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Signatures of criticality, such as power law scaling of observables, have been empirically found in a plethora
of real-life settings, including biological systems. The presence of critical states is believed to have many
functional advantages and is associated with optimal operational abilities. Typically, critical dynamics arises
in the proximity of phase transition points between absorbing disordered states (subcriticality) and ordered
active regimes (supercriticality) and requires a high degree of fine tuning to emerge, which is unlikely to
occur in real biological systems. In the present study we propose a rather simple, and biologically relevant
mechanism that profoundly expands the critical-like region. In particular, by means of numerical simulation
we show that incorporating spatial heterogeneities into the square lattice of map-based excitable oscillators
broadens the parameter space in which the distribution of excitation wave sizes follows closely a power law.
Most importantly, this behavior is only observed if the spatial profile exhibits intermediate-sized patches with
similar excitability levels, whereas for large and small spatial clusters only marginal widening of the critical
state is detected. Furthermore, it turned out that the presence of spatial disorder in general amplifies the size of
excitation waves, whereby the relatively highest contributions are observed in the proximity of the critical point.
We argue that the reported mechanism is of particular importance for excitable systems with local interactions
between individual elements.
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I. INTRODUCTION

Many real-life systems were found to operate naturally in
the vicinity of a critical point, reflecting a transition between
order and randomness. This often exerts a spontaneous emer-
gence of self-similar dynamics which embraces a power-law
distribution of systems observables [1,2]. While the dynamics
of plate tectonics [3,4] and the piling of granular media [5]
are probably the most prominent examples of self-organized
critical dynamics, similar principles have been identified in a
plethora of other real-life complex systems [2,6]. In the last
decade, the concepts of phase transition behavior and critical-
ity are increasingly gaining attention also in biological sys-
tems research [7,8]. Namely, many living systems are essen-
tially nonlinear and constituted by many interacting elements
and as such represent excellent candidates for the emergence
of critical dynamics. Even though the exact mechanisms and
the underlying principles are incompletely understood [9,10],
the number of empirical evidence for scale-invariant behavior
in biological settings is increasing, with examples spanning
from the microscopic scales of cells and tissues [11–16] to the
macroscopic patterns in animal behavior [17,18].

Scale-invariance principles in living matter has received
the most attention in the field of neuroscience. Fingerprints of
criticality have been identified at different levels of neuronal
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organization, ranging from interacting arrays of neurons or as-
trocytes to the entire brain [16,19–21]. The exact mechanisms
for the emergence of critical dynamics in neuronal systems
are still under debate and subjected to numerous studies
that are based on computational and statistical physics ap-
proaches [22–25]. Not only theoretically but also increasingly
empirically, critical dynamics are associated with optimized
operational abilities of neuronal networks [10,26–29]. More-
over, neuronal population activity might also deviate from the
critical regime and exhibit subcritical or supercritical phases,
for example during development or pharmacological inter-
ventions [30–32]. Notably, recent research suggests that the
healthy brain operates near a critical or even slightly subcrit-
ical state, thereby ensuring a safety border from supercritical
dynamics, which has been associated with pathophysiological
behavior, such as epilepsy [33–36].

Typically, critical dynamics emerges at the phase transi-
tion between disordered absorbing phase (subcritical behav-
ior) and an active ordered regime (supercritical behavior).
In the intermediate regime, long-range spatiotemporal cor-
related patterns can emerge out of short-range interactions.
In networks of excitable elements variations of dynamical
states can be induced by changes of global parameters,
such as the level of excitability or the interaction strength
[22,37–42]. However, an emergent critical behavior is in this
case expected only in a very narrow parameter space in
the proximity of a phase transition point, which is highly
unlikely to occur in real biological systems, since they are
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inherently heterogeneous and operate in a dynamic envi-
ronment. As plausible mechanisms to overcome this draw-
back, previous research has underlined the activity-dependent
synaptic plasticity, hierarchical network organization, and a
balanced interplay between excitatory and inhibitory synapses
as the leading neurobiological determinants that drive the
neuronal network towards the critical state by means of self-
organizing principles [41,43–46]. Noteworthy, intrinsic mech-
anisms that make such systems hover around critical points
have been termed as self-organized quasicriticality and were
shown to ensure effective scale invariance across quite a few
scales [8].

Realistic neurons and other excitable cells are inherently
heterogeneous. They differ in size, morphology, density of re-
ceptors, representation of different channels, etc., and exhibit
variability in electro-physiological properties and excitability
[47]. They are also subjected to rhythmic perturbations [48].
Notably, the intrinsic neuronal diversity was shown to be
more than a nuisance and enhances the information processing
abilities [49,50]. Often, different types of neurons [51,52],
excitable beta cells [53], and channels in myocytes [54] form
spatially clustered subpopulations. Motivated by these known
physiological characteristics of excitable cells, we analyzed
the impact of spatial heterogeneity on the collective activity
of excitable cell populations by means of numerical simula-
tions. In particular, we utilized a minimal model of regularly
coupled map-based excitable cells and incorporated spatial
heterogeneities by means of varying excitability levels. We
examined how various levels and configurations of random
spatial profiles affected the excitation patterns and critical
behavior.

II. METHODS

A. Excitable lattice model

We used a phenomenological description of excitable dy-
namics. In particular, we considered a N × N square lattice of
coupled Rulkov maps [55]:

xi, j (t + 1) = α/(1 + xi, j (t )2) + yi, j (t ) + Dξi, j

+ ε[xi+1, j (t ) + xi−1, j (t ) + xi, j−1(t )

+ xi, j+1(t ) − 4xi, j (t )], (1)

yi, j (t + 1) = yi, j (t ) − βxi, j (t ) − γ , (2)

where α, β and γ are the system parameters, xi, j (t ) resembles
the membrane potential and yi, j (t ) the ionic recovery currents
of the excitable element located in the ith row and the jth col-
umn of the square lattice, t is the discrete time index with time
step �t = 1, ξi, j is the Gaussian white noise uncorrelated both
in discrete time and space, and D is the noise intensity. The
last term in Eq. (1) stands for the coupling between nearest
neighboring elements with ε being the coupling strength. The
evolution of the variable xi, j (t ) is much faster than yi, j (t ), due
to the small values of the parameters (β = γ = 0.001). When
α < 2.0, one uncoupled unit exhibits a single excitable steady
state (x∗, y∗) = (−1,−1 − α/2). On the other hand, when
α > 2.0, the steady state loses its stability via a Hopf bifur-
cation, the model exhibits oscillations and chaotic dynamics

[56]. More detailed analysis was made by the original author
of this model [55,57]. In our simulations the initial conditions
were xi, j (0) = −1.0 and yi, j (0) = −1.995, other parameters
were set to α = 1.95, D = 0.005, N = 100, and we used von
Neumann boundary conditions. The coupling strength ε was
used as a control parameter and was varied between 0 and
0.005.

B. Spatial heterogeneity

Spatial heterogeneity is a hallmark of many realistic ex-
citable networks. We included this aspect in our model with
variations in the excitability level:

αi, j = α0(1 + �αμi, j ). (3)

By this means, each unit in the lattice has a different
degree of excitability. In Eq. (3) α0 is the average excitability
(α0 = 1.95), �α defines the level of heterogeneity and μi, j

resembles spatial correlated random number accorded with
a two-dimensional Perlin noise [58]. To this purpose, m × m
random numbers were evenly arranged on our N × N square
lattice and then continuous functions through all these random
values were interpolated. Perlin noise term μi, j is the sum
of several interpolated functions with different frequencies
(bl

p) and amplitudes (1/al
p), where l is an integer representing

different harmonics. In our model we calculated the sum
of functions for harmonics from l = 0 up to l = 4 and the
parameters were bp = 8 and ap = 8. Most importantly, the
number of generated random numbers m determines different
forms of spatial heterogeneity [59]. For small values of m
we generated a spatial profile with large clusters of elements
with similar excitability levels, whereas higher values yielded
smaller spatial subpopulations with similar properties. As
m → N the arrangement approaches a spatially uncorrelated
random profile. It should be noted that the size of the patches
is determined by the m/N ratio. Irrespective of the Perlin
noise parameters, we first normalized the profile μ to the unit
interval. Next, we subtracted the value of each μi, j with the
average value of the whole profile 〈μ〉. As a result, values of
μi, j were within the interval [−0.5, 0.5], and the average value
of the whole profile was 0, and thus the average excitability
level of the whole lattice was always the same: α0 = 1.95.
Only the intensity of the spatial heterogeneity was varied with
the parameter �α, as explained in Eq. (3). Different types of
typical spatial heterogeneities are shown in Fig. 1.

C. Quantifying the spatiotemporal activity
of the excitable lattice

To assess the coherence of spatiotemporal activity profiles
we calculated the normalized autocorrelation function of the
spatial domain xi, j at specific times:

Y (I, J ) = 〈x̃i, j x̃i+I, j+J〉
σ 2

, (4)

where x̃i, j = xi, j − 〈xi, j〉, 〈xi, j〉 denotes an average value and
σ 2 is the variance of the spatial domain xi, j , calculated as
σ 2 = 〈(x2

i, j )〉 − 〈xi, j〉2. I and J represent the spatial lag, i.e.,
change in the position of a unit in the square lattice form
the starting point i and j. Autocorrelation indicates the cor-
relation between any two values of the spatial profile with
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FIG. 1. Perlin noise surfaces as a model of spatial heterogeneities. Color-coded values for the characteristic spatial distribution of μi, j for
different values of parameter m: m = 4, m = 12, m = 32, and m = 96.

respect to the spatial lag. If there are regularities in the spatial
domain xi, j , then the autocorrelation function Y (I, J ) exhibits
spatial periodicity and higher values, otherwise, if there is no
significant spatial correlation in the analyzed profile, Y (I, J )
monotonically falls to zero, as explained previously [60].

In order to quantify the profiles xi, j at different time stamps
with a single parameter, we calculated the spatial correlation
coefficient:

R = 1

(N/4)(N/4)

N/4∑
I=1

N/4∑
J=1

Y (I, J )2. (5)

High values of R represents a higher degree of spatial order
in the system. The final value of the spatial correlation coef-
ficient for a given parameter set was determined by averaging
over 20 000 time stamps and for 15 different runs (spatial
profiles).

To identify clusters of active excitable elements and to
evaluate the spatiotemporal activity patterns, we first bina-
rized the signals. In particular, an unit of the lattice was
considered excited, when the value of the membrane potential
at a given time [xi, j (t )] was greater than the threshold value
(xth = −0.7). Afterwards, a space-time cluster analysis was
performed [13,21,61]. In brief, individual time frames of
the binarized lattice were stacked together over an interval

of 20 000 iterations to obtain a space-time cube. Excited
elements within this space-time cube formed structures of
size s, which tracked the wave from initiation to cessation.
The condition for assigning excited elements to the same
cluster was that they were direct neighbors in space or
time.

To determine if the dynamics is subcritical, critical or
supercritical, we calculated the statistical size distribution. For
a given choice of parameters, the distribution was calculated
on the basis of 15 independent runs. Irrespective of the choice
of parameters, the binning was always selected so that 30
uniform size intervals were attained. The obtained distribution
P(s) was then fitted with the best corresponding power-law
function:

P(s) = Ask . (6)

Both coefficients A and k were calculated using the least
square method [62]. To determine the goodness of fit (χ2) we
used the Pearson’s chi-squared test [63], which summarizes
the discrepancy between observed and fitted values. Small
values of χ2 indicate a good fit, while larger values signify
deviation from power-law behavior. In the regime of critical
dynamics, the size distribution of the spatiotemporal events
follows a power law and hence we used the goodness of fit as
an indicator of criticality.
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FIG. 2. Spatiotemporal activity of Rulkov maps in square lattice. (a) Time series of membrane potential xi, j (t ) for three different elements
of the lattice with indices: (i = 2, j = 2), (i = 4, j = 4), and (i = 6, j = 6). (b) Snapshots of binarized activity at one specific time, where
black dots indicate active units. (c) Space-time plots of the binarized activity patterns. Different colors indicate different excitation waves. All
graphics are shown for three values of coupling constant: ε = 0.0025 (weak coupling), ε = 0.0030 (intermediate coupling), and ε = 0.0035
(strong coupling).

III. RESULTS

We first visualized the spatiotemporal activity of the square
lattice network populated with noisy Rulkov maps. In particu-
lar, we regarded the coupling strength ε as a control parameter
and examined how its variations affected the character of
excitation waves. Typical temporal traces of the membrane
potential activity xi, j (t ) for three selected elements and for
three different values of coupling strength are shown in
Fig. 2(a). The snapshots of resulting spatial profiles of the
excitable lattice are shown in Fig. 2(b), whereas Fig. 2(c)
features the corresponding space-time graphs of binarized
activity, in which different colors signify individual clusters
of activity. Evidently, for weak coupling (ε = 0.0025), only
small transitory excitatory patterns emerged that quickly died
out. On the other hand, strong coupling (ε = 0.0035) lead
to long-lived coherent propagating structures typical for ex-
citable media, which, however, exhibited imperfections and

breakups of waves due to the noisy component. Notably, for
the intermediate coupling regime (ε = 0.003), very heteroge-
neous activity emerged with excitation clusters of very dif-
ferent sizes. These findings corroborate nicely with previous
reports [42,61,64].

To gain a deeper insight into the observed behavior, we
quantified the spatiotemporal activity patterns by means of
spatial autocorrelation. In Fig. 3(a) and Fig. 3(b) we first
presented the average spatial autocorrelation functions of
the domain x for the weak and strong coupling strengths,
respectively. It can be observed that for the weak coupling
regime no spatial correlations were detected, as the spatial
autocorrelation monotonically and rather abruptly falls to
zero. Apparently, the noise-induced wave nucleations lead in
this case only to random spatial structures. On the other hand,
for the large coupling, the shape of Y (I, J ) reveals a well-
pronounced spatial periodicity, which indicates a high order
of coherence and self-similarity in the neuronal dynamics.
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FIG. 3. Autocorrelation of spatial activity patterns in excitable lattices. 2D autocorrelation function Y (I, J ) for selected iteration (t) for two
values of coupling constant: (a) weak coupling: ε = 0.0020 and (b) strong coupling: ε = 0.0045. (c) The extent of spatial correlations R as a
function of the coupling constant ε. (d) The time-averaged network activity ρ as a function of the coupling constant ε. Each point in panels (c)
and (d) represents the average of 20 000 iterations and 15 independent runs.

To systematically quantify how the spatial coherence varies
with coupling strength ε, we calculated spatial correlation
coefficient R for different values of ε. The result is shown in
Fig. 3(c). As expected, the level of spatial order was found to
increase with increasing coupling strength. Most importantly,
it appears that a critical value of the coupling parameter exists
ε ≈ 0.0030, above which the value of R rises significantly,
thereby signifying the emergence of coherent spatiotemporal
activity clusters as this value is exceeded. Moreover, to eval-
uate this transition with another more elemental measure, we
additionally calculated the time averaged network activity:

ρ =
〈

1

N2

∑
XBi(t )

〉
t

, (7)

where XBi(t ) is the binarized activity of the ith element. The
results in Fig. 3(d) indicate that this order parameter behaves
very similarly to the spatial correlation coefficient and thereby
pinpointing towards the existence of a phase transition point
between an absorbing random-like state and an active ordered
dynamical regime.

Next, we examined the spatiotemporal dynamics obtained
for different values of ε in the context of criticality and
power-law behavior. To this purpose we performed the STC

analysis (see Methods section) and calculated the distribu-
tion of excitation cluster sizes P(s). The results for three
different coupling strengths are shown in Figs. 4(a)–4(c). It
can be observed that the distribution of wave sizes is very
heterogeneous for all couplings and that the size of waves
essentially increases as the coupling is enhanced. Most im-
portantly, the nature of the distribution changes convincingly
with variations of the strength of interaction among excitable
units. To quantify this visual assessment, we fitted all three
distributions with a power-law function. For low and strong
coupling, the distribution evidently deviates from a power
law. In the first case [Fig. 4(a)], there is a cutoff of larger
waves, which indicates subcritical behavior. In the second
case [Fig. 4(c)], there is an excess of large excitation clusters,
as it is characteristic for supercritical conditions. However, at
the intermediate coupling strengths [Fig. 4(b)], the wave size
distribution follows very nicely a power-law scaling. A more
systematic analysis of the observed behavior was performed
by calculating the deviation from an exact power law χ2

for different values of ε. Results in Fig. 4(d) indicate that a
scale-free behavior in observed in a narrow parameter space,
when the coupling strength is slightly below 0.003. Notably,
this critical point roughly corresponds to the phase transition
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FIG. 4. Distribution of the spatiotemporal excitation wave sizes for weak coupling ε = 0.0025 (a), intermediate coupling ε = 0.0030 (b),
and strong coupling ε = 0.0035 (c). The thin red lines show the best power-law fits. The slope of the power-law fit in panel (b) was k = −2.8.
In panel (d) the goodness of fit (χ 2) for fitted power laws as a function of the coupling coefficient are shown, where each point is the average
of 15 independent runs.

point observed in Fig. 3(c), in the proximity of which the
spatiotemporal dynamics switches from an essentially random
to an ordered regime with global waves.

Realistic neurons and other excitable cell types are often
inherently heterogeneous, form subpopulations, and differ in
among other things in their levels of excitability [13,51].
We therefore examined how spatial heterogeneity impacts
the collective dynamics of our computational model of reg-
ularly coupled excitable elements with special emphasis on
power law behavior. The heterogeneity was implemented by
means of variations of the excitability level, as defined in
Eq. (3). Most importantly, we investigated the influence of
both, the level and the shape of spatial variability. The later
was realized by the generation of different 2D Perlin noise
profiles on the basis of which values of excitability levels
αi, j were prescribed to individual elements of the lattice. The
control parameter m was used to create qualitatively different
spatial profiles (see Fig. 1). Figure 5 shows color-coded
values of the deviation from the best matching power-law
χ2 of the excitation wave sizes distribution as a function of

coupling strength ε and heterogeneity level �α, separately
for different spatial profiles. The threshold for scale-free
behavior was set to χ2 < 0.02 (white color in contour plots).
The areas left and right from the critical zone represent the
subcritical and supercritical regime, respectively. It can be
observed that spatial profiles with smaller patches (m � 48)
the extent of critical regime remains more or less unaffected
when the level of heterogeneity rises. Similar, spatial profiles
with large patches (m � 8) also do not broaden the critical
regime. In this case only a slight shift towards lower coupling
strengths is observed. Remarkably, for intermediate sizes of
local regions with similar excitability levels (m = 12, 24, 32)
a significant expansion of the power-law behavior in pa-
rameter space is noticed with increasing extent of spatial
disorder.

To provide a more precise insight into the observed behav-
ior, we show in Figs. 6(a)–6(c) cross sections of the contour
plots for three different spatial profiles that exhibit large
(m = 4), intermediate (m = 24), and small (m = 96) patches
of units with similar excitability levels. It can be seen that
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FIG. 5. Regimes of power-law behavior in the heterogeneous excitable lattices. Contour plots show color-coded values of the deviation
from the best matching power-law fit of the excitation wave size distributions (χ2) as a function of the coupling strength (ε) and intensity of
heterogeneity (�α) for different shapes of spatial profiles (m).

indeed the broadness of the critical regime indicated by small
values of χ2 remains unaffected by the heterogeneity for the
spatial profile with small [Fig. 6(a)] and large [Fig. 6(c)]
patches, whereas for the intermediate profile [Fig. 6(b)] the
region with power-law behavior is profoundly expanded and
covers a much broader interval of coupling strength values
when compared to nonheterogeneous conditions. Finally, we
computed the broadness of the critical interval �εc in which
the neuronal population operates in the proximity of the scale-
free regime (χ2 � 0.02). Figure 6(d) shows how the interval
�εc varies with increasing level of heterogeneity �a. This
result confirms that only intermediate sizes of local clusters
on the spatial heterogeneity profiles significantly expand the
parametric space that leads to power-law scaling of the exci-
tation event sizes.

Finally, to get an intuitive insight into the spatiotempo-
ral behavior of the excitable lattice under the influence of
different types of spatial disorder, we plotted in Fig. 7(a)
characteristic snapshots of the excitation waves for three
different values of m. It can be observed that the for large
patches (m = 4) the occurrence of waves is solely limited to
these high-excitability regions. Since the firing threshold is
effectively lower, the behavior switches to criticality already
by lower values of the coupling strength (see Fig. 5). However,
as the coupling is increased, the wave sizes become large,
they often encompass substantial parts of patches, but cannot

propagate between these regions, since the absorbing low-
excitability regions are too large as well. The behavior is
recognized as supercritical and consequently only a left shift
of the critical regime is observed and not a widening. For
intermediate-sized patches (m = 32), the initiation of waves
is still substantially influenced by spatial profiles, but the
waves can also travel across the low-excitability regions. As
a result, waves with very heterogeneous sizes can therefore
be elicited even for higher coupling strengths, which results
in a power-law behavior over a wider region of parameter
space. In contrast, if the patches are very small (m = 96), the
nature of excitation waves is weakly affected by the spatial
heterogeneities and hence neither a shift or a widening of the
scale-free behavior are observed. To further quantify these
observations, we plotted in Fig. 7(b) how the average sizes
of waves change as a function of the coupling strength. As
expected, larger coupling elicits larger waves and larger waves
are also provoked by larger patches. In addition, we show in
Fig. 7(c) how the spatial disorder affects the relative wave
sizes for different values of the coupling strengths. In general,
the presence of heterogeneities leads to larger waves when
compared to the homogeneous scenario, but, interestingly,
the amplification is most pronounced in the proximity of
the phase transition point. This observation implies that the
excitable lattice is the most prone to spatial perturbations in
the proximity of the critical point.
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FIG. 6. Assessing the scale-free dynamical regimes in lattices of heterogeneous excitable elements. (a)–(c) The goodness of the best
possible power law of the excitation wave sizes χ 2 as a function of the coupling strength ε for different characteristics of spatial heterogeneities,
defined by parameter m (see Fig. 1). (d) The width of the parametric space that ensures a scale-free dynamical regime �εc as a function of the
level of heterogeneity �a.

IV. DISCUSSION

Information processing in tissues is regulated by large net-
works of interacting cells. In ensembles of excitable cells, the
collective cellular activity is often governed by localized acti-
vations, which in turn trigger other elements of the network.
Consequently, excitation waves or, in the context of neuro-
science also called neuronal avalanches, propagate throughout
the system [21]. The resulting dynamics was often found to be
scale invariant, as identified by a power-law distribution of the
sizes of resulting events. In many recent studies the notion of
scale-free behavior of neuronal networks was associated with
the presence of critical states [16,20]. Noteworthy, particularly
for neuronal systems, many important implications have been
found for operating at or near a critical point. In particular, the
proximity to critical regimes in neuronal systems is believed
to ensure optimal operating abilities and is associated with a
normal and healthy function [33,65].

In excitable network models, phase transitions between
different dynamical regimes are often associated with a switch
from an absorbing (subcritical) state with disorder dynamical

patterns and an active (supercritical) regime characterized
with a more regular spatiotemporal activity [22]. It should
be noted that in stochastic excitable networks, transitions
inferred at the critical parameter values are not critical in a
strict sense, but are somehow smeared due to the presence of
noise. In general, stochastic perturbations were shown to have
a decisive role by shaping the nature of phase transition behav-
ior of coupled excitable oscillators [40,66] as well as on criti-
cality and the distributions of excitation wave sizes [61,67,68].
Furthermore, such nonequilibrium phase transitions between
propagating and abortive waves have theoretically been asso-
ciated with a directed percolation universality class [69–71].
In this vein, variations of some external parameters, such as
density of excitable units, coupling strength, noise intensity,
or the level of activity, control the spreading of activity,
thereby leading the transition from a macroscopically active
(percolating) to an inactive (nonpercolating) state [67,72].

In this study, we studied the emergence of self-similar
dynamics in a two-dimensional lattice of coupled excitable
elements by means of a computational model. We used a
map-based description of the excitable dynamics, which is
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FIG. 7. (a) Color-coded values of Perlin noise profiles for different values of parameter m with the superimposed snapshot of binarized
activity of excitable maps (black dots indicate active units). (b) The average size of excitation waves as a function of the coupling strengths
ε for different types of spatial disorder (�a = 0.05) and for the case without spatial heterogeneities. (c) Relative excitation wave sizes as a
function of the coupling strength ε for three different types of spatial profiles. The sizes of waves are normalized with the corresponding values
obtained without spatial heterogeneities.

computationally more efficient than its time-continuous coun-
terparts, and thus presents a more appropriate environment
for simulations on larger spatial and temporal scales [73]. We
were particularly interested in the presence and robustness of
scale-invariant dynamics. As expected, we detected critical
behavior in a very narrow parameter space in the proximity
of a phase transition towards an ordered and active dynamical
state. However, since realistic excitable cells are in general
heterogeneous and they function in changing environments,
fine-tuning of parameters is not expected to be an efficient
mechanism for ensuring criticality in real-life settings. In
the neuroscientific community, one of the main issues about
criticality are therefore the mechanisms that ensure a robust
critical state of the network. Many studies put forward the
idea that dynamical and activity-dependent synapses are one
of the leading neurobiological factors that ensure critical
dynamics [41,74,75]. Moreover, several authors have shown
that a complex interaction structure can act as an effective
promoter of scale-free behavior [31,76], especially when the
hierarchical-modular architecture of cortical networks is taken
into account [44,45,77,78]. However, it should be noted most
of these neuronal network models are composed by noncon-
servative elements and are therefore not critical in a strict
sense. They often encompass some self-organizing principles
that make them hover around the critical point. This kind of
behavior is termed as self-organized quasicriticality and is

able to create effective scale invariance across quite a few
scales [79,80]. In contrast, our model does not contain any
self-organisation or adaptation. Scale-invariant behavior can
only be inferred by the precise selection of parameters, yet
the inclusion of spatial disorder was found to profoundly
enlarge the pseudocritical region. Previously, the questions
how to expand the power-law behavior over broader scales
has already been addressed by Kinouchi and Prado [81].
Furthermore, another route to broad regions of critical-like
features are the so-called Griffiths phases [82]. Moretti and
Muñoz [44] have shown that quenched disorder smears the
parameter space which leads to the emergence of a generic
scale invariance in hierarchically modular networks. Later,
these ideas have been generalized to nonhierarchical modular
networks as well [83] and verified numerically in a large scale
connectome model [84]. It has been argued that for biological
systems it might suffice to operate in such phases without the
need to invoke precise tuning to the edge of a phase transition
to obtain functional benefits stemming from spatiotemporal
scale invariance [8].

In contrast to previous endeavors that were focused mainly
on nontrivially structured and heterogeneous excitable net-
works, we investigated the possibilities for broadening the
region of scale-invariant behavior of excitation waves in a
regular square lattice of excitable elements. Namely, in many
realistic cells and tissues, the interactions among excitable
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elements are mostly limited to nearest neighbors only, such as
in cardiac myocytes [14], oocytes [85], or between pancreatic
beta cells [13], and were shown to exhibit fingerprints of
self-organized criticality as well. Even neuronal tissue might
exhibit a regular lattice-like axonal connectivity at the scale
of small neuronal populations or in the early evolutionary
stages [86,87]. Within the excitable cell membranes, such as
on cardiac smooth muscle cells or oocytes, criticality has been
argued as a gateway to whole-cell oscillations, whereby in
the critical regime local single-channel fluctuations and Ca2+
sparks can successfully evolve to whole-cell oscillations. On
the other hand, in the subcritical regime, i.e., below the phase
transition point, local random excitations do not evolve to
large scale wave formation [14,85,88]. It should be noted that
such a transition from local to global signals has theoretically
been associated with a directed percolation universality class,
as explained above [70–72]. Moreover, in pancreatic islets of
Langerhans, the main synchronizing mechanisms is the elec-
trical coupling through rather regular gap junctional networks
which ensure calcium wave propagation across the tissue.
However, cellular heterogeneity, the existence of subpopu-
lations and other communication mechanisms within islets
introduce certain spatial disorder that contributes to complex
collective activity patterns, which in certain regimes exhibit
fingerprints of criticality [13,42].

Noteworthy, our computational results have revealed that
the incorporation of spatial heterogeneities, a genuine char-
acteristic of many excitable settings, affects profoundly the
spatiotemporal activity. In particular, proper spatial hetero-

geneity profiles that are characterized with intermediate-sized
clusters with similar excitability levels, profoundly expand the
parameter space region in which the distribution of excitation
wave sizes follows closely a power law. We argue that the
presence of properly scaled patches introduces a modular spa-
tial structure, in which the nucleation of waves occurs more
often in patches with elevated excitability. If the sizes of these
patches are properly scaled, this affects the excitation wave
decay profiles in the way that they can exhibit heterogeneous
self-similar behavior over broad intervals.

To conclude, the occurrence of spatial heterogeneities in
realistic excitable systems can for example be linked with
regional subcellular heterogeneities in ATP-sensitive potas-
sium channels [89], spatially clustered neuronal subpopula-
tions with similar features [51,52], or spatial organization
of pancreatic beta cell subpopulations [53]. If the intrinsic
structural heterogeneities of various excitable systems are
properly scaled and organized, they can be considered as an
important factor for ensuring a more robust critical-like be-
havior. Our findings thus discerned an intriguing association
between structural organization and dynamics of excitable
systems in which the emergent wave activity is mediated by
local interactions.
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