Vn − Vn+1 − Vn−1) + ω2
0Vn = 0. (32)

Within the RWA which uses the Ansatz

V (θ, ξ , τ ) = A(ξ, τ )eiθ + A(ξ, τ )e−iθ , (33)

one obtains the extended NLS equation

i
∂

∂τ
(A + 3a2A|A|2 + 10a4A|A|4)

− μ2

2ω

∂2

∂ξ 2
(A + 3a2A|A|2 + 10a4A|A|4)

− i
μ

ε

∂

∂ξ
(3a2A|A|2 + 10a4A|A|4)

+ ω

2ε2
(3a2A|A|2 + 10a4A|A|4) = 0, (34)

as the one governing nonlinear modulated waves in the sys-
tem. Noticing that the two levels of modeling the network in
Fig. 1 have the same linear spectrum but differ only in the
degree of nonlinearity considered, the immediate conclusion
we can make, and which is valid beyond our NLTL, is that the
adequacy of the RWA is attached to the nonlinearity rather
than to the width of the linear spectrum. In fact, a careful
inspection of the coefficients of Eq. (34) indicates moreover
that they involve the coefficients a2 and a4 of the odd order
terms of Eq. (32), but none of a1, a3, and a5 of its even order
terms. This is also true for the envelope equations derived in
Refs. [14,23] for a generalized version of our model using
the RWA. So, on the one hand, the RWA technique does
not account for even order nonlinearities but only for odd
order nonlinearities. On the other hand, a basic mathematical
analysis on the magnitudes of the nonlinear terms of Eq. (32)
with the values in Eq. (31) reveals that its quadratic term is
at least 3.89 times stronger than its cubic term. This smallest
factor is attained at the dc bias voltage, Vn = Vb = 2 V, which
is seldom considered to be approached in investigations of
our NLTL model. It increases above 15.56 when the voltage
decreases below 0.5 V, which is the voltage range commonly
considered in those analyse. The reliability of the RWA
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technique then appears to be undoubtedly a matter of concern
here since weaker effects are accounted for while stronger
ones are not. Once again, this observation is not peculiar to
the NLTL under consideration. We remark in effect that the
polynomial equations of motion to which the RWA is applied
in investigations of discrete lattices are usually obtained from
polynomial expansions or interpolations of more general and
nonpolynomial equations. See [13,15] for some examples.
For physically relevant models, the corresponding coefficients
decrease with the increase of the order of the nonlinearity,
so that lower-order nonlinear terms are stronger than higher-
order ones as above. We suggest therefore that, instead of the
narrowness of width of the linear spectrum, the presence of
only odd order nonlinearities in the model equation should be
the principal criterion to consider for using the RWA for an
accurate investigation of that model.

VI. CONCLUSION

This paper has discussed the theoretical investigation of
modulated waves in one-dimensional nonlinear discrete sys-
tems that have a narrow linear bandpass spectrum. An elec-
trical transmission line whose lone nonlinear element is a
capacitor with a simple quadratic charge-voltage relation-
ship has been used as a case study. Our analytical analysis
has then highlighted the fact that, disregarding higher-order
harmonic components in the waves to be propagated in the
network leads to barely linear dispersive equations for their

envelopes. Solitons bearing equations are obtained on the
contrary when the higher-order harmonics are taken into
account. For appropriately chosen Ansatz, and within the
reductive perturbation framework, these equations consist of
the standard NLS equation coupled to inhomogeneous linear
PDEs. The analytical expressions of their soliton solutions
have been obtained explicitly to second order of perturbation.
They have been used as input for the numerical integration of
the discrete equations of the electrical line and have proved
to propagate without distortion. The spectral analysis of the
output of the numerical integration data has revealed that
the fundamental as well as the second harmonic included in
the expression of the solution do propagate throughout the
network. For our example of discrete lattice, the magnitude
of the latter was found to be so small that careful attention is
required to notice its presence from the spectral analysis. Our
analytical study, which shows that this magnitude is nonzero
in the whole bandwidth, indicates that it depends on both
the linear and nonlinear elements of the lattice, respectively,
through the angular frequency and the nonlinearity coefficient.
For some systems therefore, analyses that rely a priori on
the narrowness of the linear bandwidth solely to neglect
higher-order harmonics and dc bias components will lead at
best to inaccurate and, hence, potentially unreliable results
and conclusions. This is especially true for models governed
by asymmetric equations of motion. On the contrary the
RWA seems to be safe from those shortcomings for models
governed by symmetric equations of motion.
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