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A family of super-regular (SR) breather solutions in systems with self-steepening effect and in the case of
either normal or anomalous dispersion is derived analytically. Derivation is based on the Darboux transformation
with a quadratic spectral parameter. In contrast to the SR breather solutions in f-symmetric systems such
as the nonlinear Schrodinger equation, the new breathers found in the present work evolve asymmetrically
even if started from symmetric initial conditions. The initial stage of this process is modulation instability.
Numerical simulations confirm the excitation of the SR breathers when started from the approximate initial
conditions leading at first to modulation instability. Our results offer the possibility of experimental observations
of SR breather dynamics in systems with self-steepening effects, such as optical frequency-doubling crystals or

magnetized plasmas.
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I. INTRODUCTION

Waves oscillating on a plane-wave background, known
as breathers, have received much attention in nonlinear sci-
ence over the past decade [1-16]. They provide a basis for
more complicated formations—nonlinear superpositions of
breathers that appear in many nonlinear phenomena of phys-
ical importance such as rogue-wave events [10—13], breather-
wave molecules [14], chess-board-like interference patterns
[15], and modulation instability (MI), where small periodic
modulation is additionally localized in transverse direction.
One way of creating these types of initial conditions is using
a nonlinear superposition of pairs of fundamental (quasi-
Akhmediev) breathers propagating at slightly tilted angles
with opposite signs to the main direction of propagation. The
resulting exact solutions in the form of symmetrically diverg-
ing modulated beams (regular breathers) have been named
“super-regular (SR) breathers” by the authors of Ref. [16].

From a theoretical point of view, SR breathers are higher-
order exact solutions of the nonlinear Schrodinger equation
(NLSE) [16-18]. One of the ways to construct these exact
solutions is to parameterize the spectral parameter of the
associated Lax pair using the Jukowsky transform [19]. The
existence of SR breathers, consisting of a symmetric pair
of breathers, has been confirmed recently in an optical fiber
and in a water-wave arrangement [ 18]. Experimental research
tightly follows intense theoretical studies whose purpose is
deeper understanding of the nature of SR breathers. So far,
SR breathers have been studied in the NLSE hierarchy with
various higher-order terms [20-22], in a resonant erbium-
doped fiber [23], and in a self-induced transparency media
[24]. In these studies, some intricate SR breather properties
have been demonstrated. For example, it was shown that the
MI growth rate of SR breathers coincides with the absolute
difference of group velocities of the pair of breathers involved
in the solution [22]. Importantly, the role of SR breathers in
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rogue-wave formation has been revealed in Ref. [25]. The
nonlinear stage of MI in formation of SR breathers has also
been carefully studied [26,27].

So far, all theoretical findings are limited to integrable
dynamical systems with the associated Lax pairs and linear
spectral parameters. These include SR breathers in the infinite
NLSE hierarchy [22]. On the other hand, SR breathers in
important classes of integrable systems admitting nonlinear
spectral parameter in the spatial Lax operator remains com-
pletely unexplored. Among them, we can mention the Wadati-
Konno-Ichikawa (WKI) system [28] which admits quadratic
spectral parameter in the corresponding spatial Lax operator.
These type of systems with self-steepening terms have at-
tracted considerable attention in both theory and experiment
[29] as these terms are important in describing ultrashort
pulses in femtosecond lasers.

Self-steepening of optical pulses is the result of the
intensity-dependent group velocity [30]. Self-steepening nat-
urally leads to asymmetric optical spectra. It also results in the
chirped [31,32] or two-color walking [33] double-localized
Peregrine rogue waves that are the limiting case of breathers
with infinite period. On the other hand, SR breathers which are
a special superposition of pairs of breathers remain unknown
for systems with self-steepening. The related problem of MI
growth rate for this case is also need to be solved. Another
question remained to be answered is an excitation of SR
breathers from initial conditions that are not exactly defined
by the SR breather solutions but are sufficiently close to them.
On the one hand, solving this latter problem will provide an
answer to the problem of robustness of SR breathers. On the
other hand, it will allow us to choose the initial conditions that
are much closer to realistic experimental conditions.

In this paper, we address these questions by finding both
analytically and numerically the SR breather solution in a
nonlinear system with a single self-steepening term in the
cases of either normal or anomalous dispersion. Such a system
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is governed by the following Chen-Lee-Liu equation (CLLE)
[34]:
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where V¥ (z,t) is the wave envelope, z is the propagation
variable, while ¢ is retarded time in the frame moving with
the wave group velocity. Coefficient o defines the sign of
dispersion. It is positive (6 = +1) when dispersion is anoma-
lous and negative (0 = —1) when it is normal. Equation
(1) differs from the NLSE by the last term in the left-hand
side. Namely, the cubic self-phase modulation term |y |>vr
is simply replaced by the term i|yr|?; describing the effect
of self-steepening. In experiments, it is a challenging task to
separate the contributions of self-steepening and self-phase
modulation effects. Despite these difficulties, the relative in-
fluence of these terms on ultrashort optical pulse propagation
has been revealed in recent work [35] in a frequency-doubling
crystal via the interplay of quadratic and cubic nonlinearities.
This can also be done in quadratic nonlinear media [36].

An important point is that the CLLE (1) is integrable. It
belongs to the WKI system [28]. In this generalized approach,
the spatial operator of the associated Lax pair admits quadratic
spectral parameter. The first-order breather solution for this
case has been found in Ref. [37]. The bright soliton and
dispersive shock waves have been studied in Refs. [38] and
[39], respectively. The SR breather solution is given in the
present work.

The CLLE is one of the simplest equations that includes
a self-steepening term and that belongs to the WKI system.
Another similar case is the Kaup-Newell equation [40], where
the self-steepening term has a form, %(Wl%ﬁ). The latter
operator can be split:

3(| 1Y) = 3(| %)+ |23
WP =v—(v YIY,

which means that there are other forms of equations with self-
steepening terms. Among them, we can mention the mixed-
type NLSE [41], the Fokas-Lenells equation [42], the cubic-
quintic NLSE [43], and the higher-order CLLE extension [44].
All these equations are found to be integrable.

Finding SR breathers for these equations is still a chal-
lenge. Common features and differences between the SR
breathers in these models will enrich our understanding of
the MI phenomena influenced by self-steepening. Yet it is
impossible to study SR breathers in these models all in one
step. Thus here we make only the first step finding the SR
breather for the CLLE. Due to the simplicity of the self-
steepening term in the CLLE (1), the study of the SR breathers
for this model is of fundamental importance. Generalizing
these results for other equations at later times will enrich our
understanding of self-steepening effects in general.

The paper is organized as follows. The derivation of the
exact breather solution is given in Sec. II. The SR breather
with a reflection-symmetry-breaking dynamics is obtained in
Sec. III. The relation between the MI and SR breather is
demonstrated in Sec. IV. Section V contains our conclusions.

II. EXACT BREATHER SOLUTION AND ITS
SELF-STEEPENING

Breathers in general and SR breathers in particular can
be generated as a result of modulation instability. Periodic
perturbation extends to infinity in the case of the standard
MI, while it is localized in the case of SR breathers. Thus
let us start our investigation with the linear stability analysis.
Similarly to the NLSE, Eq. (1) has a plane-wave solution,

Yo = aexp(it),

where a and ¢q are its amplitude and frequency, respectively.
Adding a periodic perturbation

0 =qt — (0q" +d’q)z, 2)

_ i(Qt+wz) s —i(Qt+w*z)q ,i0
Vp=la+ fre + fle le

with a frequency w, wave number Q and small amplitudes
f+, f7 and linearizing the solution around the plane wave, we
obtain the dispersion relation

o =a’Q+ 2090 + 02da%0q + Q2. 3)

The plane wave (2) is modulationally unstable when Im{w} #
0. This happens when |Q| < ay/—20¢q (or g < 0). The small
initial modulation in this frequency range grows exponen-
tially. The growth rate of this instability is given by G =
|Im{w}|. The maximum growth rate G,, = —o qa2 is achieved
when |Q| = a/—0q.

We note that g(# 0) and o should have opposite signs to
ensure that Im{w} # 0. This implies that the plane wave can
be modulationally unstable in the cases of either normal or
anomalous dispersion. With no loss of generality, we choose
o = +1. Then the two cases are covered by varying the sign
of g.

The initial stage of evolution is described by the above
equations. However, in order to have the full-scale evolution
beyond the linear approach, we need exact solution that is
valid at any z. In what follows, we construct exact SR breather
solutions that can be considered as nonlinear continuation of
the MI approximation.

In order to do that, we first represent Eq. (1) in the form of
two linear equations with 2 x 2 matrix operators [45]:

e, =U?, P, =V, 4)

where ® = (R, S)" (T means a matrix transpose) and
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1
vy = (iaw,* + §|w|2w*)x — 2017 y".
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Here A is the spectral parameter. The CLLE (1) follows from
the compatibility condition

U, -V, +[0,V]=0.

Breather solutions can be constructed using the Darboux
transformations [46] and the seeding solution in the form of
the plane-wave background (2). One can construct breather
solutions by solving the Lax pair with an arbitrary complex
spectral parameter A, following the previous works [11,12].
SR breather solutions require two spectral parameters.

The Lax pair (6) can be written in the following form:

= [ if ai o _ (—iBp —akip

U= (—a)» —iﬁ)’ V= (akp iBp >’ @
using a diagonal matrix s = diag(e /2, ¢//?) and the func-
tions

2 _ 1.2 .2 1
B(") = za” — A" — 3¢,

p(W?) = 1a* = 2% +q.

As a result, the linear eigenvalue problem (6) reduces to that
of Eq. (7) with the two eigenvalues given by

T=Fif(A),  fOF) = VBA2)+ a2 (8)

We remark here that if Im{r?} = 0, and Re{r?} # 0, the cor-
responding solution describes either the Akhmediev breather
(AB) [47] or the Kuznetsov-Ma soliton dynamics [48]. In
the degenerate case T = 0, the resulting solution is further
reduced to the rational expression of the Peregrine rogue wave
[49]. In the latter case, the spectral parameter satisfies

A2 = ig,/—zq — %(aZ +29). 9)
This is a special value of A in the dynamics of fundamental
nonlinear waves. In contrast to the case of the infinitely
extended NLSE hierarchy [50] and to the previous work for
the CLLE [37], we express this spectral parameter, Eq. (9), in
the quadratic form.

One way of expressing the spectral parameter in finding
the SR breather solution is the Jukowsky transform [19]. We
start with the transform for the imaginary part of the quadratic
spectral parameter (9):

a 1 1
A= iZ<E + g)w/—Zq - é—l(a2 +2¢)=p' +0', (10
where & = rexp(ia) with r and « being the radius and angle
of the polar coordinates in the sector defined by r > 1, a €
(—m /2, /2). Then the real u/ and imaginary v’ parts of A2
are given by

1 1
—p = Z(r— —>\/—72qsina + A—t(a2 +2q), (11)
r

1
v = Z( + —)\/—chosa. (12)
r

The convenience of the transformation (10) is in mapping of
the spectral parameter to the plane in polar coordinates with
two values of @ with opposite signs. Interactions between two

such breathers can potentially generate a SR breather. The
phase of each breather is also relevant (see Sec. III).

To start with, let us first consider a single fundamental
breather. Using the definition (10) of the spectral parameter
through its quadratic value A = p + iv = V32 and solving
the associated Lax pair (6), as shown in the Appendix A, we
obtain the first-order breather solution in complex form:

G(z,t)+iH(z,1) B
Di(z,t) +iDy(z, 1)

where the expressions in the numerator G, H, and denomina-
tors D; and D, are real functions:

V(z, 1) = [ l}w()(z,t), 13)

G = 4V'K coshy, + %I/A cosk; + 2Dy, (14)
H = 4K sinhy, + %A’ sinky, (15)
Dy = pAcosh y,; + 2aukK cosky, (16)
D, = vA’sinh y, — 2avK’'sink; (17)

with
Y1 =2y — V),
A=’ +pP)+ @ +n"), K=ps—wn,
A =0+ = +1?), K =vs+un. (18)

Here V,, V, are the group and phase velocities

K1 =2K(t —V,,z)—@l,

az / 2 /
Vo= —+q—21 + —«v, (19)
2 Y
V=@ gLy (20)
= — — — =YV,
p B q w KV
withr;:‘Z—Z—K—u’—g,S:y—v’,and
a Iy .
K=- —2q<r + —) sin o, 21
4 r

y = gw/—2q<r - l) coso. 22)
r

The solution (13) depends on the plane-wave parameters
(a, q), the spectral parameter in polar coordinates (r, ), and
the phase 6. Similarly to the case of the NLSE breather
solution [11], Eq. (13) describes the growth-decay cycle of
periodic structure on top of the plane wave. This structure
is propagating with the group velocity V, and the phase
velocity V,,. At special values of the spectral parameter, the
solution (13) reduces to Akhmediev breather (r =1, o #
0), Kuznetsov-Ma soliton (r # 1, o = 0), or Peregrine rogue
wave (r =1, =0). In the remaining cases, the solution
describes the general (Tajiri-Watanabe) breather [51].

In contrast to the previous cases [10—12]), the denominator
D, + iD, in Eq. (13), is left complex. This form can be easily
transformed into more common form by simply multiplying
both numerator and denominator by the complex conjugate
expression D — iD;.

The simplest SR breather is a nonlinear superposition
of two quasi-ABs [16] with r=1+4+¢ (¢ < 1),  #0. In
other words, interaction between two quasi-ABs with oppo-
site o generates potentially a SR breather. As can be seen
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Time t

Time t

FIG. 1. Amplitude profiles of two quasi-Akhmediev breathers,
described by Eq. (13), with values of « of opposite sign: (a) ¢ = 7 /6
and (b) « = —m /6. The panels (c) and (d) show specific shape of
functions in (a) and (b) at three distances: z = —1/2,z =0, and z =
1/2. The inset in (d) shows the location of the spectral parameters of
breathers presented in (a) and (b) on the (Re(A), Im(A)) plane (red
circles) as given by Eq. (10). The parameters used in calculation are
a=1,q=-05,r=1.15,0, =0.

from Eq. (18), these two quasi-ABs share the same width
[~1/(2y)] and modulation frequency 2« in ¢. The latter is
approximated by 2« = a/—2¢sin« (as ¢ < 1), which is the
same as that of AB. However, due to the asymmetry relative to
the transformation + => —t, the maximal amplitudes (|¢/| =
2v' /1 + a) of the two quasi-ABs are not exactly equal.

Figure 1 shows a particular case of two quasi-ABs propa-
gating with opposite group velocities (V,) when a*/2 + ¢ =
0. The corresponding spectral parameters are symmetrically
located relative to the line Re(A) = Im(A). They are displayed
in the inset of Fig. 1(d). Each period of the quasi-ABs has
an amplitude peak and two side holes tilted relative to the
t axis. Transitions from hole to peak can be considered as
shock waves, as can be seen from Figs. 1(c) and 1(d). This
effect results from the self-steepening similar to that in the
case of a single Gaussian or soliton-like pulse [30,35]. Clearly,
in the breather case, formation of shock waves occurs with
periodicity of the breather itself. Another remarkable feature
of the two quasi-ABs in Fig. 1 is their asymmetry. This is the
consequence of asymmetry in time transformation r — —¢ of
the original equation.

II1. SR BREATHERS AND SYMMETRY BREAKING

Nonlinear interaction between the two quasi-ABs pre-
sented above produces SR breathers. The phases 6, 6, play
a significant role in their formation as they shift the wave
profiles in each period of the quasi-ABs as can be seen from
Fig. 2 below. In the previous works [16-18], SR breathers
are generated with the phase relation 6, 4+ 6, = 7. This con-
dition created specific symmetric pattern of interaction with
relatively small amplitudes on the line z = 0. With the self-
steepening term in the CLLE (1), we consider two possibili-
ties: {0, 0,} = {0, 7} and {6;, 6,} = {7, 0}. Other cases lead
to irregular SR patterns with high amplitudes in the middle.

5 §
44 4
— 31 —31 ;
> > :
21 2 ’
14 1 i
0 r 0 ; -
-30 0 30 -60 0 60
Time t Time t

FIG. 2. Collision of two quasi-ABs propagating with opposite
velocities. It is described by the exact solution in Appendix B, where
(a) 8 =0 and (b) 6; = {0, 7}. The panels (c) and (d) show the
amplitude profiles of the cases (a) and (b), respectively, at z = 0 (blue
curve) and at z = 10 [red curve in (d)]. Other parameters are the same
asin Fig. 1.

These type of patterns cannot be considered as being produced
due to the MI. The two patterns with the above phase relations
are shown in Fig. 2. They are produced using the exact SR
breather solution given in Appendix B.

Figure 2 shows the interaction pattern of two quasi-ABs in
the cases when the two individual components shown in Fig. 1
are in phase [6#; = 0, 6, = 0, Fig. 1(a)] or out of phase [0, =
0, 6, = 7, Fig. 1(b)]. In the first case, the field profile at the
origin reaches its maximal value as shown in Fig. 2(c). In the
second case, the central amplitude is relatively small as shown
in Fig. 2(d). The central feature in the first case is the second-
order rogue wave [10—13]. In the second case, the wave profile
at z = 0 can serve as the initial condition for excitation of SR
breather.

The choice of phase difference between the two compo-
nents in Fig. 2, to some extent, is similar to the choice of
phases in the collision dynamics of the NLSE bright soli-
tons [52,53]. However, the breather collision occurs on top
of a plane wave while ordinary solitons collide on a zero
background. Clearly, SR breather does require plane-wave
background in order to start with MI.

SR breathers are of interest for physics as one of the ways
to observe MI dynamics with localized initial perturbation.
This initial condition is given by the SR solution ¥ (0, 1)
at z=0. Just as in the NLSE case, the initial conditions
for generation of SR breathers are even perturbations in ¢
[Fig. 2(d)]. However, noneven perturbations can also grow
into non symmetric breathers. They are not super-regular in
the same way as in Ref. [16] but strongly related to MI [27].

The new feature of the dynamics in the present case is
the asymmetry accumulated when z is increasing. This asym-
metry is clearly seen when looking at the red dashed curve
in Fig. 2(d). This asymmetry is absent in the SR breather
evolution of the standard NLSE [16-18]. Here the symmet-
ric initial condition evolves into a pair of quasi-ABs with
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FIG. 3. The results of numerical simulations of the SR breather
propagation that starts from (a) exact initial conditions and (b) ap-
proximate ones (23) [here p = 0.15, « and y are given by Egs. (21)
and (22), respectively]. Panel (c) shows the amplitude profiles at
z = 0 for simulations shown in (a) and (b). Panel (d) shows the
amplitude profiles at the values of z located in the middle of red
ellipses in (a) and (b) where the amplitudes of the wave fields are
maximal. The green lines in (a) and (b) are positioned to show the
group velocities of the two breathers, given by Eq. (19). Parameters
of simulations are the same as in Fig. 2.

different wave profiles. This case clearly shows the influence
of the self-steepening phenomenon on the wave propagation.

An explicit expression for the initial condition (0, ¢) in
the CLLE (1) is complicated and is not given here. Being
complicated, it can still be used as initial condition in numer-
ical simulations. Another possibility is to use approximations
which are relatively close to the exact expression. As another
advantage, simple approximate initial conditions can be used
for experimental observations. In order to demonstrate this
possibility, we have solved the CLLE numerically using the
split-step Fourier method. As the initial condition, we used
the following approximation:

¥ = [a+ p sech(2y1)cos (2«1)]e”, (23)

where p is a small perturbation amplitude (p < 1). We take
it to be real in order to fit the exact initial condition [see
Fig. 3(c)]. This is different from the NLSE case, where the SR
breather starts with an initial condition in purely imaginary
form [16]. Besides, real values are easier to implement in
experiments [54]. For comparison, we made similar numerical
simulations starting with the exact initial conditions given
by the SR breather solution (0, ¢) at z = 0. We accurately
approximated the frequency 2« and the width 2y of the
perturbation in Eq. (23) to the values given by the exact
solution.

Figure 3 shows the results of numerical simulations that
started with the exact initial conditions [Fig. 3(a)] as well
as the nonideal initial condition, Eq. (23) [Fig. 3(b)]. Re-
markably, SR breathers are well reproduced in each case.
Moreover, SR breathers propagate with the group velocities
that coincide with the exact results given by Eq. (19). Despite

the more complex oscillating structure of the MI pattern in the
case of nonideal initial conditions (23), the structures along
the edges of the triangle given by the group velocities are
roughly the same in the two cases. This can be clearly seen
from Fig. 3(d), where the edges of the two profiles shown in
red and blue curves nearly overlap. Deviation from the exact
initial conditions causes the appearance of additional peaks
inside the triangular area.

IV. SR BREATHERS AND MODULATION INSTABILITY

Akhmediev breathers are tightly related to modulation
instability [47]. As a consequence, the SR breathers also de-
scribe developed stage of MI although this connection is not as
simple as in a single breather case [47]. Such a connection has
been partially analyzed for the infinite NLSE hierarchy [22]
as well as for the coupled NLSE-Maxwell-Bloch model [23].
Here we make one more step forward toward understanding
this issue.

For an elementary SR breather formed by a pair of quasi-
ABs with initial frequencies 2«, the common MI growth rate
is given by

G = |ga® sin 2a|.

However, this MI growth rate is not the same as the growth
rate along z provided by each quasi-AB 2y |V,;|. This implies
that there is a new physics in the process of the MI growth
driven by the SR breathers. In order to see this, we define
the absolute value of the difference between the two group
velocities:

2 1 2
AV, = |Vy1 — Via| = 2ay/—2q] sina| (%) (24)
r — r

If r =14 ¢, where ¢ < 1, we obtain:

1
AV, = 4a\/—2q| Sinoc|( ) (25)
r—1/r
Comparing the expressions for G and AVg, we have
G =yAV,, (26)

where y is the parameter defined in the expression for breather
solution (13).

Equation (26) clearly demonstrates the MI nature of the
SR breathers. Namely, the MI growth rate of the SR breather
coincides with the absolute value of the difference of group
velocities.

The relation (26) is a remarkable result of physical signif-
icance. It holds not only for the infinite NLSE hierarchy [22]
and the coupled NLSE-Maxwell-Bloch model [23] but also
for the nonlinear model with a self-steepening described by
the WKI system.

In the particular case of V, = —V,, we obtain G =
2y Vgl = 2y|Vg| (namely, the growth rate of each quasi-AB
is the same as that for the SR breather). We note that this
particular relation can be obtained using simple physical argu-
ments related to MI growth [26]. Formal asymptotic analysis
[27] also confirms it. As we can see, it is valid for a wider
class of localized perturbations.
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V. CONCLUSION

In conclusion, we studied SR breathers in a nonlinear sys-
tem governed by the CLLE with the term that explicitly takes
into account the self-steepening effect on ultrashort pulses.
We have shown that these solutions are tightly related to the
modulation instability affected by the asymmetric evolution
caused by the self-steepening effect. These phenomena have
been shown both using the exact solutions and numerical
simulations. Asymmetry appears in the evolution dynamics
even when it is started with the symmetric initial conditions.

Despite this symmetry breaking, the corresponding MI na-
ture of evolution is confirmed by showing that the MI growth
rate driven by the SR breather coincides with the absolute
value of the difference of group velocities. Our results provide
a route to the experimental verification of symmetry-broken
MI dynamics in nonlinear systems with self-steepening, such
as in optical frequency-doubling crystals and in magnetized
plasmas.
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APPENDIX A: FUNDAMENTAL (FIRST-ORDER)
BREATHER SOLUTIONS

As follows from Eq. (10), the quadratic spectral parameter
corresponding to the fundamental (first-order) breather solu-
tion is

1

1
A= ij—: <$1 + S—l>\/ —2q— Z(az +2q),

where & = rie’®. The corresponding eigenfunctions (R;, S1)
of the Lax pair (6) are

Ry = [(B1 + fi)e" +iarje ¥e? (A1)
Sy =[(B1 + fi)e ™™ + iareX]e” 7, (A2)
where B; = B(A]), fi = f(A]), and

16,
x1 =1 — p12) + TR (A3)

with 7y = ify, and p; = p(A?).
The fundamental breather solution can be obtained through
a Darboux transformation [37]. Namely,

YoalSiP 4 AR

" 2i(AF = AF)R, St
T MIRIP RIS

MR 4TS

(A4)

where * denotes the complex conjugate, A| = , /X%. The sim-

plified form of Eq.(A4) is given by Eq. (13).

APPENDIX B: SECOND-ORDER BREATHER SOLUTIONS

The exact SR breather solution of the CLLE (1) can be ob-
tained in a second step of a Darboux transformation from the
fundamental breather solution Eq. (A4) or Eq. (13). The tech-
nique for finding the multibreathers has been first developed in
Ref. [46] and applied for the limiting case of the higher-order
Akhmediev-Peregrine rogue waves [7]. Below we present the
general determinant form of the two breather solution. In the
particular case, when ry =r,=1+¢, and o) = —op, = «,
the solution describes the SR breather dynamics presented in
Sec. IV.

The second quadratic spectral parameter involved in the
solution is

1

.4 1 io
a = 11(52 + §—2>\/—26] - Z(az +2q), & =ne”.

The corresponding eigenfunctions (R;, S,) of the Lax pair (6)
are

Ry = [(Ba + fr)e® + iakye e, (B1)
Sy =[(Ba+ fr)e @ + iarse®*]e™ 7, (B2)

where p, = $(33). f» = f(33), and

i0,

> (B3)

X2 = 0ot — p2z) +

with 7, = if; and p, = p(k%). Then the two-breather solution
can be written in the following determinant form:

Y= L(%911 —2iQ), (B4)
Q0
where

MR AT S MRS
—()PST GDPRY —ATST R

Q) = W3Ry 328, R S (B5)
—037S; 03°R; 1S RS
A3 8 MR MS R
—GD R GPST —ATRT ST

@ = 238, MR, AS Ry (B6)
—(3P R (A)S; MRS
ARy AR MS R
(DPSE P ST —ATRY ST

Qp = Ry 2Ry S Rl (B7)
DSy (3PS5 ARy S

The solution (B4) is general and allows us to consider the
case of parallel breathers [14,55]. The condition for this is
Ve = V.
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