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Incompatibility of quantum measurements is of fundamental importance in quantum mechanics. It is closely
related to many nonclassical phenomena such as Bell nonlocality, quantum uncertainty relations, and quantum
steering. We study the necessary and sufficient conditions of quantum compatibility for a given collection of
n measurements in d-dimensional space. From the compatibility criterion for two-qubit measurements, we
compute the incompatibility probability of a pair of independent random measurements. For a pair of unbiased
random qubit measurements, we derive that the incompatibility probability is exactly 3

5 . Detailed results are also
presented in figures for pairs of general qubit measurements.
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I. INTRODUCTION

Quantum theory has become the pillar of modern physics.
Features such as nonlocality [1], steering [2], entanglement
[3,4], contextuality [5], uncertainty [6], and coherence [7]
distinguish quantum physics from classical physics. Among
these features of quantum physics, the quantum incompati-
bility of quantum measurements forbids one from measuring
two observables simultaneously exactly when they are in-
compatible. Quantum incompatibility can lead to many novel
phenomena including measurement uncertainty relations [8],
steerability [9], and nonlocality [10]. In the case of a pair of
two-outcome measurements, the incompatibility is equivalent
to Bell nonlocality [11,12], though measurement incompati-
bility does not imply Bell nonlocality in general [13,14].

Concerning quantum incompatibility, an important prob-
lem is the development of an effective method to judge
whether a set of measurements is compatible (i.e., jointly
measurable), which has received much attention [15–17].
The authors of [15,16] used the notion of free spectrahedra
in the optimization theory to characterize the measurement
compatibility (also known as the joint measurability). Due
to the abstract construction of free spectahedra, character-
ization of incompatibility along this approach is not very
operational. The authors of a recent study [17] presented a
more operational way toward the characterization of quantum
incompatibility for the case where both measurements have
the same number of measurement outcomes.

The relations between quantum measurement incompat-
ibility and quantum information processing have also been
extensively investigated. In fact, it is shown that quantum
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incompatibility can be detected by a state discrimination task
with partial intermediate information [18,19]. Looking at it
from another perspective, every set of incompatible mea-
surements provides an advantage over compatible ones in a
suitably chosen quantum-state discrimination task [20,21].

In [22] the separability probability problem has been ad-
dressed: What is the probability that a randomly given quan-
tum state is entangled (or separable)? In order to answer this
question, the authors proposed to calculate the volume of
all separable bipartite states in a portion of the whole set of
bipartite states [23,24]. The issue of probing entanglement and
constructing a separable form in the context of separable states
has also been addressed, in [25,26]. Nevertheless, even for
the simplest case (i.e., two-qubit quantum states), computing
the separability probability according to the Hilbert-Schmidt
measure is still a challenging problem. Numerical simulations
lead to intriguing formulas for separability probability [27].
It turned out that the geometric separability probability of
two-qubit quantum systems is conjectured to be 8

33 , without
proof up to now [28].

Motivated by the problem of separability probability, we
ask what the probability is for a randomly given pair of mea-
surements [positive operator valued measurements (POVMs)]
to be incompatible. However, calculation of the incompatibil-
ity probability depends heavily on the criteria of incompati-
bility. For a pair of unbiased random qubit measurements with
two measurement outcomes, we derive that the incompatibil-
ity probability is exactly 3

5 . The incompatibility probability
for a pair of general qubit measurements is conjectured to
be 1

4 by numerical simulation. As for the case of a pair of
two-outcome measurements, the incompatibility is equivalent
to Bell nonlocality [12]; this fact suggests that 25% of pairs
of qubit measurements can lead to Bell nonlocality. If we are
restricted to the use of pairs of unbiased qubit measurements,
the fraction increases to 60%.

In this paper, first we deal with the necessary and suf-
ficient conditions of (in-)compatibility for a finite number
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of measurements with arbitrary finite outcomes. Then we
investigate the geometry of the set of incompatible pairs of
measurements. We compute the incompatibility probability:
The ratio of the set of incompatible pairs of measurements
versus the set of all pairs of measurements.

II. CHARACTERIZATION OF QUANTUM
MEASUREMENT INCOMPATIBILITY

For a positive integer �, denote [�] := {1, . . . , �}. We say
that M = (Mi1...in ) is an nth Hermitian tensor if each Mi1...in
is a Hermitian operator acting on d-dimensional Hilbert space
Hd , where i1 ∈ [k1], . . . , in ∈ [kn]. A POVM is represented by
an nth Hermitian tensor M = (Mi1...in ), where each Mi1...in is
positive semidefinite and

∑
Mi1...in = 1d , with 1d the identity

operator on Hd . The following n POVMs A(1) = (A(1)
i1

), . . .,

A(n) = (A(n)
in

), with i1 ∈ [k1], . . ., in ∈ [kn], defined by

A(1)
i1

def=
∑
i2...in

Mi1...in , . . . , A(n)
in

def=
∑

i1...in−1

Mi1...in ,

are called the marginals of M.
For n given POVMs A(l ) (l ∈ [n]) on Hd , if there exists

a POVM, M = (Mi1...in ), where il ∈ [kl ] (l ∈ [n]), such that
A(l )(l ∈ [n]) are the marginals of M, we say that the n POVMs
A(l ) (l ∈ [n]) are compatible or jointly measurable, and M
is called the joint measurement. Otherwise, they are called
incompatible [16].

Generally, for given n jointly measurable POVMs A(l )(l ∈
[n]), their joint measurements are not unique. We denote
J (A(1)

, . . . , A(n) ) all the joint measurements for n arbitrary
given POVMs A(l ) (l ∈ [n]). Then J (A(1)

, . . . , A(n) ) = ∅
if the n POVMs A(l ) (l ∈ [n]) are not jointly measurable.
Thus A(l )(l ∈ [n]) are jointly measurable if and only if
J (A(1)

, . . . , A(n) ) �= ∅.
Consider n arbitrary probability vectors p(1) =

(p(1)
i1

), . . . , p(n) = (p(n)
in

), where il ∈ [kl ] (l ∈ [n]), such
that all the components of p(l ) are positive for all l ∈ [n].
Denote p(l ) ⊗ 1d a POVM with measurement operators
given by {p(l )

il
1d}, where il ∈ [kl ], l ∈ [n]. Clearly,

J (p(1) ⊗ 1d , . . . , p(n) ⊗ 1d ) �= ∅. Let T = (Ti1...in ) be the
nth Hermitian tensor such that their n marginals are given by
p(1) ⊗ 1d , . . . , p(n) ⊗ 1d ,∑

i2,...,ik

Ti1...in = p(1)
i1

1d , . . . ,
∑

i1,...,in−1

Ti1...in = p(n)
in

1d .

Namely, T ∈ J (p(1) ⊗ 1d , . . . , p(n) ⊗ 1d ). We have:
Theorem 1. For n POVMs A(l ) and n probability vectors

p(l ), set

Mi1...in =
(

n∏
�=1

p(�)
i�

)
n∑

l=1

1

p(l )
il

A(l )
il

− (n − 1)Ti1...in . (1)

Then A(l ) (l ∈ [n]) are n marginals of M = (Mi1...in ), and
A(l ) (l ∈ [n]) are compatible if and only if for any collection
of n probability vectors p(l )(l ∈ [n]), there exists some nth
Hermitian tensor T ∈ J (p(1) ⊗ 1d , . . . , p(n) ⊗ 1d ) such that
M is a POVM.

Proof. Define G = (Gi1...in ) as follows:

Gi1...in
def=

∏n
�=1 p(�)

i�

n

n∑
l=1

1

p(l )
il

A(l )
il

.

It is directly verified that G is a POVM. Its n marginals are
given by

1

n
A(l ) +

(
1 − 1

n

)
p(l ) ⊗ 1d (l ∈ [n]).

Here we view each POVM as a column-block matrix and ⊗
stands for the Kronecker tensor product. That is,

A(l ) =

⎛⎜⎝A(l )
1
...

A(l )
kl

⎞⎟⎠ and p(l ) ⊗ 1d =

⎛⎜⎝p(l )
1 1d
...

p(l )
kl

1d

⎞⎟⎠.

Apparently Gi1...in is nonnegative for all il ∈ [kl ] (l ∈ [n]) by
definition. Moreover, one has∑

i2,...,in

Gi1...in = 1

n
A(1)

i1
+ 1

n
p(1)

i1
1d + · · · + 1

n
p(1)

i1
1d ,

and hence
∑

i1,...,in
Gi1...in = 1d . This shows that 1

n A(1) +
(1 − 1

n )p(1) ⊗ 1d is one of the marginals of G. Other
marginals can be obtained similarly. Furthermore, the nth
Hermitian tensor nG − (n − 1)T = (nGi1...in − (n − 1)Ti1...in )
has n marginals A(1)

, . . . , A(n). Indeed, for instance,∑
i2,...,in

(nGi1...in − (n − 1)Ti1...in ) = A(1)
i1

. This completes the
proof.

Theorem 1 also indicates that adding noise to the POVMs,
i.e., taking convex combinations of the original measurement
operators of these POVMs and the trivial measurement (the
identity operator), can make the resulting new POVMs more
compatible (jointly measurable).

In the following we consider the case of d = n = 2. Let
A = (A1, A2) and B = (B1, B2) be two POVMs on C2. By
using the Bloch representation, we can generally write

Ai = 1
2 [(1 + (−1)ia0)12 + (−1)ia · σ], i = 1, 2, (2)

where σ = (σ1, σ2, σ3) with σi, i = 1, 2, 3, the Pauli matrices,
and a is a three-dimensional real vector satisfying |a| � 1 −
|a0 | with a0 ∈ [−1, 1]. Here |a| is referred to as the sharpness,
while |a0 | is the biasedness. Similarly,

Bj = 1
2 [(1 + (−1) jb0)12 + (−1) jb · σ], j = 1, 2, (3)

where |b| � 1 − |b0 | with b0 ∈ [−1, 1]. Choosing arbitrarily
two probability vectors p = (p1, p2) and q = (q1, q2), we
have from Eq. (1)

M(A, B; p, q; T) = (Mi j ),

where Mi j = q jAi + piB j − Ti j , and T = (Ti j ) satisfies that
Ti1 + Ti2 = pi12 and T1 j + T2 j = q j12 for i, j ∈ [2].

We write T in the block-matrix form,

T =
(

X p112 − X
q112 − X X + (q2 − p1)12

)
,

where p2 − q1 = q2 − p1, and X is some 2×2 Hermitian
matrix. Assume that p1 = p and q1 = q, where p, q ∈ [0, 1].
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By Bloch representation, X can be written as

X = 1
2 [(1 − x0)12 − x · σ], (x0, x) ∈ R4.

Note that M is a legal POVM if and only if Mi j � 0 for all i, j.
In other words, M is a POVM if and only if

|qa + pb − x|
� (q + p − 1) − (qa0 + pb0 − x0),

|x + (1 − q)a − pb|
� (2 − q − p) − (x0 + (1 − q)a0 − pb0),

|x − qa + (1 − p)b|
� (2 − q − p) − (x0 − qa0 + (1 − p)b0),

|(1 − q)a + (1 − p)b + x|
� (q + p − 1) + (x0 + (1 − q)a0 + (1 − p)b0).

A question naturally arises: What kind of relationship
should be satisfied by the 8-tuple (a0, a, b0, b) such that A and
B are jointly measurable for any prescribed p and q. Since
T is p and q dependent, without loss of generality, we may
take probability vectors p = q = ( 1

2 , 1
2 ). Denote u = a + b,

v = a − b; α = a0 + b0, β = a0 − b0; and y = 2x, y0 = 2x0.
Now for a pair of unbiased observables A and B, i.e., a0 =
b0 = 0, one has α = β = 0 and the solution set of the above
four inequalities is not empty if and only if y0 � |u| and 2 −
y0 � |v |, i.e., y0 in the closed interval [|u|, 2 − |v |]. This
amounts to saying that |u| � 2 − |v |. Therefore A and B
are jointly measurable if and only if |a + b| + |a − b| � 2,
which is just the result obtained in [29]. For a general pair
of qubit observables, the following result [30] answers this
question. For a pair of qubit observables A and B in Eq. (2)
and Eq. (3), respectively, A and B are compatible if and only
if the following inequality holds:

(1 − h(a0, a)2 − h(b0, b)2)

(
1 − a2

0

h(a0, a)2
− b2

0

h(b0, b)2

)
� (〈a, b〉 − a0b0)2, (4)

where h(x0, x) =
√

(1+x0 )−|x|2+
√

(1−x0 )−|x|2
2 for x0 ∈ [−1, 1]

and |x| � 1 − |x0 |.
Based on this result, in what follows, we analyze the

incompatibility probability of random qubit measurements.

III. INCOMPATIBILITY PROBABILITY OF RANDOM
QUBIT MEASUREMENTS

We now consider the following question. Let �d,n be
the set of all pairs (A, B) of POVMs with n measurement
operators each, with A = (Ai )n

i=1 and B = (Bj )n
j=1 acting

on Cd . Denote �NJM
d,n and �JM

d,n the set of all incompatible
and compatible pairs of POVMs from �d,n, respectively.
Namely, �JM

d,n = �d,n\�NJM
d,n . Let vol(�NJM

d,n ) and vol(�d,n)
be the volumes of �NJM

d,n and �d,n, respectively. We would
like to know the geometric probability of incompatibility,
Pr[�NJM

d,n ] = vol(�NJM
d,n )/vol(�d,n). This question heavily

depends on the criteria of compatibility. We treat this problem
below for the case of qubit POVMs.

In the following we study the geometric probability
of incompatibility for fixed (a0, b0). For fixed (a0, b0) ∈
[−1, 1] × [−1, 1] in POVMs Eqs. (2) and (3), we de-

note �2,2(a0, b0) the section of �2,2 at (a0, b0), and
similarly for �NJM

2,2 (a0, b0) and �JM
2,2(a0, b0). We con-

sider the parameterized probabilities: Pr[�NJM
2,2 (a0, b0)] =

vol(�NJM
2,2 (a0, b0))/vol(�2,2(a0, b0)) and Pr[�JM

2,2(a0, b0)] =
1 − Pr[�NJM

2,2 (a0, b0)]. Note that the parameters a and b in
�2,2(a0, b0) satisfy the constraints |a| � 1 − |a0 | and |b| �
1 − |b0 |. We have

vol(�2,2(a0, b0)) =
(

4π

3

)2

(1 − |a0 |)3(1 − |b0 |)3.

It suffices to calculate the volume vol(�NJM
2,2 (a0, b0)).

A. The case for unbiased measurements: (a0, b0) = (0, 0)

We first consider the unbiased POVMs A and B, i.e.,
(a0, b0) = (0, 0), determined by the vectors a and b, respec-
tively. In this case Eq. (4) gives rise to the condition that A and
B are incompatible: f (a, b) := |a|2 + |b|2 − s2 > 1, where
s = 〈u, v〉 ∈ [−1, 1]. This condition f (a, b) > 1 is equivalent
to g(a, b) := |a + b| + |a − b| > 2 (see Appendix A).

Instead of calculating the volume vol(�NJM
2,2 (0, 0)), here we

can also consider a and b as random vectors with probability
distribution dω = p(a)p(b)[da][db] given by [31],

dω =
(

3

4π

)2

a2b2δ(1 − |u|)δ(1 − |v |)dadb[du][dv], (5)

where a = au and b = bv with a = |a| ∈ [0, 1], b = |b| ∈
[0, 1], and |u| = |v | = 1.

Denote the whole domain corresponding to �2,2(0, 0)
by 
̃ = {(a, b) ∈ R3 × R3 : |a| � 1 and |b| � 1} and the do-
main corresponding to �NJM

2,2 (0, 0) by the following:


̃NJM = {(a, b) ∈ R6 : f (a, b) > 1 ∧ |a| � 1 ∧ |b| � 1}
= {(a, b) ∈ R6 : g(a, b) > 2 ∧ |a| � 1 ∧ |b| � 1}.

It is easily verified that
∫

̃

dω = 1. The problem is to calculate∫

̃NJM

dω.
The condition f (a, b) > 1 or g(a, b) > 2 can be expressed

as s2 < a−2 + b−2 − (ab)−2, which can be rewritten as

a ∈ (0, 1), b ∈ (
√

1 − a2, 1),

s ∈
(

−
√

a2 + b2 − 1

ab
,

√
a2 + b2 − 1

ab

)
. (6)

The joint probability density function of such a 3-tuple
(a, b, s) ∈ [0, 1]2 × [−1, 1] is given by

p(a, b, s) = 3a2 × 3b2 × 1

2
= 9

2
a2b2.

Denote 
NJM = {(a, b, s) ∈ 
 : s2 < a−2 + b−2 − (ab)−2},
i.e., all 3-tuples (a, b, s) corresponding to f (a, b) > 1 [or
g(a, b) > 2]. Now the 3-tuple (a, b, s) ∈ 
NJM if and only if
the conditions in Eq. (6) are satisfied. In fact, (a, b, s) ∈ 
NJM

can also be rewritten as

s ∈ (−1, 1), a ∈ (0, 1), b ∈
⎛⎝√ 1 − a2

1 − a2s2
, 1

⎞⎠.
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Now the problem of calculating
∫

̃NJM

dω is reduced to the
calculation of

∫

NJM

p(a, b, s)dadbds. We have∫

NJM

p(a, b, s)dadbds = 3

5
.

Therefore, we have:
Theorem 2. For a pair of random unbiased qubit POVMs

A and B, generated by Eq. (5) via Bloch representation, the
incompatibility probability is given by

Pr
[
�NJM

2,2 (0, 0)
] = 3

5 . (7)

Remark. Equation (7) can also be derived by calculating
the volume vol(�NJM

2,2 (0, 0)). Using the Lebesgue measure, we
have [da] = a2da × δ(1 − |u|)[du]. The Lebesgue volume of

̃ is given by vol(
̃) = (4π )2

9 . Thus 
̃NJM can be expressed as{
(au, bv) ∈ 
̃ : a ∈ (0, 1), b ∈ (

√
1 − a2, 1),

s ∈
(

−
√

a2 + b2 − 1

ab
,

√
a2 + b2 − 1

ab

)}
.

Then

vol(
̃NJM) =
∫


̃NJM

[da][db] = N2
3

∫ 1

0
da a2

×
∫ 1

√
1−a2

db b2
∫ √

a2+b2−1
ab

−
√

a2+b2−1
ab

p3(s)ds

= (4π )2

2

∫ 1

0
da a2

∫ 1

√
1−a2

db b2
∫ √

a2+b2−1
ab

−
√

a2+b2−1
ab

ds

= (4π )2
∫ 1

0
da a2

∫ 1

√
1−a2

db b2

√
a2 + b2 − 1

ab

= (4π )2
∫ 1

0
da a2 a2

3

= (4π )2

15
,

where N3 = 4π and p3(s) = 1
2 . Note that p3(s) is just the case

of pm(s) for m = 3, and pm(s) is given by (see Appendix B)

pm(s) = 1

N2
m

∫
Rm×Rm

δ(s − 〈u, v〉)δ(1 − |u|)

× δ(1 − |v |)[du][dv].

Therefore, the geometric probability of incompatibility is
given by vol(
̃NJM)/vol(
̃) = 3/5.

As A and B are incompatible if f (a, b) > 1 [or g(a, b) >

2], it is also interesting to calculate analytically the expecta-
tions E[ f (a, b)] and E[g(a, b)] of f (a, b) and g(a, b), respec-
tively. By direct computation we have

E[ f (a, b)] =
∫


NJM

f (a, b, s)p(a, b, s)dadbds = 27

25
> 1

and, similarly, E[g(a, b)] = 72
35 > 2. These results are consis-

tent with Eq. (7): Two randomly selected measurements A and
B are most probably incompatible.

B. The case (a0, b0 ) = (λ, 0) for λ ∈ (−1, 1)

The case (a0, b0) = (λ, 0), where λ ∈ (−1, 1), corre-
sponds to the case where A is a biased measurement and B is
an unbiased one. In this case �NJM

2,2 (λ, 0) can be parameterized
as the set �̃NJM

2,2 (λ, 0) such that

b ∈ (
√

|λ|, 1), s ∈
⎛⎝−

√
b2 − |λ|

b2(1 − |λ|) ,
√

b2 − |λ|
b2(1 − |λ|)

⎞⎠,

a ∈
⎛⎝√b2 − b4 − b2s2 + b4s2 − |λ|2 + b2|λ|2 + b2s2|λ|2 − b4s2|λ|2

b2(1 − s2)(1 − b2s2)
, 1 − |λ|

⎞⎠.

Thus,

Pr[�NJM
2,2 (λ, 0)] = 9

2
(1 − |λ|)−3

∫
�̃NJM

2,2 (λ,0)
a2b2dbdsda.

By numerical computation it can be shown that
Pr[�NJM

2,2 (λ, 0)] decreases when |λ| ∈ [0, 1) increases.
Namely, for larger |λ|, randomly selected A and B are most
probably compatible.

C. The case of general (a0, b0 )

Generally, �2,2 can be identified as (a0, au, b0, bv) such
that |a0 | + a � 1 with a0 ∈ [−1, 1], a ∈ [0, 1] and |b0 | +
b � 1 with b0 ∈ [−1, 1], b ∈ [0, 1]. �NJM

2,2 is a subset of �2,2

and can be identified as the set that Eq. (4) is violated.

Denote V ={(x0, x) ∈R4 : |x0 | + |x| �1 for x0 ∈ [−1, 1]}.
We have

vol(V ) =
∫ 1

−1
dx0

∫
{x∈R3:|x|�1−|x0 |}

[dx]

=
∫ 1

−1

4π (1 − |x0 |)3

3
dx0 = 2π

3
.

It is easily seen that vol(�2,2) = vol(V )2 = ( 2π
3 )

2
. Thus the

incompatibility probability is given by

Pr
[
�NJM

2,2

] = vol
(
�NJM

2,2

)
vol(�2,2)

.

The volume of �NJM
2,2 can be obtained as follows by numerical

calculation (see Appendix C): vol(�NJM
2,2 )

.= 1.09662, which
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FIG. 1. The incompatibility probability Pr[�NJM
2,2 (a0, b0)] of a

pair of qubit measurements A and B, (a0, b0) ∈ [−1, 1]2.

is approximately π2

9 . We conjecture that the incompatibility
probability of a pair of random qubit measurements A and B,
generated by (a0, a) and (b0, b) in Eq. (4), is given by

Pr
[
�NJM

2,2

] = 1
4 . (8)

Moreover, the following result can be found: If |a0 | = |b0 | �
1
2 , then �NJM

2,2 (a0, b0) = ∅, i.e., A and B are compatible,
Pr[�NJM

2,2 (a0, b0)] = 0.
More detailed computational results on the incompatibil-

ity probability Pr[�NJM
2,2 (a0, b0)] are displayed in Figs. 1–3.

From Fig. 1 we observe that outside the curve |a0 | +
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FIG. 2. The contours of the incompatibility probability
Pr[�NJM

2,2 (a0, b0)] corresponding to Fig. 1.
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FIG. 3. The incompatibility probability Pr[�NJM
2,2 (a0, b0)] of a

pair of qubit measurements A and B for a0 � 0 and b0 � 0.

|b0 | = 1, the incompatibility probability is 0. It increases
smoothly towards the origin, where it attains the peak value 3

5 .
Figure 2 shows the contours of Fig. 1, displaying isolines
of the incompatibility probability. Figure 3 is one-quarter of
Fig. 1, corresponding to the parameter regions a0 � 0 and
b0 � 0.

IV. CONCLUSIONS

We have dealt with the necessary and sufficient conditions
of incompatibility for a finite number of measurements with
arbitrary finite outcomes. Our approach toward quantum in-
compatibility covers essentially the theoretic framework of
[17] and connects with the results in [29,30] in the case
of qubit measurements with two outcomes. Based on the
necessary and sufficient conditions of compatibility for qubit
measurements, we have analytically worked out the incompat-
ibility probability of a pair of unbiased qubit measurements.
The incompatibility probability of one unbiased and one
biased qubit measurement, together with a pair of general
qubit measurements, has also been investigated by analytical
derivations and numerical calculations. These results may
highlight studies on topics such as Bell nonlocality, quantum
uncertainty, and quantum steering. In fact, our results suggest
that the possibility of a pair of unbiased qubit measurements
leading to Bell nonlocality is 60%, which is larger than
the 25% for general qubit measurements. Our results also
indicate that the class of qubit unbiased measurements is the
best choice for studying the connection between quantum
measurement incompatibility and Bell nonlocality [13,14]. It
would also be interesting to design a schematic experiment to
test the results. For such experimental verification, one needs
to construct random gates to implement a random pair of
POVMs A and B under a specified distribution. Besides qubit
measurements, it is also interesting to estimate the incom-
patibility probability of a pair of high-dimensional measure-
ments by using the convex geometry and probabilistic tools
[32,33].
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APPENDIX A: PROOF OF THE EQUIVALENCE
OF f (a, b) > 1 AND g(a, b) > 2

This result is mentioned in [30] without proof. We provide
below the detailed proof for completeness. We first present the
following proposition.

Proposition A.1. If a, b ∈ R3 with |a| � 1 and |b| �
1, then |a|2 + |b|2 � 1 + 〈a, b〉2 if and only if |a + b| +
|a − b| � 2.

Proof. If |a|2 + |b|2 � 1 + 〈a, b〉2 for |a| � 1 and |b| �
1, then |a|2 + |b|2 ± 2〈a, b〉 � 1 ± 2〈a, b〉 + 〈a, b〉2. That is,
|a ± b| � 1 ± 〈a, b〉. Then |a + b| + |a − b| � 2.

Now conversely, if |a + b| + |a − b| � 2 for |a| � 1 and
|b| � 1, then |a + b|2 � (2 − |a − b|)2, i.e.,

|a|2 + |b|2 + 2〈a, b〉
� 4 − 4|a − b| + |a|2 + |b|2 − 2〈a, b〉,

which is equivalent to |a − b| � 1 − 〈a, b〉. Then
(|a − b|)2 � (1 − 〈a, b〉)2 implies that |a|2 + |b|2 �
1 + 〈a, b〉2.

From the above proposition, we see that f (a, b) > 1
if and only if g(a, b) > 2, namely, {(a, b) : f (a, b) > 1} =
{(a, b) : g(a, b) > 2}.

APPENDIX B: PROBABILITY DENSITY FUNCTION
OF THE INNER PRODUCT OF TWO INDEPENDENT

RANDOM UNIT VECTORS

Recall that there is a unique unitary-invariant measure (up
to normalization) μ over the sphere,

dμ(u) = 1

Nm
δ(1 − |u|)[du],

where

Nm =
∫
Rm

δ(1 − |u|)[du] = 2π
m
2

�
(

m
2

) .
Now the probability density function of the inner product
〈u, v〉 between two independent random unit vectors u and
v can be expressed as

pm(s) =
∫

δ(s − 〈u, v〉)dμ(u)dμ(v).

By using the Haar measure (also denoted μ) over the orthog-
onal group, the above integral can be rewritten as

pm(s) =
∫

δ(s − 〈Ue1,V e1〉)dμ(U )dμ(V )

=
∫

δ(s − 〈e1,W e1〉)dμ(W )

=
∫

δ(s − 〈e1, u〉)dμ(u),

where U , V , and W are some unitary operators.
Using the Lebesgue measure, we obtain that

pm(s) = 1

Nm

∫
δ(s − u1)δ(1 − |u|)[du]

= 2

Nm

∫
Rm−1

δ

⎛⎝(1 − s2) −
m∑

j=2

u2
j

⎞⎠ m∏
j=2

du j .

Set

ψ (t ) =
∫
Rm−1

δ

⎛⎝t −
m∑

j=2

u2
j

⎞⎠ m∏
j=2

du j .

Then its Laplace transform is given by

L(ψ )(ω) :=
m∏

j=2

∫
R

e−ωu2
j du j =

(
π

ω

) m−1
2

.

Hence

ψ (t ) = L−1

((
π

ω

) m−1
2

)
(t ) = π

m−1
2

�
(

m−1
2

) t
m−3

2 .

Therefore we have:
Proposition B.1. The probability density function of the

inner product between u and v is given by pm(s) = 2
Nm

ψ (1 − s2), that is,

pm(s) = Cm · (1 − s2)
m−3

2 , s ∈ [−1, 1],

where Cm = �( m
2 )√

π�( m−1
2 )

.

In particular, when m = 3, p3(s) = 1
2 for s ∈ [−1, 1].

Finally, the integral mentioned in the text is formulated as∫∫
�(〈u, v〉)δ(1 − |u|)δ(1 − |v |)[du][dv]

= N2
m

∫ 1

−1
�(s)pm(s)ds

for any suitable function �(·) of the inner product 〈u, v〉.

APPENDIX C: CALCULATION
OF THE VOLUME: vol(�NJM

2,2 )

In fact,

vol
(
�NJM

2,2

) =
∫

�NJM
2,2

da0db0[da][db],

where a generic element (a0, a · u, b0, b · v) of the set �NJM
2,2 ⊂

�2,2 should satisfy inequality (4). Thus �NJM
2,2 can be trans-

formed into the following form:
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�̃NJM
2,2 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩(a0, a, b0, b, s) :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
|a0 | + a � 1, |b0 | + b � 1, where a0, b0 ∈ [−1, 1], a, b ∈ [0, 1],

(1 − h(a0, a)2 − h(b0, b)2)
(

1 − a2
0

h(a0,a)2 − b2
0

h(b0,b)2

)
> (abs − a0b0)2,

h(x0, x) =
√

(1+x0 )2−x2+
√

(1−x0 )2−x2

2 , and s ∈ [−1, 1].

⎫⎪⎪⎪⎬⎪⎪⎪⎭
Based on this observation, we get

vol
(
�NJM

2,2

) = N2
3

∫
�̃NJM

2,2

a2b2 p3(s)da0db0dadbds

= 8π2
∫

�̃NJM
2,2

a2b2da0db0dadbds.

By numerical calculation we have vol(�NJM
2,2 )

.= 1.096 62.
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