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We study the quantum localization in the chaotic eigenstates of a billiard with mixed-type phase space
[J. Phys. A: Math. Gen. 16, 3971 (1983); 17, 1049 (1984)], after separating the regular and chaotic eigenstates,
in the regime of slightly distorted circle billiard where the classical transport time in the momentum space is
still large enough, although the diffusion is not normal. This is a continuation of our recent papers [Phys. Rev. E
88, 052913 (2013); 98, 022220 (2018)]. In quantum systems with discrete energy spectrum the Heisenberg time
tH = 2π h̄/�E , where �E is the mean level spacing (inverse energy level density), is an important timescale.
The classical transport timescale tT (transport time) in relation to the Heisenberg timescale tH (their ratio is
the parameter α = tH/tT ) determines the degree of localization of the chaotic eigenstates, whose measure A is
based on the information entropy. We show that A is linearly related to normalized inverse participation ratio.
The localization of chaotic eigenstates is reflected also in the fractional power-law repulsion between the nearest
energy levels in the sense that the probability density (level spacing distribution) to find successive levels on a
distance S goes like ∝Sβ for small S, where 0 � β � 1, and β = 1 corresponds to completely extended states.
We show that the level repulsion exponent β is empirically a rational function of α, and the mean 〈A〉 (averaged
over more than 1000 eigenstates) as a function of α is also well approximated by a rational function. In both
cases there is some scattering of the empirical data around the mean curve, which is due to the fact that A
actually has a distribution, typically with quite complex structure, but in the limit α → ∞ well described by
the beta distribution. The scattering is significantly stronger than (but similar as) in the stadium billiard [Nonlin.
Phenom. Complex Syst. (Minsk) 21, 225 (2018)] and the kicked rotator [Phys. Rev. E 91, 042904 (2015)]. Like
in other systems, β goes from 0 to 1 when α goes from 0 to ∞. β is a function of 〈A〉, similar to the quantum
kicked rotator and the stadium billiard.

DOI: 10.1103/PhysRevE.100.062208

I. INTRODUCTION

Quantum chaos (or more generally, wave chaos) deals
with phenomena in the quantum domain, which are signa-
tures of the classical chaos in the corresponding classical
systems [1–3]. The classical dynamics as the ray dynamics
of the quantum wave functions is, for example, an analogy
of the relationship between the Gaussian ray optics and the
wave phenomena of the Maxwell equations describing the
electromagnetic field. The classical and the quantum descrip-
tions are connected theoretically through the semiclassical
mechanics, which is the short wavelength approximation of
the underlying wave field. We also might say that classical
dynamics is the short wavelength limit, but only up to a certain
scale determined by the Planck constant h̄, of the quantum
dynamics. The fundamental difficulty is that the two limits
h̄ → 0 (the classical limit) and t → ∞ (asymptotic time limit)
do not commute.

In the classically integrable Hamiltonian systems with f
degrees of freedom the semiclassical theory predicts that the
quantum eigenstates (in the 2 f -dim phase space, represented
by Wigner functions [4] or Husimi functions [5]) are asso-
ciated with the classical f -dim invariant tori. In the case of
classical ergodic systems, the eigenstates are microcanonical

[uniformly spread over the (2 f − 1)-dim energy surface].
In the case of the mixed-type classical phase space, where
regular regions covered by the invariant tori coexist with the
chaotic sea (one or more chaotic invariant regions), we have
the generic structure (almost all systems are of this type),
where we have to distinguish between the quantum regular
and irregular (chaotic) eigenstates, an idea proposed qualita-
tively already in 1973 by Percival [6]. This line of thought lead
to the Principle of Uniform Semiclassical Condensation of
Wigner functions [7], based on work of Berry [8], Shnirelman
[9], Voros [10], and further developed by Veble, Robnik and
Liu [11]. The Wigner functions of the eigenstates condense
uniformly on the classical invariant component in the classical
phase space, and this principle (PUSC) has a great predictive
power as demonstrated, e.g., in Ref. [11].

The classical dynamics of bounded Hamiltonian systems
determines also the statistical properties of the discrete energy
spectra of the corresponding eigenstates. For the classically
regular motion it predicts Poissonian energy level statistics,
while in the classically fully chaotic (ergodic) systems the
statistics of random matrix theory (RMT) applies, as conjec-
tured by Bohigas, Giannoni, and Schmit [12] in 1984, also by
Casati, Valz-Gris, and Guarneri [13], proven by Berry [14],
Sieber and Richter [15], and by Haake and coworkers [16–19],
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using the semiclassical techniques based on the Gutzwiller’s
periodic orbit theory (see Refs. [20–24] and also the books by
Stöckmann [1] and Haake [2]).

The intermediate case of the mixed-type Hamilton systems
was treated first theoretically by Berry and Robnik [25] and
has been analyzed later on in many studies, most accurately by
Prosen and Robnik [26]. In this picture the parameter ρ1 plays
the crucial role, being the relative fraction of the phase space
volume occupied by the regular regions in the classical phase
space, and it also is the relative density of the regular energy
levels in the total quantum spectrum of the underlying system.
The spectral statistics for the regular levels is Poissonian.

If there are chaotic regions with the relative volume frac-
tions (and corresponding energy level densities) ρ2, ρ3, . . . ,
then for each of them the RMT statistics applies. Usually,
the dominant chaotic region is by far the largest one, ρ2 �
ρ3, . . . , so that the smaller chaotic regions can be neglected,
and we have ρ1 + ρ2 = 1.

The best mathematical description of such a mixed-type
case is in terms of the gap probability E (S). This is the proba-
bility that an energy interval (after unfolding, i.e., reducing the
mean energy level density to unity) is empty of levels. Clearly,
if regular and chaotic eigenstates are not correlated, being
statistically independent of each other, then the gap probabiliy
simply factorizes, that is

E (S) = EP(ρ1S) ERMT(ρ2S), (1)

where P and RMT refer to the Poissonian and RMT statistics,
respectively. The Poissonian is EP(S) = exp(−S). For the
GOE level spacing distribution, which applies if the time
reversal symmetry (or any other antiunitary symmetry) exists,
the well-known Wigner distribution (Wigner surmise) is an
excellent analytical approximation,

PW (S) = πS

2
exp

(
−πS2

4

)
, (2)

while the corresponding gap probability is

EW (S) = 1 − erf

(√
πS

2

)
= erfc

(√
πS

2

)
. (3)

The level spacing distribution P(S) is the second derivative of
the gap probability P(S) = d2E (S)/dS2, and therefore in this
case given by

PBR(S) = e−ρ1Se− πρ2
2 S2

4

(
2ρ1μ2 + πρ3

2 S

2

)
(4)

+ e−ρ1Sρ2
1 erfc

(√
πρ2S

2

)
,

as derived by Berry and Robnik [25]. Of course, ρ2 = 1 − ρ1.
The gap probability E (L) is just a special case of E (k, L)
probability of finding k levels on an interval of length L,
namely, E (L) = E (0, L). For more details about the E (k, L)
probabilities with k > 0, see Ref. [26].

The above statements are correct only if the chaotic states
are uniformly extended over the classical invariant chaotic
component. This condition, however, is not always satisfied.
The phenomenon of dynamical (or quantum) localization
can occur, first discovered and further explored by Chirikov,
Izrailev, and Shepelyansky [27] in the quantum kicked rotator

(QKR) introduced by Casati, Chirikov, Izrailev, and Ford [28]
as a model system, and later extensively studied in particular
by Izrailev [29–33]. The QKR is a time periodic (Floquet)
system. The time independent chaotic systems are exemplified
by the 2-dim billiard systems. Borgonovi, Casati, and Li [34]
have studied from this point of view the stadium billiard
of Bunimovich [35]. See also the review by Prosen [36].
The case of mixed-type billiard has been studied recently by
Batistić and Robnik [37–39].

The criterion for localization is in terms of the ratio

α = tH
tT

(5)

of the Heisenberg time tH and the classical transport time tT .
Here, tH = 2π h̄/�E , with �E being the mean energy level
spacing (inverse energy level density), which is an important
timescale in any quantum system with discrete energy spec-
trum, while tT is the purely classical (h̄-independent) diffusion
time, or typical time needed for an ensemble of initial sharply
distributed momenta to spread uniformly over the classical
chaotic component. If α 	 1, then the chaotic eigenstates are
maximally localized, while if α � 1, then the eigenstates are
maximally extended, but in between we have the partially
localized eigenstates. The degree of localization can be mea-
sured most easily in terms of the Husimi function [5], which
is positive definite and can be treated as quasiprobability
density. There are three main localization measures: A, the
information entropy measure, C the correlation localization
measure, and nIPR the normalized inverse participation ratio.
As recently shown [38,40], they are all proportional to each
other (linearly related) and thus equivalent. The energy spectra
of the localized chaotic eigenstates can be well described
by the fractional power law level repulsion, P(S) ∝ Sβ , for
small S, and β ∈ [0, 1]: β = 0 corresponds to the maximal lo-
calization and Poissonian statistics, while β = 1 corresponds
to the maximal extendedness (delocalization) and the RMT
statistics. It has been found that β is a function of A, they are
linearly related in QKR and in the stadium billiard, as well as
in the present work. It is also an almost rational function of α.

The local behavior of P(S) at small S can be globalized
by approximating it by the well known Brody distribution
[41,42], described by the following formula

PB(S) = cSβ exp(−dSβ+1), (6)

where by normalization of the total probability and the first
moment we have

c = (β + 1)d, d =
[
�

(
β + 2

β + 1

)]β+1

, (7)

with �(x) being the gamma function. It interpolates the ex-
ponential and Wigner distribution as β goes from 0 to 1. The
corresponding gap probability is

EB(S) = 1

γ (β + 1)
Q

[
1

β + 1
, (γ S)β+1

]
, (8)

where γ = �( β+2
β+1 ) and Q(a, x) is the incomplete gamma

function

Q(a, x) =
∫ ∞

x
t a−1e−t dt . (9)
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Here the only parameter is β, the level repulsion exponent
in Eq. (6), which measures the degree of localization of the
chaotic eigenstates. By replacing ERMT(S) with EB(S) we get
the so-called Berry-Robnik-Brody (BRB) distribution, which
generalizes the Berry-Robnik (BR) distribution such that the
localization effects are included [37]. In this way the problem
of describing the energy level statistics is empirically solved.
However, the theoretical derivation of the Brody distribution
for the localized chaotic states remains an important open
problem. One important theoretical plausibility argument by
Izrailev in support of Brody (or Brody-like) intermediate
level spacing distribution is that the joint level distribution
of Dyson circular ensembles can be extended to noninteger
values of the exponent β [33]. Our recent numerical results
show that Brody distribution is good in describing real data
[37,38,43,44].

This paper is a continuation of our recent works on
the mixed-type billiard [45–47], classical and quantal. The
role of the divided phase space and of the localization ef-
fects of chaotic eigenstates has been extensively studied in
Refs. [37–39].

In the very recent papers on the classical dynamics in the
stadium billiard [48] we have carefully investigated the clas-
sical diffusion and transport properties, while in Refs. [40,49]
we have performed a complete analysis of the following quan-
tal aspects: we have shown that nIPR and A are equivalent,
A has a distribution on a compact interval [0, A0], very well
described by the beta distribution. It turns out in our analysis
that A0 is approximately equal to 0.7 for maximally extended
Poincaré-Husimi functions, like in the present work, although
we do not have a theory for it. We have shown some rep-
resentative Poincaré-Husimi functions of various degrees of
localization A. The mean value 〈A〉 is approximately a rational
function of α, the standard deviation σ of A is analyzed,
and we have shown that the level repulsion exponent β is a
linear function of 〈A〉, and an almost rational function of α,
consistently with the other properties. Finally, σ seems to be
a unique function of β.

The purpose of the present paper is to carry out the same
complete analysis of the chaotic eigenstates in the mixed-type
billiard introduced in Refs. [45,46], showing that all statistical
properties of localized chaotic eigenstates are universal, if the
system’s chaotic component is without pronounced stickiness
regions: The distribution P(A) is beta distribution. However, if
the stickiness regions exist and are pronounced, then P(A) is
nonuniversal, it can have several maxima (usually two), and
each secondary maximum can be attributed to a stickiness
region.

We should emphasize the fact that 2-dim billiards are quite
typical Hamilton systems, as they can display all the general
phenomena found in other smooth Hamilton systems, but
are as model systems much easier to study, theoretically and
numerically, classically and quantally. Therefore, we certainly
may expect that our results are quite typical for general
Hamilton systems. These include, e.g., hydrogen atom in
strong magnetic field, Dicke model, quantum dots, molecules,
nuclea, mesoscopic systems, microwave resonators, optical
microcavity lasers, etc. See the discussion in Sec. VI.

The paper is organized as follows. In Sec. II we define
the billiard system, the Poincaré-Husimi functions, introduce

a method to separate regular and chaotic eigenstates, and
define the localization measures A and nIPR, and we show
that they are equivalent. In Sec. III we show the dependence
of the moments of A on α and present some typical Poincaré-
Husimi functions. In Sec. IV we calculate the localization
measures A and their distribution functions in various classical
dynamical regimes. In Sec. V we analyze the energy spectra
and their statistical properties (the level spacing distributions)
as functions of α in various classical dynamical regimes. In
Sec. VI we draw the conclusions and discuss them in the
context of further open problems.

II. THE BILLIARD SYSTEM, DEFINITION OF THE
POINCARÉ-HUSIMI FUNCTIONS, SEPARATION OF
REGULAR AND CHAOTIC EIGENSTATES, AND THE

LOCALIZATION MEASURES A AND NIPR

A. The billiard system

The mixed-type billiard system B in this paper has been
introduced in Refs. [45,46] and has been further studied by
many others as a model system, most extensively recently by
Lozej and Robnik [47]. Its shape is defined by the complex
quadratic conformal map from the unit circle |z| = 1 in the z
plane onto the physical w plane,

w = z + λ z2, (10)

where the family parameter λ goes from 0 to 1/2: At λ = 0
we have the integrable circular billiard, for 0 < λ < 1/4 it is a
convex shape having mixed-type phase space, in particular, we
have the Lazutkin’s caustics in the w plane and corresponding
invariant curves in the phase space. For λ = 1/4 it is still
convex but has a zero curvature point at z = −1 and therefore
(Mather’s theorem) all Lazutkin’s tori are destroyed, allowing
for ergodicity, which, however, does not yet occur, as we
numerically still find islands of stability. For 1/4 < λ < 1/2
it is nonconvex but still has a smooth boundary and very tiny
islands of stability (regular islands), while for λ = 1/2 it has a
cusp singularity at z = −1 and has been proven by Markarian
[50] to be ergodic. Thus, the system is an interesting and
quite well explored one-parameter family of billiards going
from the integrable circle billiard to a rigorously ergodic and
fully chaotic billiard, having mixed-type dynamics for the
intermediate values of λ. A recent very extensive survey of
the chaotic phase space has been performed by Lozej [51].

For a 2D billiard the most natural coordinates in the phase
space (s, p) are the arclength s round the billiard boundary
in the mathematically positive sense (counterclockwise). s ∈
[0,L], where L is the circumference, in our case starting at
s = 0 at the point z = 1. The sine of the reflection angle θ ,
which is the component of the unit velocity vector tangent
to the boundary at the collision point, equal to p = sin θ ,
is the canonically conjugate momentum to s. These are the
Poincaré-Birkhoff coordinates. The bounce map (s1, p1) →
(s2, p2) is area preserving [52], and the phase portrait does
not depend on the speed (or energy) of the particle.

Quantum mechanically we have to solve the stationary
Schrödinger equation, which in a billiard is just the Helmholtz
equation,

�ψ + k2ψ = 0, (11)
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with the Dirichlet boundary conditions ψ |∂B = 0. The energy
is E = k2. The important quantity is the boundary function,

u(s) = n · ∇rψ (r(s)), (12)

which is the normal derivative of the wave function ψ at the
point s (n is the unit outward normal vector). It satisfies the
integral equation

u(s) = −2
∮

dt u(t ) n · ∇rG(r, r(t )), (13)

where G(r, r′) = − i
4 H (1)

0 (k|r − r′|) is the Green function in
terms of the Hankel function H (1)

0 (x). It is important to realize
that the boundary function u(s) contains complete information
about the wave function at any point r inside the billiard by the
equation

ψm(r) = −
∮

dt um(t ) G(r, r(t )). (14)

Here m is just the index (sequential quantum number) of the
mth eigenstate.

B. The Poincaré-Husimi functions

Now we go over to the quantum phase space. We can
calculate the Wigner functions [4] based on ψm(r). How-
ever, in billiards it is advantageous to calculate the Poincaré-
Husimi functions. The Husimi functions [5] are generally just
Gaussian smoothed Wigner functions. Such smoothing makes
them positive definite, so that we can treat them somehow as
quasiprobability densities in the quantum phase space, and
at the same time we eliminate the small oscillations of the
Wigner functions around the zero level, which do not carry
any significant physical contents, but just obscure the picture.
Thus, following Tualle and Voros [53] and Bäcker et al.
[54], we introduce [38,39] the properly L-periodized coherent
states centered at (q, p) as follows:

c(q,p),k (s) =
∑
m∈Z

exp{i k p (s − q + mL)} (15)

× exp

[
−k

2
(s − q + mL)2

]
.

The Poincaré-Husimi function is then defined as the absolute
square of the projection of the boundary function u(s) onto the
coherent state, namely,

Hm(q, p) =
∣∣∣∣
∫

∂B
c(q,p),km (s) um(s) ds

∣∣∣∣
2

. (16)

C. The localization measures A and nIPR

The entropy localization measure of a single eigenstate
Hm(q, p), denoted by Am is defined as

Am = exp Im

Nc
, (17)

where

Im = −
∫

dq d p Hm(q, p) ln[(2π h̄) f Hm(q, p)] (18)

is the information entropy. Here f is the number of degrees of
freedom (for 2D billiards f = 2, and for surface of section

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

〈A〉

0.0

0.1

0.2

0.3

0.4

0.5

n
I
P

R

FIG. 1. The normalized inverse participation ratio as a localiza-
tion measure, as a function of A. They are linearly related and thus
equivalent. We have used the chaotic states with M � Mt = 0.5. The
slope is 0.72 and the intercept −0.017.

it is f = 1) and Nc is a number of cells on the classical
chaotic domain, Nc = �c/(2π h̄) f , where �c is the classical
phase space volume of the classical chaotic component. In the
case of the uniform distribution (extended eigenstates) H =
1/�C = const. the localization measure is A = 1, while in the
case of the strongest localization I = 0, and A = 1/NC ≈ 0.
The Poincaré-Husimi function H (q, p) Eq. (16) (normalized)
was calculated on the grid points (i, j) in the phase space
(s, p), and we express the localization measure in terms of
the discretized function. In our numerical calculations we
have put 2π h̄ = 1, and thus we have Hi j = 1/N , where N is
the number of grid points, in case of complete extendedness,
while for maximal localization we have Hi j = 1 at just one
point, and zero elsewhere. In all calculations have used the
grid of 400 × 400 points, thus N = 160 000.

As mentioned in the Introduction, the definition of local-
ization measures can be diverse, and the question arises to
what extent are the results objective and possibly independent
of the definition. Indeed, in Ref. [38], it has been shown that
A and C (based on the correlations) are linearly related and
thus equivalent. Moreover, we have introduced [40] also the
normalized inverse participation ratio R = nIPR, defined as
follows:

R = 1

N

1∑
i, j H2

i j

, (19)

for each individual eigenstate m. However, because we expect
fluctuations of the localization measures even in the quantum
ergodic regime (due to the scars, etc.), we must perform some
averaging over an ensemble of eigenstates, and for this we
have chosen 100 consecutive eigenstates. Then, by doing this
for all possible data for the the billiard at various λ and k, we
ended up with the result that the R = nIPR and A are linearly
related and thus also equivalent, as shown in Fig. 1. This is in
perfect agreement with the most recent results for the stadium
billiard [40], and thus we believe that it is generally true,
independent of a specific model system.
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In the following we shall use exclusively A as the measure
of localization.

D. Introducing the distribution of the localization measure A

The central object of interest in this paper is the distribution
P(A) of the localization measures Am of the chaotic eigen-
states within a certain interval of 2000 consecutive even-parity
eigenstates indexed by m, around some central value k0. We
have done this for 18 different values of λ and for each λ for
9 to 12 different values of k0. Each distribution function P(A),
generated by the segment of chaotic eigenstates within the
stretch of 2000 consecutive values Am, is defined on a compact
interval [0, A0]. Ideally, according to Eqs. (17) and (18), the
maximum value of A should be 1, if the Husimi function were
entirely and uniformly extended. However, this is never the
case, as the Husimi functions have zeros and oscillations, and
thus we must expect a smaller maximal value, smaller than
1, which in addition might vary from case to case, depending
on k and the grid size. As long as we do not have a theoretical
prediction for A0, we must proceed empirically. Therefore, we
have checked several values of A0 around A0 = 0.7, and found
that the latter value is the best according to several criteria. See
also the discussion at the end of Sec. IV.

We shall look at the moments of P(A), namely,

〈A〉 =
∫ A0

0
A P(A) dA, 〈A2〉 =

∫ A0

0
A2 P(A) dA, (20)

and the standard deviation

σ =
√

〈A2〉 − 〈A〉2. (21)

For the numerical calculations of the eigenfunctions ψm(r)
and the corresponding energy levels Em = k2

m we have used
the Vergini-Saraceno method [55]. Also, we have calculated
only the even symmetry class of solutions.

E. The separation of regular and chaotic eigenstates

Now the classification of eigenstates can be performed by
their projection onto the classical surface of section. As we
are very deep in the semiclassical regime we do expect with
probability one that either an eigenstate is regular or chaotic,
with exceptions having measure zero, ideally. To automate
this task we have ascribed to each point on the grid a number
Ki, j whose value is either +1 if the grid point lies within
the classical chaotic region or −1 if it belongs to a classical
regular region. Technically, this has been done as follows.
We have taken an initial condition in the chaotic region,
and iterated it up to about 1010 collisions, enough for the
convergence (within certain very small distance). Each visited
cell (i, j) on the grid has then been assigned value Ki, j = +1,
the remaining ones were assigned the value −1.

The Poincaré-Husimi function H (q, p) Eq. (16) (normal-
ized) was calculated on the grid points and the overlap index
M was calculated according to the definition

M =
∑
i, j

Hi, j Ki, j . (22)

In practice, M is not exactly +1 or −1 but can have a value
in between. The reasons are two, first the finite discretization

of the phase space (the finite size grid), and second, the finite
wavelength (not sufficiently small effective Planck constant,
for which we can take just 1/k j). If so, then the question is
where to cut the distribution of the M values, at the threshold
value Mt , such that all states with M < Mt are declared regular
and those with M > Mt chaotic.

There are two natural criteria: (I) The classical criterion:
the threshold value Mt is chosen such that we have exactly ρ1

fraction of regular levels and ρ2 = 1 − ρ1 of chaotic levels.
(II) The quantum criterion: we choose Mt such that we get the
best possible agreement of the chaotic level spacing distribu-
tion with the Brody distribution Eq. (6), which is expected
to capture the dynamical localization effects of the chaotic
eigenstates. However, when we wanted to make sure that only
chaotic eigenstates are being used, we have chosen Mt = 0.5.

III. MOMENTS OF A AND EXAMPLES OF
POINCARÉ-HUSIMI FUNCTIONS

The system parameter governing the localization phe-
nomenon α = tH/tT , as introduced in Eq. (5), in a quantum
billiard described by the Schrödinger equation (Helmholtz
equation) Eq. (11), becomes

α = 2k

NT
, (23)

where NT is the discrete classical transport time, that is the
characteristic number of collisions of the billiard particle
necessary for the global spreading of the ensemble of uniform
in s initial points at zero momentum in the momentum space.
This quantity NT can be defined in various ways as discussed
in Refs. [38,39,47,49], where the derivation of tT , NT , and α is
given. Unlike the stadium billiard, where the diffusion can be
very slow and well described by the exponential approach to
the equilibrium value (uniformly spread ensemble in the entire
phase space), in the present billiard the classical spreading
(transport) is not described by a diffusion law but still can
be well described by the criterion of the second moment 〈p2〉
reaching a certain fraction (percentage) of the asymptotic,
maximal value. Indeed, in spite of some arbitrariness of this
definition, we found it sound, as the final results do not
qualitatively depend on the choice of the criterion, only some
parameters change their values, as we shall see below. In
Table I we give the values of NT according to the four different
criteria (50%, 70%, 80%, and 90%), for a variety of values of
λ, which we consider in this paper in the sections to follow.

The condition for the occurrence of dynamical localization
α � 1 is now expressed in the inequality

k � NT

2
, (24)

although the empirically observed transitions are not at all
sharp with α.

In Fig. 2 we show the dependence of 〈A〉 on α, where α

is calculated using NT from Table I. Moreover, to compare
and well define the A for various values of λ, we have to
divide these values by the relative size (area) χC of the largest
chaotic component. Otherwise, we would see different values
of A even for entirely extended states, due to the different size
of the classical chaotic components. Therefore, in the case of
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TABLE I. The classical transport time NT in units of the number
of collisions for the criteria of certain percentage of the asymptotic
maximal value of the second moment of momentum distribution,
starting from zero (Dirac delta distribution), calculated numerically
for various values of λ.

The classical transport time NT

λ 90% 80% 70% 50%

0.135 48218 13893 6444 2325
0.140 26830 7992 3750 1227
0.145 21284 5089 2501 936
0.150 11431 3289 1579 534
0.155 6134 2164 1103 405
0.160 3981 1332 706 264
0.165 2506 908 509 205
0.170 1763 678 440 182
0.175 1569 592 327 127
0.180 1257 480 248 86
0.185 737 319 177 62
0.190 542 258 152 55
0.200 314 170 106 47
0.210 287 138 85 37
0.220 192 92 55 23
0.230 147 73 44 17
0.240 106 52 29 9
0.250 77 40 21 7

full extendedness they obtain all the same value A0, for which
it turns out empirically that A0 = 0.7 is the best choice. The
table of the χC values was published in the paper [47]. Like
in the stadium [40,49] the transition from strong localization
of small 〈A〉 and α to the complete delocalization α � 1 is
quite smooth, over almost two decadic orders of magnitude.
As we see, 〈A〉 is approximately fitted by a rational function
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FIG. 2. The mean entropy localization measure 〈A〉 for variety
of λ and energies E = k2, as a function of α fitted by the function
Eq. (25), based on NT from the Table I, with A∞ = 0.58 and s =
1.70, 0.57, 0.30, 0.11, for Figs. 2(a)–2(d), respectively. Qualita-
tively it is very similar to the stadium [40,49].
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FIG. 3. The standard deviation σ as a function of the α for variety
of different shapes λ and energies E = k2. Qualitatively it is very
similar to the stadium [40,49].

of α, namely,

〈A〉 = A∞
sα

1 + sα
, (25)

where the values of the parameters are A∞ = 0.58 and s =
1.70, 0.57, 0.30, 0.11, for Figs. 2(a)–2(d), respectively.

In Fig. 3 we show the dependence of σ defined in Eq. (21)
upon α also using NT from Table I.

We see that while 〈A〉 is a monotonically increasing
function of α (Fig. 2), the standard deviation σ starts at
zero, is small for small α, but rises sharply, and reaches
some maximum at about α ≈ 10, and then decreases very
slowly at large values of α. Thus, both the very strongly
localized eigenstates, mimicking invariant tori, and the en-
tirely delocalized (ergodic) eigenstates have small spreading
σ around the mean value 〈A〉. According to the quantum
ergodic theorem of Shnirelman [9] σ should tend to zero
when α → ∞, and rescaled 〈A〉 → 1, but the transition to
that regime might be very slow as suggested by Fig. 3.
In this limit P(A) must become the Dirac delta function
peaked at A0. However, it is very difficult to quantify this
approach quantitatively, as at large α we have very few
physically reliable data points, so it is too early to draw
any definite conclusion about the asymptotic behavior at
α → ∞. More numerical efforts are needed, currently not
feasible.

The Poincaré-Husimi functions describe the structure of
the localized chaotic eigenstates. In Fig. 4 we show some
selection of typical Poincaré-Husimi functions for various
values of λ and k, and the corresponding α. We show only the
upper right quadrant s ∈ [0,L/2], p ∈ [0, 1] of the classical
phase space, as due to the symmetries (reflection symmetry
and the time reversal symmetry) all four quadrants are equiv-
alent. The uniform gray background represents the largest
classical chaotic domain, while the darker structures denote
the value of the Poincaré-Husimi functions. At large λ = 0.25
(almost ergodic case) and fixed k, we have small NT and
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FIG. 4. We show plots of Poincaré-Husimi functions for a representative selection of chaotic eigenstates: Row (a–d): λ = 0.15, k =
642.5819901, 634.10919221, 635.84172768, 634.60937942; Row (e–h): λ = 0.15, k = 2598.54009629, 2598.5812614, 2598.7038606,
2601.4614965; Row (i–l): λ = 0.25, k = 640.68503066, 1197.17988119, 1477.59419041, 3719.0489485; Row (m–p): λ = 0.14, k =
1196.82174307; λ = 0.16, k = 1196.83132015; λ = 0.17, k = 1196.87057788; λ = 0.18, k = 1197.13132098. The uniform gray background
represents the largest classical chaotic domain, while the darker structures denote the value of the Poincaré-Husimi functions.

according to Eq. (23) α � 1, we observe mainly ergodic
eigenstates, in agreement with the quantum ergodic theorem
[9], that is fully extended states, exemplified in Figs. 4(k) and
4(l). Nevertheless, there are some exceptions, asymptotically
of measure zero, where we observe partial localization, as
shown in Fig. 4(j). Also, some Poincaré-Husimi functions
can be associated with small stability islands around a stable
classical orbit exempliifed by Fig. 4(i). Moreover, there can be
strongly localized states corresponding to the scaring around
and along an unstable periodic orbit in the chaotic sea. More
precisely, the area of scars of eigenfunctions ψm(r) goes to
zero, and the relative number of scarred states goes to zero as
h̄ → 0 or m → ∞ [56].

As we decrease λ = 0.15 and α, thereby increasing NT ,
the degree of localization increases, thus 〈A〉 is decreas-
ing as shown in Figs. 4(a)–4(h). At other values of λ =
0.14, 0.16, 0.17, 0.18 of strongly pronounced mixed-type
phase space we see localized states exemplified in Figs. 4(m)–
4(p).

IV. THE DISTRIBUTIONS OF THE LOCALIZATION
MEASURES A

In this section we present the central results of this paper,
namely, the distribution functions of the localization measures
A. It is found, according to our expectation, that in the almost
ergodic case with large λ such as, e.g., λ = 0.25, we find that
each distribution can be very well characterized and described
by the so-called beta distribution,

P(A) = CAa(A0 − A)b, (26)

where A0 is the upper limit of the interval [0, A0] on which
P(A) is defined, and the two exponents a and b are positive
real numbers, while C is the normalization constant such that∫ A0

0 P(A) dA = 1, i.e.,

C−1 = Aa+b+1
0 B(a + 1, b + 1), (27)
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FIG. 5. The distributions P(A) of the entropy localization measure A for λ = 0.25 and various k0 [from (a) to (d), respectively]:
640, 1480, 2600, 3720. (Colors online: black are data, blue is the best fit.) In (e–h) are the corresponding cumulative distributions Eq. (28).
(Colors online: black are data, red dashed is the best fit.) It is seen that the beta distribution fit is perfect. A0 = 0.7 and the (a, b) parameters of
the best fit beta distribution are from (a) to (d), respectively: (16.57, 3.22), (30.68, 5.55), (50.89, 8.51), (66.61, 10.87).

where B(x, y) = ∫ 1
0 t x−1(1 − t )y−1dt is the beta function. We

shall also use the cumulative distribution defined as

W (A) =
∫ A

0
P(x) dx. (28)

Thus, we have

〈A〉 = A0
a + 1

a + b + 3
, (29)

and for the second moment

〈A2〉 = A2
0

(a + 2)(a + 1)

(a + b + 4)(a + b + 3)
, (30)

and therefore for the standard deviation σ Eq. (21),

σ 2 = A2
0

(a + 2)(b + 2)

(a + b + 4)(a + b + 3)2
, (31)

such that asymptotically σ ≈ A0

√
b+2
a when a → ∞. When-

ever we compare A from different λ, we have divided A by
the relative fraction of the chaotic component in the classical
phase space, denoted by χC , as computed and listed in the
table of Ref. [47]. In Figs. 5, 6, 7, and 8 we show a selection of
typical distributions P(A). In all cases for A0 we have chosen
the empirically best value A0 = 0.7. By k0 we denote the
mean value of k intervals on which we calculate the 2000
successive eigenstates, from which we extract the chaotic
ones, by choosing an appropriate value of Mt , always Mt =
0.5, to make sure that we collect chaotic states. In addition,
it should be noted that losing a few chaotic states, which can
happen, does not affect the result for P(A) in any significant
way. Also, the statistical significance is very high, which has
been carefully checked by using a (factor 2) smaller number
of objects in almost all histograms, as well as by changing the
size of the boxes.

The limiting case a → ∞ in Eqs. (29) and (31) comprising
the fully extended states in the limit α → ∞ shows that
the distribution tends to the Dirac delta function peaked at
A0, thus σ = 0 and P(A) = δ(A − A0), in agreement with
Shnirelman’s theorem [9].

The Fig. 5 clearly shows that the fit by the beta distribution
Eq. (26) is excellent in case of λ = 0.25, typical for the
ergodic regimes with α � 1, as observed also in the stadium
in Ref. [40]. The qualitative trend from strong localization to
weaker localization or even complete extendedness (ergodic-
ity) with increasing k0 is clearly visible.

In the Fig. 6 we show the distribution P(A) for k0 =
640 and several values of the shape parameter λ. Here A
is normalized by dividing it with χC . The behavior that we
see is physically very interesting and statistically significant,
as we checked carefully, but is not universal, as it depends
on the structure of the chaotic component in the classical
phase space and on the size and intensity of the stickiness
regions. Each stickiness region is expected to support a lo-
cal maximum in P(A), although this phenomenon is more
strongly exhibited in the lemon billiards [57]. Only at large
λ, when α � 1, we see the approach to the beta distribution
characteristic of the ergodic regime without stickiness on the
underlying chaotic region, exemplified by (j–l), where σ de-
creases towards the limit σ = 0. Similar observations apply to
Figs. 7 and 8.

We should stress that there is of course some arbitrariness
in defining A0, so long as we do not have a theoretical
prediction for its value. So far we have taken A0 = 0.7, but
nevertheless tried also the choice of A0 being the largest mem-
ber A in each histogram, and found no significant qualitative
changes, but only minor quantitative differences. In both cases
a and b are not unique functions of α, while 〈A〉 and σ might
be unique functions of α as demonstrated in Figs. 2 and 3, and
approximated by a fit in Eq. (25).
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FIG. 6. The distributions P(A) of the entropy localization measure A for k0 = 640 and various λ [from (a) to (l), respectively]:
0.135, 0140, 0.145, 0.150, 0.155, 0.160, 0.165, 0.170, 0.180, 0.200, 0.220, 0.250. The last three histograms (j–l) are well fitted by the
beta distribution with A0 = 0.7 and the (a, b) parameter values: (7.56, 3.30), (13.16, 3.89), (16.09, 3.12).

V. IMPLICATIONS OF LOCALIZATION FOR THE
SPECTRAL STATISTICS OF CHAOTIC EIGENSTATES

To get a good estimate of β we need many more levels
(eigenstates) than in calculating 〈A〉. The parameter β was
computed for 18 different values of the shape parameter λ

as given in the Table I, and for 12 intervals in k space:
(ki, ki+1) where ki = 500 + 280 i and i ∈ [0, 1, . . . , 11]. This
is 18 × 12 = 216 values of β altogether. More than 4 × 106

energy levels were computed for each λ. The size of the
intervals in k was chosen to be maximal and such that the
BRB (Berry-Robnik-Brody) distribution gives a good fit to
the level spacing distributions of the levels in the intervals,
meaning that β is well defined.

For each β[λ, (ki, ki+1)] an associated localization measure
〈A〉 was computed on a sample of consecutive chaotic levels
around k0 = k̄i = (ki + ki+1)/2, which is a mean value of k
on the interval (ki, ki+1). First, the separation of eigenstates,
regular and chaotic, has been done, using Mt = 0.5, and
then the chaotic eigenstates have been studied. Moreover,
the obtained distribution functions P(A) were calculated for
18 values of λ and 9 to 12 values of k0, and some selection of
them is presented and discussed in the previous Sec. IV.

The dependence of β on 〈A〉, now revised and slightly
different than obtained in Ref. [39], where only one value
of λ = 0.15 was used, is shown in Fig. 9. We show two
versions of this plot, one with the classical criterion for ρ1 (for
the BRB distribution), and the other one using the quantum

criterion for ρ1, when determining β by fitting the level
spacing distribution with the BRB distribution. The two plots
are quite similar, which is satisfactory. This relation β(〈A〉)
is similar to the case of the quantum kicked rotator [33,43,44]
and the stadium. In both cases the scattering of points around
the mean linear behavior is significant, and it is related to the
fact that the localization measure A of eigenstates has some
distribution P(A), as observed and discussed in Ref. [58] for
the quantum kicked rotator, and discussed for the stadium
billiard in the Refs. [40,49].

There is still a great lack in theoretical understanding of the
physical origin of this phenomenon, even in the case of (the
long standing research on) the quantum kicked rotator, except
for the intuitive idea, that energy spectral properties should be
only a function of the degree of localization, because the local-
ization gradually decouples the energy eigenstates and levels,
switching the linear level repulsion β = 1 (extendedness) to a
power law level repulsion with exponent β < 1 (localization).
The full physical explanation is open for the future.

As shown in Fig. 10, using the classical criterion for ρ1

for the fitting BRB distribution, the functional dependence of
β(α) is always the rational function

β = β∞
sα

1 + sα
, (32)

only the coefficient s depends on the definition of NT and
α. For the parameter values we get β∞ = 0.98 and s =
1.70, 0.57, 0.30, 0.11. Similarly, we find for the quantum
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FIG. 7. The distributions P(A) of the entropy localization measure A for k0 = 1480 and various λ [from (a) to (l), respectively]:
0.135, 0140, 0.145, 0.150, 0.155, 0.160, 0.165, 0.170, 0.180, 0.200, 0.220, 0.250. The last three histograms (j–l) are well fitted by the
beta distribution with A0 = 0.7 and the (a, b) parameter values: (16.93, 5.79), (25.80, 6.69), (29.36, 5.27).

criterion almost the same results, with no visible differences
(not shown).

VI. CONCLUSIONS AND DISCUSSION

In this paper we have studied the structural and statisti-
cal properties of the eigenstates and their Poincaré-Husimi
functions, and of the energy spectra, of a mixed-type bil-
liard [45,46], in correspondence with its classical dynam-
ics. The governing control parameter is α = tH/tT , where
tH = 2π h̄/�E is the Heisenberg time and tT the classical
transport time, as in Eq. (5), in the semiclassical regime of
sufficiently small effective Planck constant, which is 1/k (the
wavelength).

To the best of our knowledge our previous [40] and the
present work is the first one to study the statistical properties
of the localization measures in time-independent Hamilton
systems.

Our main conclusions are as follows: (a) We have con-
firmed that the normalized inverse participation ratio nIPR
and the information entropy measure A are linearly related
and thus equivalent, in agreement with the recent result in the
stadium billiard [40], which we believe is a general result, not
specific of the used model systems. (b) We have calculated the
Poincaré-Husimi functions of all eigenstates for 18 different
values of the shape parameter λ and 9 to 12 values of the
starting k0, in each case 2000 eigenstates of even parity. We
have shown a selection of typical Poincaré-Husimi functions.

(c) Then we have separated the regular and chaotic eigen-
states, and verified that the chaotic states are localized to the
various degree, and calculated the corresponding localization
measure A for all of them. (d) We have looked at the distri-
bution functions P(A) and W (A) (histograms and cumulative
distributions), and found that in the regime of uniform chaos
(no significant stickiness regions in the classical phase space)
they are perfectly well described by the beta distribution,
which in the limit of α � 1 approaches the Dirac delta
distribution δ(A0 − A). This behavior is the same as in the
stadium billiard. (e) In the regime of existing pronounced
stickiness regions in the classical phase space, P(A) is not
universal and can have several maxima (usually it is bimodal),
where each minor maximum might be qualitatively attributed
to a stickiness region. This phenomenon is under investigation
in the lemon billiards [57]. (f) We have explored the mean
value 〈A〉 as a function of α, which is approximately a rational
function, while the standard deviation of P(A), denoted by σ ,
as a function of α, exhibits strong fluctuations but nevertheless
displays a similar structure as in the stadium billiard. (g)
The level spacing distribution of localized chaotic eigenstates
displays the Brody distribution, where the level repulsion
exponent β goes from 0 for the strongest localization (Poisso-
nian distribution) to 1 for complete delocalization (ergodicity
and GOE). It is a function of 〈A〉, but slightly different from
the result in Ref. [39], where only one value of λ = 0.15
has been used. It is closer to the linear relationship, which
has been observed in the quantum kicked rotator and in the
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FIG. 8. The distributions P(A) of the entropy localization measure A for k0 = 2600 and various λ [from (a) to (l), respectively]:
0.135, 0140, 0.145, 0.150, 0.155, 0.160, 0.165, 0.170, 0.180, 0.200, 0.220, 0.250. The last three histograms (j–l) are well fitted by the
beta distribution with A0 = 0.7 and the (a, b) parameter values: (25.86, 7.74), (35.01, 7.92), (48.46, 8.14).
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FIG. 9. The level repulsion exponent β as a function of the
entropy localization measure 〈A〉 for variety of λ and energies E =
k2, as defined in the text. In (a) we use the classical criterion for ρ1

and in (b) the quantum one, when calculating β by fitting with BRB
ditribution.

stadium billiard, but it also depends slightly on the criterion
for choosing ρ1 in determining β. It must be emphasized that
the transition from strong localization β = 0 to ergodicity
β = 1 as a function of α is a rather smooth one, not a discrete
jump, as it takes place over an interval of more than factor 10
in α, which is the same behavior as in the stadium billiard.
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FIG. 10. The level repulsion exponent β, using the classical
criterion for ρ1 for the fitting BRB distribution, as a function of
α fitted by the function Eq. (32), based on NT from the Table I.
β∞ = 0.98 and s = 1.70, 0.57, 0.30, 0.11, for (a–d), respectively.
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We believe that our results are new and quite general,
typical for the mixed-type Hamiltonian systems, and thus we
propose further studies of mixed-type Hamiltonian systems.
Where a comparison is applicable, they agree with our quite
recent results on the stadium billiard [40,49]. Our similar
extensive analysis is being performed also for the lemon bil-
liard [51,57]. The lemon billiard was introduced in Ref. [59]
and studied in Refs. [60–63]. Its classical phase space has
been very recently extensively explored by Lozej [51]. We
expect quite similar results, confirming the general aspects
of distribution of localization measures P(A) found in the
stadium and the mixed-type billiard.

The major open theoretical question is to derive the exis-
tence of dynamical localization in chaotic eigenstates, and to
calculate the corresponding P(A), and also the level repulsion
exponent β which governs the level spacing distribution, the

underlying distribution being close to the Brody distribution.
This problem is not yet solved even for the quantum kicked
rotator [33]. Further theoretical work is in progress.

We propose the study of localization in the smooth Hamil-
tonian systems of the mixed-type, such as, e.g., the hydrogen
atom in strong magnetic field [64–68] and the Dicke model
[69–71], as well as in experiments such as the microwave
resonators introduced and performed by Stöckmann since
1990 [1]. We expect similar results as in our three billiard
model systems.
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[44] B. Batistić, T. Manos, and M. Robnik, EPL 102, 50008 (2013).
[45] M. Robnik, J. Phys. A: Math. Gen. 16, 3971 (1983).
[46] M. Robnik, J. Phys. A: Math. Gen. 17, 1049 (1984).
[47] Č. Lozej and M. Robnik, Phys. Rev. E 98, 022220 (2018).
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