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Analytical representation of Gaussian processes in the A-T plane
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Closed-form expressions, parametrized by the Hurst exponent H and the length n of a time series, are derived
for paths of fractional Brownian motion (fBm) and fractional Gaussian noise (fGn) in the A-T plane, composed
of the fraction of turning points T and the Abbe value A. The exact formula for AfBm is expressed via Riemann
ζ and Hurwitz ζ functions. A very accurate approximation, yielding a simple exponential form, is obtained.
Finite-size effects, introduced by the deviation of fGn’s variance from unity, and asymptotic cases are discussed.
Expressions for T for fBm, fGn, and differentiated fGn are also presented. The same methodology, valid for any
Gaussian process, is applied to autoregressive moving average processes, for which regions of availability of the
A-T plane are derived and given in analytic form. Locations in the A-T plane of some real-world examples as
well as generated data are discussed for illustration.
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I. INTRODUCTION

The characterization and classification of time series [1–4]
is an important task in a variety of fields. Several methods
have been developed for tasks such as detecting chaos [5],
measuring complexity via entropies [6–8], estimating the
Hurst exponent [9–11], distinguishing chaotic from stochastic
processes based on graph theory [12], and more. A connection
between chaos and long-range dependence was also estab-
lished for low-dimensional chaotic maps [13].

The A-T plane [14], spanned by the fraction of turning
points T and the Abbe value A, was initially introduced to
provide a fast and simple estimate of the Hurst exponent H ,
as tight relations of both A and T with H were discovered for
fractional Brownian motion (fBm), fractional Gaussian noise
(fGn), and differentiated fGn (DfGn). While A(H ) and T (H )
strongly overlap for H ∈ (0, 1) for different processes, in the
joint space (A, T ) the fBm and fGn intersect only at the point
corresponding to white noise, i.e., (1, 2/3). A few real-world
data sets [monthly mean of the sunspot number (SSN), stock
market indices, chaotic time series from the Lorenz system
and the Chirikov map] were shown to lie firmly on the fBm
branch. Moreover, the estimates of H based on the empirical
relation A(H ) and computed using a wavelet method [15,16]
were consistent with each other.

The discriminative power of the A-T plane was demon-
strated in a multiscale scheme [17] by employing coarse-
grained sequences, i.e., dividing the time series into nonover-
lapping segments of length τ and calculating the mean in
each segment. This produces smoothed sequences, and the
evolution of A and T with varying temporal scale τ allowed
to separate (i) developed, emerging, and frontier stock mar-
kets; (ii) healthy and epileptic patients based on their EEG
recordings—moreover, for the first time, as far as we know,
it was possible to distinguish healthy patients with closed and
open eyes; and (iii) patients with and without cardiac diseases
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based on the heart rate variabilty. Finally, it is also possible to
differentiate between chaotic and stochastic processes based
on the different behavior of paths, parametrized by τ , in the
A-T plane [18]. The A-T plane is therefore a powerful tool
with several possible applications.

The aim of this paper is to derive analytical descriptions
of fBm and fGn, as well as autoregressive moving average
(ARMA) processes, in the A-T plane. In Sec. II the known
facts about turning points are recapitulated. In Sec. III the
exact and approximated expressions for A are derived, for the
first time, for fBm and fGn. Their A-T plane’s representation
is depicted in Sec. IV. ARMA processes are discussed in
Sec. V. Various applications, ranging from pure mathematics
to biology and astrophysics to financial markets, are briefly
outlined in Sec. VI. Summary and concluding remarks with
future prospects are gathered in Sec. VII.

II. FRACTION OF TURNING POINTS, T

A. Theory

Consider three values xt , xt+d , xt+2d of a time series {xt }.
For d = 1 the points are consecutive. Assume there are no
ties between the neighboring points, which for continuous
processes, or empirical data with decent resolution, should
not be an issue (see also Refs. [19,20]). Three points can be
arranged in six ways, identified by an order pattern πp (Fig. 1).
If the smallest value among the three is given an index 1 and
the largest an index 3, then, e.g., the relation for one of the
four possible turning points, xt < xt+2d < xt+d , is described
by a pattern πp = 132. Denote the probability of encountering
a pattern πp by pπp . Then the following theorem holds [21]:

Theorem 1. For a Gaussian process Xt with stationary
increments, p123 = p321 = α/2, and the other patterns yield
probability (1 − α)/4.

The probability p123(d ) for a given delay d is given by

p123(d ) = 1

π
arcsin

√
1 + ρ(d )

2
, (1)
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FIG. 1. Order patterns for three points.

where the correlation coefficient is

ρ(d ) = E [(Xd − X0)(X2d − Xd )]

E [(Xd − X0)2]
. (2)

The probability T of encountering a turning point among
three consecutive points (i.e., for d = 1, the case considered
hereinafter), as per Theorem 1, is then

T = 1 − 2p123(1). (3)

Note that T ∈ [0, 1]: Zero is attained by monotonic se-
quences, while unity is (asymptotically) achieved for strictly
alternating time series. For an uncorrelated process all patterns
are equally probable, hence T = 2/3. Further details on order
patterns can be found in Ref. [21].

B. T for fBm, fGn, and DfGn

With the following properties of fBm B(t ), fGn G(t ), and
DfGn Y (t ), one can utilize the methodology from Sec. II A to
calculate T for them as a function of H :

E [B2(t )] = t2H , (4a)

E [B(t )B(s)] = 1
2 (t2H + s2H − |t − s|2H ), (4b)

E [G2(t )] = 1, (4c)

E [G(t )G(s)] = 1
2 (|t − s − 1|2H + |t − s + 1|2H )

− |t − s|2H , (4d)

E [Y 2(t )] = 4 − 4H , (4e)

E [Y (t )Y (s)] = −3|t − s|2H

+ 2(|t − s − 1|2H + |t − s + 1|2H )

− 1
2 (|t − s − 2|2H + |t − s + 2|2H ). (4f)

Equations (4c) and (4d) can be obtained from Eqs. (4a)
and (4b) by substituting G(t ) = B(t + 1) − B(t ); likewise,
Eqs. (4e) and (4f) follow from Eqs. (4c) and (4d) by using
Y (t ) = G(t + 1) − G(t ) [22].

For fBm, one has

TfBm = 1 − 2

π
arcsin(2H−1), (5)

which is roughly equal to 2
3

T
μT

from Ref. [14], where T is the
number of turning points in a time series of length n [2,23]
and μT = 2

3 (n − 2) is the expected value for white noise [24].
In general, E [T ] = (n − 2)T . The plot of Eq. (5) is shown
in Fig. 2, together with data simulated as in Ref. [14] (scaled
herein from T/μT to T ). For an fGn:

TfGn = 1 − 2

π
arcsin

⎛
⎝1

2

√
32H − 22H+1 − 1

22H − 4

⎞
⎠, (6)

FIG. 2. Fraction of turning points T for fBm, fGn, and DfGn (red
lines). The simulations were performed for n = 214 (black points).
The dispersion in case of fBm increases for H � 0.8 (see Ref. [25]
for an approximate treatment of the variance of T ).

and for the increments of fGn, i.e., DfGn:

TDfGn = 1 − 2

π
arcsin

⎡
⎣1

2

√
(22H + 2)2 − (2 × 3H )2

32H − 3 × 22H+1 + 15

⎤
⎦, (7)

both of which are also shown in Fig. 2.

III. ABBE VALUE, A

The Abbe value of a time series {xi}n
i=1 is defined as half the

ratio of the mean-square successive difference to the variance
[14,26–29]:

A =
1

n−1

∑n−1
i=1 (xi+1 − xi )2

2
n

∑n
i=1 (xi − x̄)2 . (8)

It quantifies the smoothness (raggedness) of a time series by
comparing the sum of the squared differences between two
successive measurements with the variance of the whole time
series. It decreases to zero for time series displaying a high
degree of smoothness, while the normalization factor ensures
that A tends to unity for a white-noise process [30]. It was pro-
posed as a test for randomness [31–33]. It is straightforward to
show that for a 2-periodic time series, {a, b, a, b, . . .}, A = 2,
while for a 3-periodic one, {a, b, c, a, b, c, . . .}, A = 3/2.

Consider {xi}n
i=1 to be a realization of length n of an fBm,

BH
n , with Hurst exponent H . Thence, its increments {gi}n−1

i=1 ≡
{xi+1 − xi}n−1

i=1 form an fGn, GH
n−1, with the same H . One can

then express A as

AfBm(H, n) = 1

2

var
(
GH

n−1

)
var

(
BH

n

) , (9)
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FIG. 3. Deviation of var(GH
n ) from unity.

where the dependence on H and n is highlighted. Similarly,
for an fGn

AfGn(H, n) = 1

2

var
(
Y H

n−1

)
var

(
GH

n

) , (10)

where Y H
n−1 is the corresponding DfGn, i.e., the increments

of fGn, {yi}n−1
i=1 ≡ {gi+1 − gi}n−1

i=1 . The goal is to calculate the
variances of BH

n , GH
n , and Y H

n .

A. Variance of fGn

We start with var(GH
n ) since it occurs in both Eqs. (9) and

(10). The same methodology that was used in Ref. [34] to
calculate var(BH

n ) is employed, i.e.,

var
(
GH

n

) = n

n − 1
E
[(

GH
n − E

[
GH

n

])2]

= 1

n − 1
E

⎡
⎣n−1∑

j=0

(
Gj −

∑n−1
k=0 Gk

n

)2
⎤
⎦. (11)

Developing the sum for a few values of n, and utilizing the
variance and covariance from Eqs. (4c) and (4d), one can

observe a pattern emerging that leads to a formula:

var
(
GH

n

) = n − n2H−1

n − 1
. (12)

It yields

lim
n→∞ var

(
GH

n

) → 1, (13)

i.e., it asymptotically approaches Eq. (4c). However, for finite
n, limH→1 var(GH

n ) = 0. The plot of Eq. (12) for n = 214 is
shown in Fig. 3. For values H � 0.8 the departure from the
asymptotic value becomes significant.

B. Variance and Abbe value of fBm

The variance of the discrete, finite length BH
n is given in

Ref. [34] as

var
(
BH

n

) = 1

n(n − 1)

n−1∑
i=1

(n − i)i2H . (14)

For H → 0, i2H → 1; then
∑n−1

i=1 (n − i) = n(n−1)
2 , so

var(B0
n ) = 1

2 , hence, per Eq. (9) and given Eq. (12),
AfBm(H = 0, n) = n/(n − 1), i.e., asymptotically approaches
unity.

Using the symbolic computer algebra system MATHEMAT-
ICA one can calculate the sum in Eq. (14) to be [35]

n−1∑
i=1

(n − i)i2H = ζ (−2H − 1, n) − nζ (−2H, n)

+ nζ (−2H ) − ζ (−2H − 1), (15)

where ζ (s) is the Riemann ζ and ζ (s, n) is the Hurwitz ζ [36].
Hence, taking into account Eq. (12), one can give a closed-
form formula:

AfBm(H, n) =
n(n−1)

2 var
(
GH

n−1

)
ζ (−2H − 1, n) − nζ (−2H, n) + nζ (−2H ) − ζ (−2H − 1)

, (16)

which, since ζ (0, n) = 1
2 − n, ζ (−1, n) = 1

2 (− 1
6 + n − n2),

ζ (0) = − 1
2 , and ζ (−1) = − 1

12 , yields AfBm(H = 0, n) =
n/(n − 1).

In order to provide a simpler, approximate expression for
AfBm(H, n), first observe that since at H = 0 and for n � 1
the ratio of the Hurwitz ζ terms and the Riemann ζ terms is
big, i.e.,

ζ (−1, n) − nζ (0, n)

|nζ (0) − ζ (−1)| = −1 + 6n2

|1 − 6n| � 1, (17)

and that for H ∈ (0, 1) this ratio is monotonically increasing
(Fig. 4), therefore

ζ (−2H − 1, n) − nζ (−2H, n)

|nζ (−2H ) − ζ (−2H − 1)| � 1, (18)

hence nζ (−2H ) − ζ (−2H − 1) is a negligible contribution,
so it does not need to be taken into account.

Let us express ζ (s, n) as a globally convergent Newton
series, i.e., utilize the Hasse representation [37]:

ζ (s, n) = 1

s − 1

∞∑
i=0

1

i + 1

i∑
k=0

(−1)k

(
i

k

)
(n + k)1−s, (19)
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FIG. 4. The ratio from Eq. (18) at (a) H = 0 for varying n and
(b) its dependence on H for a set n = 100.
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FIG. 5. A(H, n) for (a) an extremely short (n = 8) fBm time series, for (b) a moderate (n = 100), and (c) a long one (n = 210). The “exact”
line (red) corresponds to Eq. (16), “exact with var(G) = 1” to the same Eq. (16) but with var(GH

n ) = 1, i.e., set to its asymptotic value (blue),
the “approx. with var(G)” denotes Eq. (29) with the expression for var(GH

n ) included (green), and “approx. with var(G) = 1” is the most
simplified form from Eq. (30) (cyan). The lines overlap so strongly that for visualization purposes they are depicted with different thickness.

valid for s �= 1, n > 0. The first term of the outer sum, i.e., for
i = 0 and at s = −2H , is

0∑
k=0

(−1)k

(
0

k

)
(n + k)1+2H = n1+2H . (20)

The second term, i.e., for i = 1, is

1

2

1∑
k=0

(−1)k

(
1

k

)
(n + k)1+2H = 1

2
[n1+2H − (n + 1)1+2H ]

(21)
and similarly for higher i. Therefore, for i = 0 one obtains an
approximation

ζ (−2H, n) ≈ n1+2H

−2H − 1
, (22)

and for i = 1:

ζ (−2H, n) ≈ 1

−2H − 1

[
3

2
n1+2H − 1

2
(n + 1)1+2H

]
, (23)

but since n � 1, (n + 1) ≈ n, so one also obtains

ζ (−2H, n) ≈ n1+2H

−2H − 1
. (24)

For higher i, although given that i 	 n, one has (n +
k) ≈ n, hence yielding the same approximation. Indeed,∑i

k=0 (−1)k ( i
k) is the Kronecker δ, δi0, hence only the i = 0

term survives. For s = −2H − 1 one obtains a similar expres-
sion:

ζ (−2H − 1, n) ≈ n2+2H

−2H − 2
. (25)

Therefore, with these approximations one can write:

ζ (−2H − 1, n) − nζ (−2H, n) ≈ n2+2H

−2H − 2
− nn1+2H

−2H − 1

= n2+2H

2(H + 1)(2H + 1)
, (26)

so that

var
(
BH

n

) ≈ n2+2H

2(H + 1)(2H + 1)n(n − 1)
, (27)

and since (n − 1) ≈ n, one finally obtains

var
(
BH

n

) ≈ n2H

2(H + 1)(2H + 1)
(28)

and

AfBm(H, n) ≈ (H + 1)(2H + 1)n−2H var
(
GH

n−1

)
, (29)

which also yields AfBm(H = 0, n) = n/(n − 1), asymptoti-
cally approaching unity. In case one sets var(GH

n−1) = 1, the
simplest approximation is then obtained as

AfBm(H, n) ≈ (H + 1)(2H + 1)n−2H . (30)

These various approximations of AfBm(H, n) are shown in
Fig. 5. For an unreasonably small n = 8 one sees discrepan-
cies between the curves for low and moderate H , although
they are rather small. The finite-size effects, introduced by
var(GH

n ) from Eq. (12), are significant at higher values of
H . For a moderate n = 100, the curves are indistinguishable

TABLE I. Expressions for var(Y H
n ) for first few n, and the

resulting general formula.

n n(n − 1)var(Y H
n )

2 2 × 7 −22 × 22H +12H −2 × 22H +32H

3 2 × 17 −32 × 22H +22H −2 × 32H +42H

4 2 × 31 −42 × 22H +32H −2 × 42H +52H

5 2 × 49 −52 × 22H +42H −2 × 52H +62H

6 2 × 71 −62 × 22H +52H −2 × 62H +72H

7 2 × 97 −72 × 22H +62H −2 × 72H +82H

8 2 × 127 −82 × 22H +72H −2 × 82H +92H

9 2 × 161 −92 × 22H +82H −2 × 92H +102H

10 2 × 199 −102 × 22H +92H −2 × 102H +112H

2(2n2 − 1) −n2 × 22H +(n − 1)2H −2n2H +(n + 1)2H

062144-4
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for most of the range of H , with the region of significant
influence of var(GH

n ) moved systematically to higher H , and
for even longer time series (e.g., n = 210) the consistency of
all curves is only strengthened. Therefore, the approximation
from Eq. (30) is a decent one for time series with any reason-
able length.

C. Variance of DfGn and Abbe value of fGn

To obtain an expression for var(Y H
n ) the same methodology

from Sec. III A is undertaken, i.e., Eq. (11) with G changed to
Y is employed. Again, developing the sum for a few values
of n, and utilizing the variance and covariance from Eq. (4e)
and Eq. (4f), one can observe the pattern depicted in Table I.

Hence one can write

var
(
Y H

n

) = 2(2n2 − 1) − n222H + (n − 1)2H − 2n2H + (n + 1)2H

n(n − 1)
. (31)

The exact expression for the Abbe value, taking into account Eq. (12), is thence

AfGn(H, n) = n2H + (n − 2)2H + n(n − 2)(4 − 4H ) − 2(n − 1)2H + 2 − 22H

2(n − 2)(n − n2H−1)
. (32)

In the limit n → ∞, i.e., for any reasonable n � 1,
Eq. (31) becomes

var
(
Y H

n

) ≈ 4 − 4H , (33)

i.e., it asymptotically approaches Eq. (4e). Plots of Eq. (31)
and (33) are shown in Fig. 6. For very short time series there
is a certain deviation between the expressions, but for higher n
the difference is invisible. Therefore, the asymptotic Eq. (33)
is adequate in any practical scenario.

The Abbe value is thence

AfGn(H, n) ≈ 2 − 22H−1

var
(
GH

n

) . (34)

As discussed in Sec. III A, the variance of GH
n can in some

instances be approximated by unity. Equation (34) simplifies
then to just

AfGn(H, n) ≈ 2 − 22H−1, (35)

independent on the length n of the time series.
The asymptotic Eq. (35) ranges from 0 to 3/2 when H

decreases from 1 to 0. The expression from Eq. (34) reaches
its maximum of 3

2
n

n+1 at H = 0. The asymptotic minimum, as
H → 1, is n−1

n
ln 4
ln n = n−1

n logn 4. For n = 214, these values are
1.49991 and 0.14285, respectively, in perfect agreement with
Fig. 3 in Ref. [14].

FIG. 6. var(Y H
n ) for (a) a very short (n = 32) time series, and

(b) for a long one, n = 214. The “exact” line (black) is for Eq. (31),
and the “approx.” line (red) denotes Eq. (33).

IV. REPRESENTATION OF fBm AND fGn IN THE
A-T PLANE

The A-T plane is displayed in Fig. 7. The black points
come from simulations [14]. In case of fBm [Figs. 7(a) and
7(b)], the red line employs the exact formula for AfBm from
Eq. (16), while the cyan line depicts the approximation from
Eq. (30). Equation (5) describes TfBm.

In the case of fGn [Figs. 7(c) and 7(d)], the red line
corresponds to the exact Eq. (32) for AfGn, while the cyan line
to the asymptotic form from Eq. (35). Equation (6) describes
TfGn. Figures 7(b) and 7(d) employ a logarithmic horizontal
axis to fully display the dependence T (A) at small values of
A (i.e., high values of H). The agreement between numerical
simulations and the analytic description is very good; also the
approximations for AfGn(H, n) work well in the A-T plane.
In particular, the approximation from Eq. (34) for fGn is as
good as the exact Eq. (32).

V. ARMA PROCESSES

The methodology from Secs. II and III is applicable also to
ARMA processes. Generalizing Eq. (8), similarly as was done
in Eqs. (9) and (10), the Abbe value of a process X is

A = 1

2

var(dX )

var(X )
, (36)

where dX denotes the increments of X . The fraction of turning
points is given by Eqs. (1)–(3). It will be convenient to
express ρ(d ) in terms of the autocorrelation function ρd =
E [X (t )X (t + d )]:

ρ(d ) = 2ρd − 1 − ρ2d

2(1 − ρd )
, (37)

so that Eq. (1) becomes

p123(d ) = 1

π
arcsin

(
1

2

√
1 − ρ2d

1 − ρd

)
. (38)

This formula can be directly applied also to fGn and DfGn but
not to fBm which is nonstationary.

For ARMA processes, ρd and var(X ) are easily obtainable
[2,3]. The variance of the differentiated process, var(dX ), is
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FIG. 7. The A-T plane for n = 214: [(a) and (b)] fBm and [(c) and (d)] fGn. The red lines utilize the exact expressions for A [i.e., Eq. (16)
and (32)] and cyan ones use the approximations [Eq. (30) for fBm and the asymptotic Eq. (35) for fGn]. Equations (5) and (6) describe TfBm

and TfGn, respectively. The horizontal and vertical dashed lines mark T = 2/3 and A = 1, respectively. Panels (b) and (d) display the same as
(a) and (c) but with a logarithmic horizontal axis. The discrepancies in (b) at very low A are due to the deviation of var(GH

n ) from unity when
H tends to 1.

calculated as

var(dX (t )) = E [dX 2(t )]

= E [(X (t + 1) − X (t ))2]

= E [X 2(t + 1)] + E [X 2(t )]

− 2E [X (t + 1)X (t )]. (39)

A. AR(1)

Consider a weakly stationary process Xt = a1Xt−1 + εt ,
−1 < a1 < 1, where εt is a white-noise error term. Then

ρd = ad
1 (40)

for all d , thus

T = 1 − 2

π
arcsin

(
1

2

√
1 + a1

)
, (41)

reaching its minimum of 1/2 when a1 → 1, and its maximum
of 1 when a1 → −1.

One then obtains

var(X ) = 1

1 − a2
1

(42)

and

var(dX ) = 2

1 + a1
, (43)

and thus

A = 1 − a1, (44)

reaching its minimum of 0 when a1 → 1 and maximum of 2
when a1 → −1. One can then write T explicitly as a function
of A:

T = 1 − 2

π
arcsin

(
1

2

√
2 − A

)
, (45)

which is displayed in Fig. 8. The Ornstein-Uhlenbeck (OU)
process, a continuous analog of AR(1), yields the same
Eq. (45) but restricted to A ∈ [0, 1] (see Appendix).

B. AR(2)

Consider a weakly stationary process Xt = a1Xt−1 +
+a2Xt−2 + εt , −1 < a2 < 1 ∧ a2 < 1 + a1 ∧ a2 < 1 − a1.
Then ρd is given by a recurrent relation (the Yule-Walker
equations):

ρd =
⎧⎨
⎩

1 d = 0
a1

1−a2
d = 1

a1ρd−1 + a2ρd−2 d � 2
, (46)

thus

T = 1 − 2

π
arcsin

(
1

2

√
1 + a1 − a2

)
, (47)

reaching its minimum of 0 when a1 → 2, a2 → −1, and its
maximum of 1 along the line a2 = a1 + 1.

One then obtains

var(X ) = 1 − a2

(a2 + 1)(a2 − a1 − 1)(a2 + a1 − 1)
(48)
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FIG. 8. (a) Regions of the A-T plane available for ARMA
processes: AR(1) (red line), MA(1) (blue line), MA(2) (darker gray
region), AR(2) (light blue in the background), and ARMA(1,1)
(lighter gray region). The black dotted line in the range A ∈ (0, 1)
is Eq. (70) for ARMA(1,1) with b1 = 1, and the black dashed line
in A ∈ (1, 2) is Eq. (69) for ARMA(1,1) with b1 = −1. These
two lines mark the lower boundary of the region of availability
for the ARMA(1,1) process. The yellow dot at (1, 2/3) denotes
white noise. In the other panels, these regions are shown together
with locations of 103 simulated processes: (b) AR(1), (c) MA(1),
(d) AR(2), (e) MA(2), and (f) ARMA(1,1). In the simulations, the
AR coefficients were drawn uniformly from the respective regions
fulfilling the stationarity conditions, and the MA coefficients were
drawn uniformly from (−1, 1). Note the varying density of points in
the regions of availability.

and

var(dX ) = 2

1 + a1 + a1a2 − a2
2

, (49)

thus

A = 1 + a1

a2 − 1
, (50)

reaching its minimum of 0 along the line a2 = 1 − a1 and
maximum of 2 along the line a2 = 1 + a1. One cannot write T
explicitly as a function of A, as (A, T ) is a two-dimensional
region, depicted in Fig. 8. However, it is possible to give a
simple formula for the boundaries of this region. Note that
for a given a1, T is minimal when a2 → −1. Hence by
setting a2 = −1, one can then solve Eq. (50) for a1, i.e., write
a1 = 2(1 − A), and insert this into Eq. (47) to obtain the lower
boundary as

T (A)lower boundary = 2

π
arcsin

(√
A
2

)
. (51)

The upper boundary, T = 1, is attained when a2 → 1, and
from the left the region is a vertical line A = 0, obtained by
sweeping a2 from −1 to 1.

Notice that AR(1) is a special case of AR(2) with a2 = 0.
One can then observe, by repeating the above reasoning for an
arbitrary a2, that the region of availability, SAR(2), is formed as
a continuum of curves parametrized by a2:

SAR(2) = {T (A)|a2}

=
{

1 − 2

π
arcsin

[
1

2

√
(A − 2)(a2 − 1)

]∣∣∣∣
− 1 < a2 < 1

}
, (52)

reducing to Eq. (51) when a2 → −1.

C. MA(1)

Consider Xt = b1εt−1 + εt weakly stationary for all b1 ∈
R. The autocorrelation function is

ρd =
⎧⎨
⎩

1 d = 0
b1

1+b2
1

d = 1

0 otherwise
, (53)

thus

T = 1 − 2

π
arcsin

(
1

2

√
1 + b2

1

1 − b1 + b2
1

)
, (54)

reaching its minimum of 1/2 at b1 = 1 and its maximum of
(2/π ) arcsec

√
6 ≈ 0.73 at b1 = −1.

One then obtains

var(X ) = 1 + b2
1 (55)

and

var(dX ) = 2[1 + b1(b1 − 1)], (56)

thus

A = 1 − b1 + b2
1

1 + b2
1

, (57)

reaching its minimum of 1/2 at b1 = 1 and maximum of 3/2
at b1 = −1. One can then write T explicitly as a function
of A:

T = 1 − 2

π
arcsin

(
1

2
√
A

)
, (58)

which is displayed in Fig. 8.
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D. MA(2)

Consider Xt = b1εt−1 + b2εt−2 + εt weakly stationary for
all b1, b2 ∈ R, for which

ρd =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 d = 0
b1(1+b2 )
1+b2

1+b2
2

d = 1
b2

1+b2
1+b2

2
d = 2

0 otherwise

, (59)

thus

T = 1 − 2

π
arcsin

[
1

2

√
1 + b2

1 + b2(b2 − 1)

1 + b2
1 + b2

2 − b1(b2 + 1)

]
, (60)

reaching its minimum of 2/5 at b1 = 1
2 (1 + √

5), b2 = 1, and

its maximum of 4/5 at b1 = 1
2 (1 − √

5), b2 = 1.
One then obtains

var(X ) = 1 + b2
1 + b2

2 (61)

and

var(dX ) = 2
[
1 + b2

1 + b2
2 − b1(b2 + 1)

]
, (62)

thus

A = 1 − b1(b2 + 1)

1 + b2
1 + b2

2

, (63)

reaching its minimum of 1 − 1/
√

2 at b1 = √
2, b2 = 1, and

maximum of 1 + 1/
√

2 at b1 = −√
2, b2 = 1. One cannot

write T explicitly as a function of A, as (A, T ) is a two-
dimensional region, depicted in Fig. 8.

E. ARMA(1,1)

Consider Xt = a1Xt−1 + b1εt−1 + εt , weakly stationary for
−1 < a1 < 1 and all b1 ∈ R, for which

ρd =
{

1 d = 0
ad−1

1 (a1+b1 )(a1b1+1)
1+2a1b1+b2

1
otherwise

, (64)

thus

T = 1 − 2

π
arcsin

⎡
⎣1

2

√
(1 + a1)

(
1 + a1b1 + b2

1

)
1 + b1(a1 + b1 − 1)

⎤
⎦, (65)

reaching its minimum of 1/3 when a1 → 1, b1 = 1, and its
maximum of 1 when a1 → −1, along the line b1 ∈ R.

One then obtains

var(X ) = 1 + 2a1b1 + b2
1

1 − a2
1

(66)

and

var(dX ) = 2
1 + b1(a1 + b1 − 1)

a1 + 1
, (67)

thus

A = 1 − a1 + b1
(
a2

1 − 1
)

1 + 2a1b1 + b2
1

, (68)

reaching its minimum of 0 when a1 → 1, along the line b1 ∈
R, and maximum of 2 when a1 → −1, along the line b1 ∈ R.

One cannot write T explicitly as a function of A, as (A, T ) is
a two-dimensional region, depicted in Fig. 8.

Note that Eqs. (65) and (68) are invariant on changing b1

to 1/b1, so that in the context of geometrical depiction of
the region of availability only the range −1 � b1 � 1 needs
to be considered. Roughly speaking, cases with |b1| � 1
are equivalent to |b1| 	 1. However, b1 = ±1 are special
instances:

(i) when b1 = −1, Eq. (68) yields a1 = 3 − 2A, which
fulfills the stationarity condition, a1 ∈ (−1, 1), only for A ∈
(1, 2). In this range:

T (b1 = −1) = 1 − 2

π
arcsin

(
1

2

√
5 − 2

A − 2A
)

; (69)

(ii) likewise, when b1 = 1, one obtains a1 = 1 − 2A,
which leads to A ∈ (0, 1), giving:

T (b1 = 1) = 1 − 2

π
arcsin

(
1

2

√
3 − 2A

)
. (70)

In particular, b1 = 0 reduces an ARMA(1,1) process to an
AR(1) one, reproducing respective formulas from Sec. V A.

Similarly as was done in Sec. V B for AR(2) processes,
the region of availabity for ARMA(1,1) can be described as a
continuum of curves, SARMA(1,1) = {T (A)|b1}, parametrized
by b1: One needs to solve Eq. (68) for a1 and insert the
solution into Eq. (65). The resulting formula, easy to derive
but of a quite complicated and noninformative form, is not
displayed herein.

VI. APPLICATIONS

A. Bacterial cytoplasm

The two-dimensional motion [x(t ), y(t )] of individual
mRNA molecules inside live Escherichia coli bacteria were
tracked in Ref. [38]. It was found that they follow anomalous
diffusion, with H < 0.5, confirmed by other methods as well
[39]. Herein, the time series x and y are treated separately.
Results for the 27 tracks are displayed in Fig. 9 for the x
axis. Similar outcomes were obtained for the y axis. The

FIG. 9. (a) Locations in the A-T plane of the 27 tracks of x-axis
motion of mRNA molecules inside E. coli. The red lines are the
fBm lines, corresponding to the length of time series 140 � n �
1628. Lower curves correspond to lower n. (b) Estimated H values,
obtained from the formulas for A and T , i.e., Eq. (30) and (5),
respectively. In both panels, the size of the point is proportional to
n. The gray crosses symbolize the (unweighted) means and standard
deviations of the displayed locations.
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FIG. 10. Locations of some real-world and generated time series.
The black lines correspond to fBm and fGn with n = 214. See text for
details.

locations in the A-T plane are in agreement with an fBm
description, and the values extracted using Eq. (5) and (30),
yielding 0.2 � H � 0.5, are consistent with each other and
confirm that the observed process is indeed subdiffusive.

B. Zeros of the Riemann ζ

The first 106 + 1 nontrivial zeros, 1
2 + iγn, of the Riemann

ζ function [40] were retrieved [41]. Normalized spacings
between consecutive zeros were computed as [42]

δn = γn+1 − γn

2π
ln
( γn

2π

)
. (71)

The location of this sequence in the A-T plane is
(1.350,0.709). This is remarkably close to the fGn line
(Fig. 10), and Eq. (6) and (35) give H = 0.19. In comparison,
the discrete wavelet transform (DWT) method [14] returns
H = 0.06, hence also strongly implying H < 0.5. However,
as the distribution of δn is not normal but rather follows
the distribution of the Gaussian unitary ensemble (GUE)
according to the GUE hypothesis [43], this sequence is not
a Gaussian process, strictly speaking. Note, however, that a
location in the A-T plane can be computed for any type of
data; in this case, due to A > 1 and T > 2/3, one gets a clear
information that the series is—in a sense—(much) more noisy
than regular white noise.

C. Sunspot numbers

The curently available from the World Data Center Sunspot
Index and Long-term Solar Observations [44] sample of 3250
monthly SSN are described by H = 0.3, as computed with
the DWT approach [45]. The location in the A-T plane is
(0.082, 0.586), Fig. 10, and Eq. (5) and (30) give H ≈ 0.18 −
0.27. This is in agreement with some works [46] that also
compute H < 0.5. Note that the SSN sequence is slightly off
the fBm line, hence it not necessarily need to be adequately
modeled by an fBm process. The SSN is a straightforward
way of monitoring the Sun’s activity, and since the sunspots
are tightly connected with the magnetic fields governing solar
flares and coronal mass ejections, its proper modeling is
crucial in forecasting the space weather conditions.
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FIG. 11. Relations between A, T , r, and mLE for the logistic map.

D. Chaos

The Chirikov standard map for a chaotic state (in an
unbounded setting) was examined in Ref. [14]. Its location
in the A-T plane is (0.0002, 0.482) and lies directly on
the fBm line, Fig. 10, and Eq. (5) and (30) give H ≈ 0.5,
which is in perfect agreement with the estimate with DWT
method, yielding H = 0.48. This means that, in the context of
long-term memory, it is uncorrelated and acts like Brownian
motion.

To further illustrate chaotic behavior in the A-T plane,
the logistic map xi+1 = rxi(1 − xi ) is considered. For r ∈
[3.4, 4.0], with a step 
r = 0.002, time series of length n =
104 were generated and their (A, T ) locations, as well as
the maximal Lyapunov exponents (mLEs), were computed.
The dependencies of A and T on r, the bifurcation diagram,
the A-T plane, and the relation between A and mLE are
shown in Fig. 11. When chaos is most developed (r = 4), the
trajectories approach the point (A, T ) = (1, 2/3), identical
for white noise [Fig. 11(d)]. Hints that fully developed chaos
behaves this way were noted in case of the Lorenz system
[14,17]. With increasing r, a gradual decrease in T occurs,
with wells in periodic windows [Fig. 11(b)]. Note that T =
1 up to r � 3.7, because apparently the orbits, even when
chaotic, are strictly alternating. A is more sensitive to changes
in dynamics, as A = 2 for period-2 orbits (see the beginning
of Sec. III) before the bifurcation at r = 1 + √

6 ≈ 3.45 and
then systematically decreases in the period-4 window before
the next bifurcation at r ≈ 3.54 [Fig. 11(a)]. There are also
shallow wells at periodic windows within the chaotic zone.
The path in the A-T plane is jagged, and various changes in
dynamics are manifested, corresponding to changes in mLEs
[Fig. 11(e)] and in the bifurcation diagram [Fig. 11(c)].

A tight, positive correlation between mLE and H for the
Chirikov map was discovered [13] (see also Ref. [47]). Dif-
ferences between (quasi)periodic and chaotic systems were
observed in the coarse-grained sequences in the A-T plane in
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FIG. 12. Time evolution of the WIG. The green dot marks the
start point, and the red dot denotes the end point. Note the scale of
the horizontal axis. See text for details.

case of a sinusoidally driven thermostat [18]. These connec-
tions between chaos, H , and the A-T plane are nontrivial and
require further research. Describing a universal (if existent)
behavior of chaotic systems in the A-T plane in an interesting
perspective. The possibility of differentiating between chaotic
and stochastic time series is a hopefully attainable application.

E. Markets

The efficient market hypothesis [48] is a key concept in
finance. If a market exhibits H �= 0.5, then it might allow ar-
bitrage. A classification of developed, emerging, and frontier
stock markets in the A-T plane was performed in Ref. [17]
and showed that these three categories of markets occupy
distinct regions of the (A, T ) space. Hence, the A-T plane
is a useful tool for classifying data with different underlying
dynamics.

The time evolution of H of many stock markets shows it
is oscillating around H = 0.5 [10]. Similarly, one can investi-
gate how A and T evolve and hence trace their values in the
A-T plane at different times. As an example consider the War-
saw Stock Exchange Index (Warszawski Indeks Giełdowy,
WIG) [49]. Its location in the A-T plane, right on the fBm
line, is depicted in Fig. 10, and the estimates of H , obtained by
solving Eq. (5) and (30) with n = 2166, yield H ≈ 0.49–0.59.
The DWT method returns H = 0.48. The time evolution is
depicted in Fig. 12. It is obtained by partitioning the whole
time series into overlapping segments of size n/2, advancing
each segment by one point. Throughout its history, the WIG
remains confined in a small region of the A-T plane.

F. Active galactic nuclei

A core focus in astronomy is the investigation of apparent
variability of various celestial objects such as asteroids, stars,
or galaxies. Within the latter, of particular interest are active
galactic nuclei (AGNs), further divided into several types [50].
Among them, blazars are peculiar AGNs pointing their rela-
tivistic jets toward the Earth. Blazars are commonly divided
further into two subgroups, i.e., flat spectrum radio quasars
(FSRQs) and BL Lacertae (BL Lac) objects, based on charac-
teristics visible in their optical spectra. In a recent study [51]
it was found that faint FSRQ and BL Lac candidates located
behind the Magellanic Clouds are clearly separated in the
A-T plane, with means of A ≈ 0.3 and A ≈ 0.7, respectively.

This differentiation, based solely on the temporal data in the
form of light curves, is another proof that employing the A-T
plane as a classification tool is a promising approach.

G. Other

The worked-out examples from Sec. VI A–VI F do not
exhaust the possible applications of the A-T plane in regard to
constraining the value of H or classifying time series. Some
other interesting instances include, but are not restricted to,
ferro- and paramagnetic states of the Heisenberg model that
exhibit H ∼ 1 and H ∼ 0.5, respectively [52], and should be
easily distinguishable in the A-T plane; a photonic integrated
circuit yields 0.2 � H � 0.8 for varied electric field of the
feedback, coupled with chaotic behavior [53]; cataclysmic
variable stars observed in x-rays exhibit long-term memory,
H > 0.5, suggesting the accretion is driven by magnetic
fields [54]; football matches can follow the rules of fBm
with H ∼ 0.7 [55]; persistence of amoeboid motion [56] as
well as Nitzschia sp. diatoms [57]; solar wind proton density
fluctuations are characterized by H ∼ 0.8, placing constraints
on the models of kinetic turbulence [58]; values H > 0.5
were computed for epileptic patients’ brain activity, quantified
via magnetoencephalographic recordings, and appear to be a
promising additional diagnostic tool for identifying epilepto-
genic zones in presurgical evaluation [59]. Recall that epilepsy
has been already investigated in the A-T plane as well [17].

VII. SUMMARY AND OPEN QUESTIONS

Exact analytical descriptions for the locations of fBm and
fGn in the A-T plane were derived. Working approximations
were also obtained in the following forms:{

AfBm(H, n) = (H + 1)(2H + 1)n−2H

TfBm(H ) = 1 − 2
π

arcsin(2H−1)
(72)

and ⎧⎨
⎩
AfGn(H ) = 2 − 22H−1

TfGn(H ) = 1 − 2
π

arcsin
(

1
2

√
32H −22H+1−1

22H −4

) (73)

and were demonstrated to be adequate for time series with any
reasonable length n. This allows to classify time series of any
length, respective to fBm and fGn, without relying on time-
consuming numerical simulations. These analyses add to the
theoretical results regarding fBm and fGn [60,61]. The same
methodology was applied to ARMA(p, q) processes. Analytic
descriptions of the available regions of the A-T plane were
derived and illustrated for p + q � 2.

Further research on A is required, as it has been rarely
utilized, with some recent, nonextensive examples in astron-
omy [29,51,62–64] (but see also Ref. [65]). The interrelations
between ordinal patterns, persistence, and chaos [8,66] are
linked even tighter with the bidimensional scheme of the A-T
plane. The presented methodology is valid for any Gaussian
process, but it should be emphasized that the locations (A, T )
can be computed for arbitrary time series, serving, e.g., as
classification or clustering methods for empirical data.

Naturally, a question about A-T representations of other
stochastic processes arises. Examples include the following:
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(i) Representation of colored noise, i.e., power spectral
densities (PSDs) of the form 1/ f β . fBm can be associated
with β ∈ (1, 3), and fGn is characterized by β ∈ (−1, 1).
However, power laws are ubiquituous in nature, hence their
locations in the A-T plane, for any β, is an interesting and
challenging problem.

(ii) In some fields, e.g., in astronomy, the observed signals
often yield PSDs of the form 1/ f β + C, where C is the so-
called Poisson noise level, coming from the statistical noise
due to uncertainties in the measurements; above a certain
frequency, the PSD transitions from a power law to white
noise. A representation of such processes in the A-T plane
is crucial in classifying light curves of several sources, e.g.,
AGN.

(iii) Other continuous-time models, e.g., continuous
ARMA [67], have been developed. The simplest in this family
is the OU process, which is a continuous analog of the AR(1)
process, with the same A-T representation. Introducing long-
term memory leads to continuous autoregressive fractionally
integrated moving average models [68].
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APPENDIX: ORNSTEIN-UHLENBECK PROCESS

The OU process with mean μ is given by the stochastic
differential equation

dxt = θ (μ − xt )dt + σdεt , (A1)

where θ > 0 and σ > 0. The correlation function for lag d is

ρd = exp (−θd ), (A2)

which via Eq. (38) and (3) leads to

TOU(θ ) = 1 − 2

π
arcsin

[
1

2

√
1 + exp (−θ )

]
, (A3)

reaching its minimum of 1/2 for θ = 0, and its maximum of
2/3 when θ → ∞.

The covariance function

E [xt xs] = σ 2

2θ
exp(−θ |t − s|) (A4)

gives via Eq. (36) and (39) and on simplification

AOU(θ ) = 1 + sinh θ − cosh θ, (A5)

reaching its minimum of 0 for θ = 0, and its maximum of 1
when θ → ∞. Equation (A5) can be solved for θ and inserted
into Eq. (A3), which yields Eq. (45), valid for A ∈ [0, 1].
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