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In contrast to conservative systems, in nonlinear media with gain and loss the dynamics of localized
topological structures exhibit many unique features that can be controlled externally. We propose a robust
mechanism to perform topological transformations changing characteristics of dissipative vortices and their
complexes in a controllable way. We show that a properly chosen potential carries out the evolution of dissipative
structures to regime with spontaneous transformation of the topological excitations or drives generation of
vortices with control over the topological charge.
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I. INTRODUCTION

Formation of vortices, excitations that possess a rotational
flow around a point of phase singularity, is a general phe-
nomenon observed in various fields of both classical and
quantum physics, including acoustics, fluid dynamics, solid-
state physics, Bose-Einstein condensation (BEC), etc. [1–4].
In optics the unprecedented attention has been attracted to the
vortex formation in nonlinear systems, where linear spreading
due to the dispersion or diffraction is balanced by nonlinear
focusing [5,6]. Nowadays vortices are a subject of numerous
studies in nonequilibrium polariton condensates [7–14].

Besides the studies on vortex existence and stabil-
ity [9,10] as well as vortex-antivortex dynamics [15,16],
tremendous efforts have been aimed to get the full con-
trol over the formation of vortices with required topo-
logical properties using a broad optical pump [7,8], chi-
ral polaritonic lenses [11], and a ring-shaped incoher-
ent optical pump [12–14]. Formation in a predefined way
of stable vortices with an arbitrary topological charge from a
small-amplitude noise is possible, when an incoherent pump
is locally applied to the exciton-polariton condensate [13].
Moreover, very recently the selective transfer of topological
charge between two vortices with unit positive and negative
charges [13] has been realized experimentally in the conden-
sate due to the presence of an elliptically shaped incoherent
control beam [17]. Further elaboration of this mechanism
based on control of the vortex multistability [18] has allowed
one to switch a topological state with the charge m = ±1, ±2,
±3 to another vortex.

Despite significant progress in the vortex formation in
diverse physical systems, getting control over vorticity of
multidimensional dissipative solitons in a predefined way
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is still a challenging problem for many hydrodynamic and
optical applications. In this work we propose a mechanism to
perform nontrivial topological transformations by applying an
external potential which changes topological characteristics
of dissipative vortices in a controllable way. We demonstrate
this mechanism in the framework of the complex Ginzburg-
Landau equation (CGLE) with a potential term, which covers
nonlinear phenomena far from equilibrium in many physical
systems including mode-locked and fiber lasers, nonlinear
optical waveguides, semiconductor devices, Bose-Einstein
condensates, reaction-diffusion systems, etc. [19–24]. We
show that the properly chosen potential performs preassigned
transformations of topological structures.

The rest of the paper is organized as follows: In Sec. II
we formulate the problem in the framework of the complex
Ginzburg-Landau equation with a potential term and describe
the scheme of its numerical solution. Results of the systematic
analysis of different transformations of dissipative topological
structures are presented in Sec. III. This section is divided into
two subsections where we distinguish regimes of spontaneous
and completely controlled (engineered) transformations of
topological structures. Finally, in Sec. IV we summarize the
paper.

II. MATHEMATICAL DESCRIPTION

Apart from the theory of active optical media with spa-
tially modulated refractive indexes [25–30], the cubic-quintic
CGLE with a potential term appears in theoretical descrip-
tion of the propagation of light beams through nonlinear
magneto-optic planar waveguides [31–33]. In such systems
the potential accounts for the influence of external magnetic
field upon the dynamics of guided light beams existing in the
form of dissipative solitons and vortices. Having adopted the
notations used in the theory of nonlinear optical waveguides,
we write the cubic-quintic CGLE supplemented by a potential
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term with an explicit coordinate dependence as follows:

i
∂�

∂z
+ iδ� +

(
D

2
− iβ

)
∇2� + (1 − iε)|�|2�

− (ν − iμ)|�|4� + Q(x, y, z)� = 0, (1)

where �(x, y, z) is the slowly varying field envelop, which
is the complex function of two transverse (x and y) and the
longitudinal (z) coordinates. The coefficients of Eq. (1) are
assumed to be positive quantities that result in their unambigu-
ous interpretation. Namely, D is the normalized diffraction
coefficient, δ is the linear absorption coefficient, β is the
linear diffusion coefficient, ε is the coefficient of nonlinear
cubic gain, ν accounts for the self-defocusing effect, and μ

defines quintic nonlinear losses. The potential Q(x, y, z) is a
real function, which accounts for a specific conservative force
applied externally that influences over the evolution of the
complex envelop �(x, y, z). It is given in the form,

Q(x, y, z) =
NQ∑

n=1

qn(x, y, z)[θ (z − an) − θ (z − bn)], (2)

where NQ is the number of control manipulations, θ is the
Heaviside step function, and an < bn are the points on the z
axis where the potential is switched between different states.

For a given set of coefficients taken from relatively wide
ranges of values, Eq. (1) with zero potential has numerous
stable solutions in the form of dissipative vortices with dif-
ferent topological charges. Each vortex corresponds to certain
attractor in the phase space of Eq. (1) with zero potential. To
excite the vortex one can use an arbitrary initial condition,
which starts a phase trajectory somewhere within the basin
of attraction. In all our simulations we use the same fixed set
of coefficients of Eq. (1) [31,32]: D = 1, β = 0.5, δ = 0.5,
μ = 1, ν = 0.1, and ε = 2.5. For this set of coefficients one
can use the following initial condition to excite a given vortex:

�0(x, y) = Am exp

(
imϕ − r2

w2

)
, (3)

where ϕ is the azimuthal angle, Am = 1 is the amplitude, w =
3 is the effective radius, and r =

√
x2 + y2 is the radial coor-

dinate. The integer m defines the vortex topological charge,
which corresponds to the circulation of the gradient of the
phase on a closed curve surrounding the vortex core. First we
consider transformations between lowest-order states m = 0,
m = 1, and m = −1 which correspond to three different cases
when we initially excite the fundamental soliton, vortex, and
antivortex with unit topological charges, respectively. Finally
we summarize our findings for transformation for higher-
order dissipative vortices and discuss general conditions for
mutual transformation of the topological excitations in media
with gain and loss.

We solve Eq. (1) numerically using the exponential time
differencing method and its two Runge-Kutta modifications
of the second- and fourth-order accuracy [34] as well as the
split-step Fourier method of the second-order accuracy [35].

III. TOPOLOGICAL TRANSFORMATIONS

Being formed a vortex cannot change its waveform as
long as parameters in Eq. (1) are fixed. On the other hand,
having applied the nonzero potential we can perturb the vortex
pushing out its phase trajectory from the original basin of
attraction to another one. As soon as the basin of attraction
has been changed we switch off the potential and the released
soliton waveform evolves into a new appearance. Such mech-
anism of induced waveform transitions between different one-
dimensional dissipative solitons has been thoroughly studied
in Refs. [36,37]. Here our goal is to show that this mechanism
is quite general and provides tremendous opportunities to
control the vortex formation and perform transformations be-
tween their different topological charges. In what follows, we
distinguish two different mechanisms related to spontaneous
and engineered transformations.

A. Spontaneous transformations

It was previously revealed [36] that a one-dimensional
nonlinear system with gain and loss can exhibit chaotic behav-
ior being driven by an external potential. Nevertheless, some
control over the finite state is possible by choosing the position
of switching off the external potential to release the soliton
from chaotic to stationary behavior. This mechanism is related
to spontaneous transformations of solitons.

In order to illustrate such transformations for vortices
we consider a single manipulation potential (NQ = 1). This
potential is homogeneous in the y direction and constructed as
a superposition of two potential wells with minima at x = ±x0

separated by potential barrier with x = 0 and x0 = 10:

q1(x) = sech(x − x0) − sech(x) + sech(x + x0). (4)

To monitor the appearance of the topological excita-
tions we use the core detection technique [38]. It allows
us to determine a proper value of b1 when the potential
should be switched off. For the same purpose we also
calculate energy E = ∫ |�|2d2r, angular momentum L =
− i

2

∫
[r × (�∗∇� − �∇�∗)]d2r, and normalized momen-

tum of inertia I = ∫ |�|2r2d2r/E . In general, energy E , an-
gular momentum L, and momentum of inertia I are functions
of the z coordinate rather than conserved quantities. However,
for any localized structure these characteristics are always
finite. Moreover, in a stationary case they take constant values
suitable for monitoring the dynamics of system (1).

For each z we calculate the topological charge of the
system: 
m = m+ − m−, where m+ and m− are the numbers
of vortices and antivortices, respectively, and L = Lz/E is
the relative angular momentum. Using the information about
topological structures available for different z, we predict the
range of b1, for which the finite state acquires a particular
topological charge.

As illustrated in Figs. 1–3 in some cases this method
allows one to control a type of topological structure which
appears after the relaxation process. Figure 1 shows that
the number of vortices detected in the wave field changes
irregularly, but the analysis of the angular momentum guides
one to choose a proper moment when the potential should
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FIG. 1. Transformation of the vortex structure induced by exter-
nal potential (4). Shown are evolution in the z direction of topological
charge 
m (solid blue line) and relative angular momentum L
(dashed red line). The green crosses mark the positions z = b1 where
the potential should switch off to form a single-charged antivortex
(see Fig. 2) and three-charged dissipative vortex soliton (see Fig. 3).

be switched off. For instant, it turns out that the manipula-
tion governed by the potential (4) with a1 = 50 and b1 =
101 transfers the charge of vortex from m = +1 to m = −1
(Fig. 2). As it is seen from Fig. 1 for z = 65.5 the number
of detected vortex cores anticipates approaching the basin of
the three-charged vortex structure. Indeed, the same poten-
tial (4) with a1 = 50 and b1 = 65.5 transforms the vortex
with m = 1 to the three-vortex rotating cluster, that finally
evolves into the three-charged (m = 3) vortex (Fig. 3) in
good agreement with the prediction of the angular momentum
analysis.

In fact, a wide variety of different topological excitations
can emerge and decay in highly nonequilibrium state. There-
fore, a detailed consideration of spontaneous transformations
of dissipative structures in a regime of strong two-dimensional
turbulence may be a relevant extension of this work, which
might help to illuminate fundamental properties of the turbu-
lence in classical and quantum physical systems.
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FIG. 2. Vortex to antivortex transformation obtained with control
duration of potential action (a1 = 50 and b1 = 101). Snapshots of the
spatial distribution of potential (top panel), density (middle panel),
and phase (bottom panel) for different z. Crosses (circles) mark the
vortex (antivortex) cores.
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FIG. 3. The same as in Fig. 2 but for the transformation of the
vortex to the three-charged vortex (a1 = 50 and b1 = 65.5).

B. Engineered transformations

Although effective, the mechanism of spontaneous trans-
formations has several drawbacks. It is not always possible
to control the final state of irregular evolution induced by
simple potential with chosen parameter b1. Also the number of
possible transformations is restricted by available topological
structures which emerge and decay in the perturbed wave
field. In what follows we describe how the potential can be
used to obtain complete control over the mutual transforma-
tions of different types of dissipative solitons for formation of
complicated topological structures. We relate this mechanism
to engineered transformations of dissipative solitons induced
by external control.

Due to the topological reasons it is possible to get a single
vortex only from the periphery of the wave beam, and only
vortex-antivortex pairs can be excited inside the wave beam.
The system with gain and loss conserves neither energy nor
angular momentum, which allows topological transformation
forbidden for conservative systems. Here we demonstrate how
the well-known methods of the vortex generation in conserva-
tive systems can be modified to generate dissipative vortices.
Furthermore, we suggest novel approaches for creation of
topological excitations in the controllable dissipative systems.

A variable in the z-direction control potential is used to
create a rotating repulsive barrier, similar to stirring the wave
beam used in Bose-Einstein condensates [39–43]:

qst(x, y, z) = −hθ (ϑ (x, y, z)) exp
[−ϑ2(x, y, z)/r2

0

]
, (5)

where r0 is the width of the stirrer, h is the depth of potential,
and ϑ (x, y, z) = y cos �z − x sin �z. Here � is the angular
velocity of the stirrer.

The amplitude is chosen to be h = 0.6, so that the potential
is comparable with other terms in Eq. (1) and the width is r0 =
2. We use an additional repelling core in the potential: q1 =
qc + qst, where qc = −2sech(r) produces off-center flows at
the wave beam axis and imposes the central toroidal hole.
The structure of the potential implies formation of vortex-
antivortex pairs near the wave beam axis. Depending on the
direction of rotation of the stirrer, a vortex or an antivor-
tex leaves the central region and moves to the periphery.
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FIG. 4. The same as in Fig. 2 but for the transformation of the
fundamental soliton to the vortex induced by the repulsive central
core and rotating barrier. Note that clockwise rotation of the barrier
drives the phase slip and formation of the vortex with topological
charge m = +1.

Remarkably, in similar setup during generation of the persis-
tent current in a toroidal atomic BEC the rotating weak link
induces a drift of the vortex core in the opposite direction:
from external periphery to the axis (see, e.g., Refs. [41–43]).
Snapshots of the spatial distribution of the potential, density,
and phase for � = −0.086, a1 = 50, and b1 = 64 are plotted
in Fig. 4. One can estimate the speed required for vortex
formation as �v = L/I, which gives the stationary vortex
with charge m = 1 when � = 0.13. In our simulations the
transformation occurs for |�| � 0.115 in accordance with
this simple estimation. Figure 5 summarizes our findings for
generation vortices with rotating potential and presents the
effective angular velocities �v as the function of topological
charge. As might be expected, in our simulations we observed
that the nonrotating barrier (� = 0) induces decay of the
stationary vortex state to the fundamental soliton with m = 0
(corresponding figure is not presented here).
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FIG. 5. Effective angular velocity of the stationary vortex �v =
L/I for different topological charges m (blue circles with solid blue
line) and absolute value of the maximum angular velocity �b =
max(�) of the rotating potential, which can transform a nonrotating
ground state into an m-charged vortex (red crosses with dashed
red line). Note that the effective vortex velocity �v gives a good
estimation from above for the maximum barrier angular velocity �b

(|�b| � �v).
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FIG. 6. Controllable transformation of the vortex to the antivor-
tex using rotating potential combined with the repulsive core at the
beam axis. Note that the anticlockwise rotating potential changes
intensity and phase field distributions so that two antivortices come
inside the central toroidal hole.

Repulsive rotating potential combined with the repulsive
core can be used to change the vortex charge to an arbitrary
targeted vortex state. In particular, to transform the topological
charge from +1 to −1 we use the potential of the form qst =
−h exp[−ϑ2(x, y, z)/r2

0 ] with � = 0.05, a1 = 50, and b1 =
100. The corresponding snapshots of the spatial distribution
of the potential, density, and phase for different z are shown
in Fig. 6.

Thus, one can use a rotating repulsive potential to ex-
cite a vortex state from the fundamental soliton in analogy
with excitation of the persistent currents in atomic BEC
[39–43]. However, open dissipative systems with controlling
potential suggest novel approaches for engineering nonlinear
topological structures. The main idea is to create spatially
separated vortex-antivortex pairs and then induce a decay of
part of the vortex excitations. Using this approach one can
create not only a single vortex but also generate much more
complicated topological structures. To illustrate this let us
discuss a transformation of fundamental soliton to a cluster of
two antivortices rotating with the relative angular momentum
Lz/E = −1.5. For this transformation we perform four (NQ =
4) control manipulations with potential (2): (i) First, the initial
waveform (3) evolves to the fundamental soliton. (ii) Then at
z = 50 potentials q1 = −2[sech(r) + sech(10 − r)] and q2 =
−2[sech(

√
(x − 5)2 + y2) + sech(

√
(x + 5)2 + y2)] turn on.

Here term −2sech(r) creates a repulsive potential at the axis
of the wave beam, and induces formation of two vortex-
antivortex pairs. Terms −2sech(10 − r) and q2 localize the
pulse. (iii) After z = 77 term q2 is nullified and potential q3 =
−sech(2x) − sech(2y) is applied to separate vortices and
antivortices from each other. The term q4 = 2sech(0.75y −
0.75x) is added after z = 125 to destroy two vortices. (iv) At
z = 145 all potentials are switched off and the resulting wave
field evolves into the rotating antivortices cluster.

Snapshots of spatial distribution of potential Q, inten-
sity |�|2, and phase arg(�) for different z are plotted in
Fig. 7. This vortex cluster is a stable bound state of two
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FIG. 7. The same as in Fig. 2 but for the transformation of
the fundamental soliton to the rotating cluster composed of two
antivortices. The effective topological charge of the cluster is Lz/E =
−3/2. In the first stage the soliton is transformed into two coupled
dipoles, then the dipoles are spatially separated. Finally the attractive
potential destroys the vortices, and the remaining two out-of-phase
antivortices form the clockwise rotating antivortex cluster.

out-of-phase antivortices. In practice, formation of the bound
state of two vortex solitons is a challenging task since it
requires fine tuning of their phase difference. Remarkably, in
our case the phase tuning occurs automatically for dynamical
transformation of the two pairs of two out-of-phase dipoles.
We note that introducing some modifications in the described
manipulations one can also release the vortex and antivortex
from the fundamental soliton.

To obtain the antivortex from the soliton one can
change only the last manipulation. For example, q4

manipulation can be added as follows: q4(x, y) =
2sech(0.5

√
(x + 4)2 + (y + 4)2) at z = 125. This term

destroys one vortex. After turning off the potential at z = 150
two antivortices and one vortex unite and evolve into the
antivortex. Snapshots of spatial distribution of potential Q,
intensity |�|2, and phase arg[�] for different z are plotted
in Fig. 8 (we encourage the reader to see animation of the
described above transformations in the Supplemental Material
[44]).

IV. CONCLUSIONS

In summary, we analyzed dynamical transformations of
different topological structures using the model based on (2 +
1D) CGLE. It turns out that in a highly nonequilibrium state,
driven by an external potential, various topological excitations
emerge and decay. In the nonlinear media with gain and loss
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FIG. 8. The same as in Fig. 7 but for the transformation of the
fundamental soliton to the antivortex. At the first stage the soliton is
transformed into two coupled dipoles, then the dipoles are spatially
separated. Finally the attractive potential destroys two vortices and
one antivortex.

the energy of the vortex excitations is not conserved which
permits fascinating transformations of topological structures
not accessible in conservative systems.

We have analyzed spontaneous transformations of topolog-
ical structures induced by external potentials. Our systematic
analysis of evolution of the phase defects in the wave front
opens an avenue on control over transformations of different
topological structures by matching the duration of the action
of the external potential during propagation of the wave
beam. However, complex and irregular character of the phase
transformation in the open dissipative system restricts the
applicability of control over transformation of the topological
structures based only on the potential duration. Moreover,
generation of the vortex solitons from the fundamental soli-
tons by simple potential is prohibited by conservation of
topological charge in the system. We found a series of external
potentials that drive completely controllable transitions of the
dissipative soliton or vortex into the structures with required
topological charge. Moreover, using the method developed in
this work, we demonstrate formation of complex solitonic and
vortex structures. The proposed method of controllable trans-
formation of topological structures may open new prospects
for future applications in optical signal processing.
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