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Chaotic advection and mixing by a pair of microrotors in a circular domain
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In this work we study chaotic mixing induced by point microrotors in a bounded two-dimensional Stokes
flow. The dynamics of the pair of rotors, modeled as rotlets, are non-Hamiltonian in the bounded domain and
produce chaotic advection of fluid tracers in subsets of the domain. A complete parametric investigation of the
fluid mixing as a function of the initial locations of the rotlets is performed based on pseudophase portraits. The
mixing of fluid tracers as a function of relative positions of microrotors is studied using finite-time entropy and
locational entropy. The finite-time locational entropy is used to identify regions of the fluid that produce good
versus poor mixing, and this is visualized by the stretching and folding of blobs of tracer particles. Unlike the
case of the classic blinking vortex dynamics, the velocity field of the flow modeled using rotlets inside a circular
boundary is smooth in time and satisfies the no-slip boundary condition. This makes the considered model a
more realistic case for studies of mixing in microfluidic devices using magnetic-actuated microspheres.
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I. INTRODUCTION

Mixing and transport of fluids in the low-Reynolds-number
regime are an important challenge that has gained consider-
able attention over the years [1–3]. As a consequence of weak
fluid inertia, viscous diffusion and chaotic advection are the
dominant modes of mixing in low-Reynolds-number flows.
Viscous diffusion unfolds over microscopic length scales
and by itself is insufficient to achieve fast mixing in most
microfluidic applications which require rapid mixing. This
underscores the importance of advective effects for stretching
and folding of fluid material lines that in turn enhance viscous
diffusion by increasing the area of contact between fluids
being mixed. Various means of achieving rapid advective mi-
crofluidic mixing have been proposed over the years [4] which
can be classified broadly into active and passive mixing meth-
ods. Active mixing mechanisms induce large-scale motion of
the fluid by directly influencing the fluid by means of mixing
elements driven by force fields such as electric, magnetic, or
acoustic fields that compensate for the lack of fluid inertia
[5–7] and can achieve high mixing quality, especially in the
vicinity of the mixing elements. Passive methods of mixing
involve altering the boundary conditions of the flow so as to
maximize the area of contact between fluids being mixed. This
is usually achieved by incorporating geometric features in the
path of the fluid flow [8] or by altering the path itself such
that fluid stretches and folds into finer-scale structures [9].
Passive methods are high-throughput methods and achieve
a more uniform mixing than active methods. The quality of
passive mixing, however, is directly dependent on the duration
of time the fluid spends within the mixing geometry necessi-
tating the need for longer microfluidic channels.
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Naturally occurring microswimmers have been known to
induce mixing of the surrounding fluid during locomotion
[10–12]. They accomplish this by continuously stirring the
fluid around them as they swim, thus making up for the
weak inertia of the fluid. Mixing by idealized microswim-
mers has shown modes of locomotion that produce mixing
at low Reynolds number [13,14]. Inspired by these studies,
artificial microswimmers have gained attention as a means
to mix and predictably manipulate fluids at small scales
[15,16]. While many different microswimmer morphologies
have been proposed in these works and others, one of the
simplest synthetic microswimmers that can be studied for
this purpose is a self-propelled spinning particle. Grzybowski
demonstrated the self-assembly of spinning rotors in a plane
[17,18], and later Campbell and Grzybowski used these ideas
to experimentally demonstrate the possibility of mixing us-
ing magnetically driven rotors [19]. More recently, Ballard
et al. [20] demonstrated microfluidic mixing due to mag-
netic microbeads using experiments and lattice Boltzmann
simulations. These and other experimental investigations [21]
of magnetic or otherwise driven particles have shown their
effectiveness for micromixing applications.

The dynamics of such spinning particles or “microrotors”
were recently studied numerically [22,23] where the flow gen-
erated by the microrotors was modeled using a rotlet velocity
field. The rotlet also known as a couplet is a solution to the
Stokes equation with a point torque inhomogeneity [24,25].
Meleshko and Aref [26] showed that blinking rotlets under
circular confinement could be an effective model to study
mixing in viscous flows where they present the blinking rotlet
as a viscous analog of the paradigmatic blinking point vortex
in inviscid flows pioneered by Aref [27]. In these studies the
location of the blinking singularities is fixed in the domain,
and the singularities themselves do not interact with each
other.

In the present paper we investigate the mixing of the fluid
induced in a circular domain due to the dynamic evolution
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of the positions of a pair of interacting rotlets. A pair of
interacting rotlets can exhibit rich dynamics in a circular
domain due to the effects of the boundary. In the absence
of a boundary, the dynamics of interacting rotlets has a
Hamiltonian structure with linear and angular momentum
being integrals of motion. In a circular domain, the linear
and angular momentum are no longer conserved, and their
motion is nonintegrable. This is in contrast to the problem
of two point vortices in a circular domain, which is known
to be integrable and produces quasiperiodic motion of the
vortices, [28]. Nevertheless the dynamics of the two rotlets are
nearly Hamiltonian. Furthermore the dynamics of a passive
tracer induced by the pair of rotlets is the restricted three-
rotlet problem and exhibits chaotic motion. We investigate the
dynamics of passive tracers advected by the flows generated
by microrotors using finite-time locational entropy. We show
that the nearly Hamiltonian structure of the dynamics of the
pair of rotlets can be used to classify rotlet motions that
produce better good mixing of the fluid in the domain. The
present study of mixing is semiactive—a physical realization
of the rotlets requires continuous actuation, say, via a time-
periodic magnetic field that can exert a torque on magnetic
spheres and keep the spheres spinning. However, the motion
of the spinning spheres through the domain is purely due to
the hydrodynamic interaction between the spheres and the
boundary, and mixing of the fluid that is induced does not have
to directly controlled. Recent work has shown that a pair of
magnetic spheres can be steered in a circular domain by a spa-
tially uniform magnetic field as a single control input [29,30],
making the microrotors steerable mobile micromixers.

II. DYNAMICS OF ROTLETS

The flow due to a spinning microparticle (shaped as flat
disk or a sphere) can be modeled as a singular torque in a qui-
escent, viscous fluid. In the vanishing Reynolds number limit,
the governing equation of motion for fluid is the Stokes equa-
tion. In this regime a microparticle spinning with a constant
angular velocity ω in an otherwise quiescent fluid requires a
constant torque to balance the viscous hydrodynamic torque.
The disturbance velocity field in the plane of the particle
generated by such a spinning microparticle can be modeled
by that of a Stokes singularity called the rotlet [31–34]. This
disturbance velocity is given by

u(x) = −γ k̂ × x − x0

||x − x0||2 (1)

for a rotlet located x0 = (x0, y0), where γ is the strength of
the rotlet with the associated stream function being ψ (x, y) =
γ ln |x − x0|2. The velocity field generated by the two-
dimensional rotlet in an unbounded domain is topologically
the same as that generated by an ideal point vortex. Analogous
to the classical point vortex which can be thought of as the
intersection of a three-dimensional vortex filament and a plane
perpendicular to it [35], a point rotlet can be considered to
be the intersection of an infinitesimal spinning particle and a
horizontal plane passing through its center. In the absence of
any boundaries or other singularities in its vicinity, the rotlet
is fixed in position, and the flow is associated with circular
streamlines around the location of the singularity.

In an assembly of N rotlets in a plane with locations (xi, yi )
for i ∈ [1, N], each rotlet is advected by a velocity that is a
linear superposition of the velocities induced by all the other
rotlets. The motion of the ith rotlet can then be expressed by

dxi

dt
=

j=N∑
j=1, j �=i

γ j
(yi − y j )

R2
i j

,

(2)
dyi

dt
=

j=N∑
j=1, j �=i

−γ j
(xi − x j )

R2
i j

,

where the square of distance between the ith and jth rotlet is
given by R2

i j = (xi − x j )2 + (yi − y j )2.
The interaction of N rotlets in an unbounded domain has

a Hamiltonian structure and conserves the linear and angular
impulse [22]. These integrals of motion preclude chaotic
motion in the dynamics of three or fewer rotlets. This also
precludes the chaotic advection of a fluid by the motion of two
rotlets, because the interaction of a two rotlets and a tracer
can be treated as a restricted three-rotlet problem with the
third rotlet having zero strength. However, mixing of fluid is
usually performed in a bounded domain. We show that when
the fluid domain is bounded, as it is in practical applications,
the motion of two rotlets can produce chaotic advection of the
fluid. Specifically we consider the mixing of fluid due to the
dynamics of two rotlets confined to the interior of a unit circle.

The dynamics of rotlets in a circular domain of radius
a differ significantly compared to those in an unbounded
domain. The velocity of the fluid on the circular boundary
has to be zero. These boundary conditions can be satisfied
by the method of images. The stream function governing the
motion of the fluid, due to the presence of a rotlet of strength
γ1 located at (x1, y1), such that

√
x2

1 + y2
1 = r1 � a derived by

Ranger [36] and Aref and Meleshko [26] is

ψ1(x, y) = γ1

[
ln A1(x, y) − ln B1(x, y) + C1(x, y)

B1(x, y)

]
, (3)

where

A1(x, y) = (x − x1)2 + (y − y1)2,

B1(x, y) =
[(

x − x1
a2

r2
1

)2

+
(

y − y1
a2

r2
1

)2
]

r2
1

a2
,

C1(x, y) =
(

1 − x2 + y2

a2

)[
a2 − (x2 + y2)

r2
1

a2

]
.

The first term in (3) is associated with the velocity of the fluid
due to a rotlet in an unbounded domain. The second part of the
stream function −γ1 ln B1(x, y) ensures that the velocity of the
fluid on the boundary has no normal component. This term is
in fact the stream function due to an image vortex placed at
a location outside the circle according to the Milne-Thomson
circle theorem. The third term C1(x,y)

B1(x,y) ensures that the zero-slip
condition on the boundary is satisfied. This is unique to the
viscous flow setting and leads to significant differences in the
motion of rotlets inside the circle as compared to that of point
vortices.

When N rotlets are present in a circular region, each rotlet
experiences a velocity due to the other N − 1 rotlets and their

062207-2



CHAOTIC ADVECTION AND MIXING BY A PAIR … PHYSICAL REVIEW E 100, 062207 (2019)

image systems and its own image system,

ẋi =
N∑

j=1, j �=i

γ j
∂

∂yi
ln Aj (xi, yi ) +

N∑
j=1

−γ j
∂

∂yi
ln Bj (xi, yi )

+
N∑

j=1

γ j
∂

∂yi

[
Cj (xi, yi )

Bj (xi, yi )

]
,

ẏi =
N∑

j=1, j �=i

−γ j
∂

∂xi
ln Aj (xi, yi ) +

N∑
j=1

γ j
∂

∂xi
ln Bj (xi, yi )

−
N∑

j=1

γ j
∂

∂xi

[
Cj (xi, yi )

Bj (xi, yi )

]
. (4)

The velocity of a rotlet is a linear combination of two compo-
nents. One component of this velocity (the terms containing
ln Aj and ln Bj), denoted by (ẋiv, ẏiv ), is similar to the velocity
experienced by point vortices, and the second component is a
velocity induced by the zero-slip velocity condition (the terms
containing Cj

Bj
), denoted here after as (ẋis, ẏis). Equation (4)

can be rewritten as

ẋi = ẋiv + ẋis, ẏi = ẏiv + ẏis. (5)

Two special cases of integrable Hamiltonian dynamics arise
from (5). The first is the simple case of N = 1. In this case the
Hamiltonian is H1 = −γ [ln B1(x1, y1) − C1(x1,y1 )

B1(x1,y1 ) ] with ẋ1 =
1
γ1

∂H1
∂y1

and ẏ1 = − 1
γ1

∂H1
∂y1

and the system is completely inte-
grable. It can be verified that when a single rotlet is present
in a circular domain, its distance from the center of the circle
remains invariant. The second case of Hamiltonian dynamics
arises when considering the motion of two point vortices
instead of rotlets, i.e., C(x, y) = 0, ẋis = 0, and ẏis = 0 (see
Ref. [28]). A direct calculation shows that the angular impulse
I = γ1r2

1 + γ2r2
2 is invariant, where r2

i = x2
i + y2

i . Therefore
the motion of two point vortices in a circular domain is
integrable [28].

Apart from these special cases, in the general case of the
motion of two rotlets, the zero-slip velocity condition on the
circular boundary no longer conserves the angular impulse. A
direct computation using (5) verifies that

γ1(x1ẋ1s + y1ẏ1s) + γ2(x2ẋ2s + y2ẏ2s) �= 0.

It can be shown that Eq. (5) are not Hamiltonian for N > 1.
For if a Hamiltonian exists H (xi, yi ), then ẋi = 1

γi

∂H
∂yi

and ẏi =
− 1

γi

∂H
∂xi

. This would imply the canonical ∂ ẋi
∂xi

+ ∂ ẏi

∂yi
= 0, which

(5) satisfy. However the existence of a Hamiltonian would also
imply that ∂ ẋi

∂y j
− ∂ ẋ j

∂yi
= 0. Because of the no-slip condition on

the boundary, ∂ ẋis
∂y j

− ∂ ẋ js

∂yi
�= 0 while ∂ ẋiv

∂y j
− ∂ ẋ jv

∂yi
= 0. Therefore

the system (5) is not Hamiltonian.
While the system (5) is not integrable when N > 1, the

dynamical system (5) is nearly Hamiltonian in the sense that
if ẋis � ẋiv and ẏis � ẏiv , then ẋi ≈ 1

γi

∂H
∂yi

and ẏi ≈ − 1
γi

∂H
∂xi

.
This can occur in two scenarios. The first is when the effects
of the boundary are “small,” i.e., both rotlets are far from
the boundary, r2

i << a2. In this case the dynamics of (4)
approximate the dynamics of two rotlets in an unbounded
domain. The second case occurs when the two rotlets are

(a)I(0) = 0.1 (b)I(0) = 0.7 (c)I(0) = 0.15

FIG. 1. Trajectories of the pair of rotlets for three sample initial
conditions (I (0), η(0) = 0, θ (0) = π/2), with [x1(0) = 0, y1(0) =√

I (0)] and [x2(0) = √
I (0), y2(0) = 0]. (a) (I (0) = 0.1, (b) I (0) =

0.7, and (c) I (0) = 0.0.32.

far from each other but close to the boundary. In this case
the interaction between the rotlets is weak and the motion of
each rotlet is almost decoupled from that of the other and the
system is nearly Hamiltonian. This nearly Hamiltonian nature
of the system can be used to parametrize the solutions of (5)
in terms of two variables η defined by

r2
1 = I − η and r2

2 = I + η (6)

and θ = θ1 − θ2 and θ1 = tan−1 ( y1

x1
) and θ2 = tan−1 ( y2

x2
). The

variable η = 1
2 (r2

2 − r2
1 ) defines how far apart the two rotlets

are. Figure 1 shows the trajectories of the two rotlets for three
different initial conditions for γ1 = γ2 = 1. These and the rest
of the numerical simulations were performed in MATLAB using
the fourth-order Runge Kutta solver with an adaptive time step
and error tolerance of 10−10.

Unlike Ref. [28] for the problem of two point vortices in
a circular domain, I is no longer conserved. The solutions
to (5) obtained through a numerical simulation for a variety
of initial values of I (0), η(0), and θ (0) can be plotted as
a pseudophase portrait of η(t ) versus θ (t ). Three distinct
pseudophase portraits are seen as the parameter I (0) varies,
with the approximate intervals of I found from numerics being
I < 0.119 [Fig. 2(a)], for 0.119 < I < 0.22 [Fig. 2(d)], and
for I > 0.22 [Figs. 2(b) and 2(c)]. These are not true phase
portraits since each apparent orbit actually fills out a small
area. This is true even for the nearly Hamiltonian cases of
small I (0) and large I (0) shown in Figs. 2(a) and 2(b), while
in Fig. 2(c), the trajectories show clear intersections. The
variations in I (t ) show a similar pattern. When I (0) = 0.32
an intermediate value I (t ) shows large variations [Fig. 2(c)],
while in the other two nearly Hamiltonian cases, I (t ) shows
small variations [Figs. 2(a) and 2(b)]. The second column in
Fig. 2 shows the variations in I (t ) for initial conditions of
[η(0), θ (0)] that produce the large variations in I (t ) for each
corresponding case of I (0). These large variations occur in
the region of the homoclinic and heteroclinic trajectories of
the apparent saddle-type fixed points in Figs. 2(a) and 2(c).
For small I (0), the pseudophase portrait shown in Fig. 2(a)
is nearly identical to the phase portrait of the two-vortex
system, shown in Ref. [28], while for the range 0.119 <

I < 0.22 the pseudophase portrait [Fig. 2(d)] is topologically
similar to the one case of two point vortices but in the range
where 0.21374 < I < 0.29038. The pseudoportraits for I >

0.22 shown in Figs. 2(b) and 2(c) are unique to the case of the
two rotlets. These pseudophase portraits provide a basis for
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(a)I(0) = 0.1
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(b)I(0) = 0.7
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(c)I(0) = 0.32 t
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I/I
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1.1
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(g)

θ
0 π/2 π 3π/2

η
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(d)I(0) = 0.15

t
0 5 10 15 20

I/I
(0

)

1

1.05

1.1
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(h)

FIG. 2. First column: Pseudophase portraits of η vs θ . Second
column: Plots of variations of I (t ) normalized by I (0); I (t )

I (0) . (a)–
(e) I (0) = 0.1, (b)–(f) I (0) = 0.7, (c)–(g) I (0) = 0.32, and (d)–(f)
I (0) = 0.15.

classifying the mixing properties of the fluid in the domain
due to the motion of the rotlets.

III. MIXING OF FLUID DUE TO A PAIR OF ROTLETS
IN A CIRCULAR DOMAIN

The two rotors act as stirrers whose location in the domain
varies quasiperioically. To investigate mixing of the fluid in
the circular domain, the equations of motion of the rotlets,
(4), have to be augmented by the advection equation for a
fluid tracer that is not collocated with any of the N rotlets. A
fluid tracer is advected with a velocity that is a superposition
of the velocities induced by each rotlet and each of the
corresponding image singularities. If the location of a fluid
tracer is denoted by (x, y), then the velocity (ux, uy) of the

fluid tracer is given by the advection equation

ux =
N∑

i=1,

∂ψi

∂y
, uy =

N∑
i=1,

−∂ψi

∂x
. (7)

Two interpretations are possible for the equations of advec-
tion of a fluid particle in the domain. The advection Eq. (7) can
model a two-dimensional time-dependent dynamical system,
where the explicit time dependence is through the positions
of the N rotlets, which can be obtained from (4). Following
this the trajectories of a fluid particle are allowed to self-
intersect in the domain. A second possible interpretation
is that Eqs. (4) and (7) define a time-independent 2N + 2-
dimensional dynamical system, a restricted planar three-rotlet
system. We will adopt the first view and treat the advection
of fluid particles as a two-dimensional time-dependent dy-
namical system, where the time dependence comes from the
quasiperiodic motion of the rotors. The velocity of the fluid in
the circular domain is then defined by the vector field (ux, uy).
Let the time-dependent flow map for this dynamical system
be denoted by φt

t0 [x(t0), y(t0)] : �→ [x(t ), y(t )]. The flow map
φt

t0 takes as input an initial condition (xt0 , yt0 ) and maps it to
the solution of the dynamical system at time t .

It is easy to see that mixing of the fluid is poor in the
special case when N = 1. A single rotlet in the domain moves
only due to the influence of the boundary, i.e., its advection
is due to the image singularity system alone. The velocity of
the rotlet (ẋ1, ẏ1) given by (4) is Hamiltonian, and the quantity
I = x2

1 + y2
1 is conserved. The rotlet moves along a circle with

a constant speed, and its motion is periodic. The dynamics of
a rotlet and a tracer particle in the fluid therefore reduce to a
restricted two-rotlet case. The velocity of a tracer given by (7)
is periodic (but nonlinear), and no mixing of the fluid occurs
in a large part of domain.

When two rotlets are present in the circular domain, more
complex dynamics of the rotlets as well as the fluid particles
ensue. We restrict our attention to the simplest case of two
same-spin rotlets, which is the minimal case where fluid
mixing is possible. The same spin is motivated by the prac-
tical realization of identical spinning magnetic microspheres
whose spin velocities generated by a magnetic field are equal.
These mixing dynamics depend upon the region of the fluid
that the rotlets visit. Obviously the dynamics of the rotlets (4)
themselves depend on the distance between the two rotlets,
d , and distance between each rotlet and the center of the
circle, r1 and r2. This large parameter space is numerically
explored by using the underlying nearly Hamiltonian structure
of the system and the three qualitatively distinct pseudophase
portraits. Initial conditions for the system are chosen in terms
of η and θ for different initial values I (0).

An analytical solution of the flow map is not possible,
and we use numerical simulations of (7) to investigate the
evolution of arbitrary blobs of fluid. The mixing of the fluid
is quantified by a Shannon entropy field, which has also
been referred to as locational entropy [37,38]. In spirit and
in formal computation the locational entropy is the same as a
finite-time entropy field [39]. An entropy field is the locational
entropy associated with different subsets of the domain which
can identify regions of good (or fast) mixing and regions of
poor (or slow) mixing. This is better suited to the current
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FIG. 3. Entropy S0 and the entropy field. The graph in the center shows the entropy S for five different values of I (0) with varying θ (0)
and in each case η(0) = 0. The images around the graph show the entropy field for a few initial configurations of the rotlets, with the images
in the top row for the case I (0) = 0.5, in the bottom row for I (0) = 0.1, and in the right column for I (0) = 0.7.

problem because the dynamics of tracer particles do not have a
common rational time period in the entire domain, precluding
the use of Poincaré maps. The entropy field is calculated as
follows.

The domain is divided in n subsets denoted by
{B1, B2, . . . , Bn}. From the perspective of studying mixing,
each subset initially contains a species of particles unique to
that box, with a total of n species of particles in the entire
domain. The advection of the fraction of the fluid material
from a box Bi to box Bj is

pi j = μ
(
φt

t0 (Bi ) ∩ Bj
)

μ(Bi )
, (8)

where μ denotes the Lebesgue measure. Here pi j can also be
interpreted as the probability that the set Bi will be mapped to
into set Bj by the flow map φt

t0 . In computational approxima-
tion of this probability, each subset Bi is chosen to be of an
equal area, and each subset is seeded with the same number
of fluid particles. The locational entropy is defined as

S j = −
n∑

i=1

pi j ln pi j (9)

if pi j �= 0 and zero otherwise. The normalized total entropy is

S = 1

ln n

n∑
j=1

S j . (10)

The total entropy is normalized such that when S = 1 perfect
mixing occurs, with any subset in the fluid domain containing
equal fractions of all species of particles. Regions of the
fluid domain with low locational entropy identify sets that are
poorly mixed.

A. Numerical simulations

In our simulations, we chose the number of subsets (i.e.,
species of particles) to be n = 225 and the number of par-
ticles of each species to be 240. The choice of the number
of boxes was based on a sensitivity analysis such that the
entropy changed little with increasing the number of boxes.
Specifically if the entropy is SN for an N box discretization of
the domain and SN−1 for an N − 1 box discretization, then N
was chosen such that

SN − SN−1

SN−1
� 0.03. (11)

The number of particles per box was always chosen in all trial
simulations with increasing N to be somewhat larger than N .
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t=0 t=10

t=0 t=0.4 t=0.6 t=10

(a)

(b)

θ

0 π/2 π 3π/2

η

-0.1

-0.05

0

0.05

0.1

FIG. 4. Mixing dynamics for I (0) = 0.1. (a) The initial conditions are [θ (0) = 0.1π, η(0) = 0]. The top panel shows the trajectories of
the two rotlets, the locational entropy plot at t = 10, and the poor mixing of two blobs of fluid. (b) The initial conditions are [θ (0) = π/2,

η(0) = 0]. The left and bottom panels show the trajectories of the rotlets, the locational entropy plot, and the motion and mixing of two blobs
of fluid in the time interval [0,10]. In the pseudophase portrait in the center the orbits [θ (t ), η(t )] are shown for both cases. The interior (red)
orbit is for case (a), and the outer (blue) orbit is for case (b).

The general trends in the entropy values did not change for
N as small as 144, but the numerical values of the normalize
entropy error (11) changed by less than 0.03 for N = 225. A
wide range of initial conditions for the rotlets was chosen to
investigate the mixing of the fluid due to their motion. The
initial values of the quantity I (0) of the rotlet pair were chosen
in a large range to represent the dynamics for each type of
pseudophase portrait shown in Fig. 2. For each value of I (0),
the initial conditions (θ (0), η(0)) spanned all the qualitatively
different level sets shown in Fig. 2. The total entropy S for
each case was computed along with the locational entropy to
identify the subsets of the four-dimensional phase space (of
the two-rotlet system) parameterized by [I (0), θ (0), η(0)]
that produce good and poor mixing.

The graphs in the center of the Fig. 3 show the variation in
the entropy S for different initial positions of the rotlets. These
initial positions are categorized based on the initial values
of I (0), θ (0), and η(0). Here it is once again emphasized

that the parameter I (0) is not conserved but along with the
pseudophase portraits is nevertheless useful to understand the
mixing of the fluid. The parameter η(0) quantifies the initial
asymmetry in the distance of each rotlet from the center. Plots
of the entropy field are shown for some initial conditions
of [I (0), θ (0), η(0)]. The graph of S and the plots of the
locational entropy S show that in each case the total entropy
S and the well-mixed region increases in area initially with
θ (0) and then eventually decreases. For larger values of I (0)
the decrease in entropy begins to occur for smaller values of
θ (0). This behavior can be better understood by examining
the pseudophase portraits of the interaction of the two rotlets.
When I (0) = 0.1, the entropy rises until about θ ≈ π/2 for
η(0) and then decays. In the pseudophase portrait as θ (0)
increases from zero, the range of η(t ) also increases. Figure 4
shows the dynamics of the rotlets and the mixing produced
by them for two different cases of θ (0). In case (a) the
value of η(t ) varies between −0.0302 and 0.0302, i.e., the
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t=0

t=0 t=1 t=2 t=10

(a)
(b)

t=10

FIG. 5. Mixing for I (0) = 0.5. (a) The initial conditions are [θ (0) = 0.2π, η(0) = 0]. The top panel shows the trajectories of the two
rotlets, the locational entropy plot at t = 10 and the poor mixing of the interior (green) blob of fluid with the blobs closer to the boundary (red
and blue). The two outer blobs mix well in a thin outer annulus. (b) The initial conditions are [θ (0) = 0.4π, η(0) = 0]. The left and bottom
panels show the trajectories of the rotlets, the locational entropy plot, and the motion and mixing of two blobs of fluid in the time interval
[0,10]. In the pseudophase protrait in the center the orbits [θ (t ), η(t )] are shown for both cases. The interior (red) orbit is for case (a), and the
outer (blue) orbit is for case (b).

distance of each of the rotlets from the center varies between√
0.0698 ≈ 0.2642 and

√
0.1302 ≈ 0.3608. The velocity of

each rotlet is dominated by the presence of the other rotlet
with the influence of the image systems being negligible. The
trajectories of two rotlets always stay within a small annulus
as shown in Fig. 4(a) leading to a region of poor mixing shown
in the locational entropy plot in the top panel of Fig. 4. A blob
of fluid initially located within this poorly mixed region does
not experience significant stretching and folding and stays
poorly mixed with the rest of the fluid. A blob of fluid starting
in the high locational entropy region does stretch, fold, and
spread throughout a thin outer region, but this is insufficient
to achieve high values of total entropy S. Conversely when
the initial conditions are [θ = 0.4π, η = 0], the orbit in the
pseudophase portrait shows a large variation in η from almost
−0.1 to 0.1. This means that the distance of the two rotlets
from center varies from zero to

√
0.2 ≈ 0.4472, with the

orbits of the rotlets thus covering a larger area within the
circular domain. This allows the fluid to be more uniformly
mixed throughout a central core of the domain, except for
some unmixed islands, producing a region with a high location
entropy. The lower panel in Fig. 4 shows the mixing of two
blobs of fluid that experience rapid stretching, folding, and
mixing in this central region. The wall enhances the stretching
of material lines close to it. For example, in the lower panel in
Fig. 4 the parts of the two blobs at t = 0.4 are pushed close to
the wall, and these are nearly anchored to the walls, moving
relatively slowly. The rotlets move the other portion of the
blobs rapidly. In the process the spiraling arms of the two
blobs are stretched rapidly. Here it is worth emphasizing that
the locational entropy plots show the entropy field computed
at t = 10 assigned to spatial locations fixed at initial time. The
entropy field moves (in a Lagrangian sense) with the rotlets,
and hence the blob plots in the lower panel show the unmixed
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η(0)
0.1 0.2 0.3 0.4
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FIG. 6. Entropy S for I (0) > 0.119. Initial conditions for all the
cases are [θ (0) = π, η(0) > 0]. The initial value η(0) is shown on
the horizontal axis.

island at locations different from that in the locational
entropy plot.

For larger values of I (0) the pseudophase portrait is dif-
ferent, and the entropy S shows an initial increase with θ (0)
and then decreases for larger values of θ (0). Figure 5 shows
the mixing in two cases of θ (0) for I (0) = 0.5. In case (a)
θ (0) = 0.4π and the trajectory of the rotlets is confined to
a thin annulus. In the pseudophase portrait, the orbit for this
case is shown in red, with η(t ) varying very slowly for large
changes in θ (t ). Essentially the rotlets never get close to
each other. These dynamics produce slow mixing in an outer
annulus with the locational entropy in this band being almost
0.5 but leaves a large central region poorly mixed. The blob
plots in the top panel show the motion of three blobs, with
the blobs in the outer region mixing with each other, but the
blob in the central region remains coherent with very little
deformation. In case (b) when θ (0) = 0.2π , η(t ) shows larger
variation but over a smaller change in θ (t ). The rotlets move
close to and away from each other in a dance as the trajectories
in Fig. 5(b) show, producing a well-mixed region throughout
the domain except for a thin outer region. The lower panel in
Fig. 5(b) shows the dynamics of two blobs for this case: As
the rotlets move in and away from each other material lines
from these blobs are wrapped around both rotlets, resulting
in rapid stretching and folding. For larger I (0) increases the
graph of entropy (Fig. 3) S shows a decline for smaller values
of θ (0), because of the saddle-like points lying on the η = 0
line in the pseudophase portraits moving towards θ = 0 and
θ = 2π as I (0) increases. Orbits not enclosing θ = 0 lead to
rotlet motion and mixing dynamics qualitatively similar to in
Fig. 5(a), explaining the decline in S for larger values of θ (0).

One qualitative set of initial conditions of rotlets remain
whose mixing dynamics is not explored in Fig. 3. For I >

0.119 initial conditions (θ = π, η �= 0) produce qualitatively
different trajectories of the rotlets. When 0.119 < I (0) < 0.22
and (θ (0) = π, 0 < |η(0)| � I (0)), then η(t ) never changes
sign. As the pseudophase portrait for this case, Fig. 2(d),
shows that as |η(0)| increases the variation in the distance
of the rotlets from the center decreases, decreasing the area
covered by the rotlets and the entropy S. This trend can be

observed in Fig. 6. When I (0) > 0.22, the pseudophase por-
traits have a center-type fixed point at (θ = π, η = 0), around
which nearly closed orbits exist within a region bounded
by heteroclinic trajectories connecting the saddle points; see
Figs. 2(b) and 2(c). Longer orbits around the center-type fixed
point produce better mixing; the value of η changes more
along longer orbits and therefore the distance of each rotlet
from the center shows a larger variation. The entropy therefore
increases initially with increasing η(0). However, once the
initial conditions cross the heteroclinic trajectories, the motion
of the rotlets is such that η(t ) does not change sign; in fact,
in such cases η(t ) changes relatively very little for the entire
range of 0 � θ (t ) � 2π . The rotlet trajectories in the circle
are such that they remain at a nearly constant distance from
the center. At closest approach of the two rotlets, when θ =
0 (or θ = 2π ) is r2

2 − r2
1 = I + η − (I − η) = 2η. As η(0)

increases, min(r2
2 − r2

1 ) approaches 2η(0), i.e., even at closest
approach the distance between the rotlets is still large and little
fluid is pushed from the innner rotlet to the outer rotlet (or
vice versa). Figure 6 shows this decreasing entropy for larger
values of η(0).

IV. CONCLUSION

The interactive dynamics of two microrotors are modeled
as two rotlets in a Stokes fluid in a confined circular domain
can act as mobile micromixers. The dynamics of the rotlets
themselves are no longer Hamiltonian, and the angular im-
pulse of the system is not conserved. For almost all initial
conditions of the rotlets, the motion of the fluid is such that
there are regions of the domain with chaotic mixing. For some
subsets of initial conditions of rotlets, the region of chaotic
mixing of the fluid is very large, approaching the entire
domain, with small islands of poor mixing. In a practical
mixing setup, such unmixed islands can be expected to be very
small due to diffusive effects. This paper presents a complete
parametric investigation of the mixing of the fluid and identi-
fies the qualitative trends in the locational entropy field and the
overall entropy of the fluid due to the chaotic advection of the
fluid. These qualitative trends are related to the pseudophase
portraits of the system, which is made possible by the fact that
the two-rotlet system is nearly Hamiltonian.

The mixing dynamics due to the two-rotlet system can have
an advantageous physical realization over the case of the well-
known blinking vortices (or blinking rotlets). Blinking sin-
gularities require physical stirrers with piecewise continuous
(in time) operation. Rotlet-like singularities can be produced
by the spinning motion of spheres, which could be actuated
in a noncontact manner such as by a magnetic field. Each
rotlet itself moves due to the influence of other rotlets, and the
boundary and its trajectory are not actively controlled. This is
a significant advantage over physical stirrers whose motion in
the domain has to be controlled and nonsmooth in the case of
a minimal number of stirrers. The mobile rotlets investigated
in this paper have smooth motion and can in theory be placed
anywhere in the domain. In recent work [29,30], the authors
showed the possibility of steering two spinning spheres with
a single control input (such as a magnetic field) to any desired
location in a circular domain. Such techniques can be useful
to create microrotors as controllable mobile micromixers,
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whose initial positions can be steered to realize orbits in
any of the pseudophase portraits. The work presented in this

paper illuminates where such microrotors should be steered to
initially to produce fast mixing of the fluid.
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