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The low-temperature properties of glasses present important differences with respect to crystalline matter.
In particular, models such as the Debye model of solids, which assume the existence of an underlying regular
lattice, predict that the specific heat of solids varies with the cube of temperature at low temperatures. Since
the 1970s at least, it is a well-established experimental fact that the specific heat of glasses is instead just linear
in T at T ∼ 1 K and presents a pronounced peak when normalized by T 3, known as the boson peak. Here we
present an approach which suggests that the vibrational and thermal properties of amorphous solids are affected
by the random-matrix part of the vibrational spectrum. The model is also able to reproduce, for the first time,
the experimentally observed inverse proportionality between the boson peak in the specific heat and the shear
modulus.
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I. INTRODUCTION

Because of the absence of long-range order and the un-
avoidable heterogeneity due to strong disorder the search for
a microscopic description of glasses has attracted a lot of
effort in the condensed matter community in the past few
decades. The nature of glasses and the transport features of
amorphous solids in general are surprisingly still far from
being under theoretical control. Glasses present interesting
and still unexplained anomalies with respect to the Debye
model in the vibrational density of states (VDOS) D(ω),
the specific heat C(T ), and the thermal conductivity κ (T ).
Two emblematic examples of such anomalies are the famous
Boson peak (BP) excess of eigenmodes in the normalized
density of states D(ω)/ω2 and the linear-in-T scaling of the
specific heat at low temperatures in contrast with the Debye
prediction C(T ) ∼ T 3.

The current paradigm for the explanation of the thermal
anomalies in glasses relies on the assumption of double wells
in the energy landscape of glasses at low T [1–3]. Assuming
a random distribution of such double wells and implement-
ing quantum tunneling between nearly degenerate states, a
Hamiltonian can be obtained which leads to a linear-in-T
specific heat at low temperatures (on the order of 1 K). This
two-level-states (TLS) model has had an enormous success
in its ability of providing an interpretation to experimental
results, and it has been also extended within the mosaic picture
of the random-first-order theory of glasses [4,5]. Several nu-
merical studies in the past have shown that defects in glasses
[including, e.g., Lennard-Jones (LJ) glasses] are localized,
consistently with the TLS model [6–9].

Yet the TLS model has not been fully validated in the sense
that, on one hand, the two-level states have been somewhat
elusive to identify in physical systems. On the other hand, a
series of recent papers by Leggett and coworkers [10,11] have

highlighted how unlikely it is that a random distribution of
tunneling states could produce universal values of ultrasonic
absorption constant and thermal conductivity for any material.
Finally, discrepancies with recent experimental observations
have also been reported [12–16].

Here we propose a different approach, based on random-
matrix theory, the random matrix model (RMM), to explain
the linear-in-T specific-heat anomaly in glasses. We show
that the origin of this behavior can be identified with a
flattening regime in the VDOS, which is dominated by a
random-matrix scaling. Previous derivations and discussions
of the VDOS using random-matrix theory have been already
proposed in Refs. [17–23]. Most of the previous results are
either directly based on or related to analytical results obtained
in the Gaussian or Wishart ensembles for which spectral
distributions converge to the form of the well known Wigner
and Marchenko-Pastur distributions. Recently, however, it has
been rigorously demonstrated [24,25] that the Marchenko-
Pastur spectral distribution corresponds to random Laplacian
block matrices with d × d blocks, where d is the space
dimension, and with connectivity Z , only in the limit d → ∞
with Z/d → ∞ fixed. The Wigner semicircle is recovered for
adjacency matrices in the limit Z/d → ∞ with d fixed, while
for the same matrices in the limit d → ∞ with Z/d → ∞
fixed one recovers the effective medium approximation of
Ref. [26].

Clearly, the dynamical (or Hessian) matrix of an amor-
phous solid can be most realistically represented by a Lapla-
cian random block matrix with 3 × 3 blocks (d = 3). Never-
theless, as shown in Ref. [24], the Marchenko-Pastur distribu-
tion which is exact only for Z/d → ∞ still captures the salient
qualitative features also of the spectral distribution at finite d .

The impossibility of formulating an exact analytical de-
scription of the spectrum for finite Z/d [25] motivates us
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FIG. 1. A representative example of the random elastic networks
used in the numerical simulations.

to use a suitably modified Marchenko-Pastur distribution as
the starting point for an analytical description of random-
matrix behavior within the VDOS of amorphous solids, and
the successful fittings of numerical data presented below
indirectly justify this choice and the proposed RMM model.
The analytical RMM description of VDOS data, together with
the Goldstone phonons which fill the gap, can then be used
to evaluate the specific heat and is shown to reproduce a
linear-in-T scaling at very low T and its characteristic boson
peak when plotted normalized by T 3. The inverse proportion-
ality between the specific-heat peak and the shear modulus
observed experimentally [27] is also successfully predicted by
the model.

II. HARMONIC RANDOM NETWORK MODEL

As a model system we use random networks of athermal
harmonic springs derived from Lennard-Jones glasses from
Ref. [28]. The details about the preparation of the numerical
system can be found in previous work [28]. In short, a system
of LJ particles is quenched into a metastable glassy minimum
using a Monte Carlo algorithm. The LJ pairwise interactions
are then removed and harmonic springs all of the same spring
constant are placed between nearest neighbors. In this way,
a random elastic network at T = 0 is generated, an example
of which is shown in Fig. 1. The VDOS is then obtained by
direct diagonalization of the Hessian matrices corresponding
to network realizations, using ARPACK.

The coordination number Z of the network can be tuned by
randomly removing bonds in the network. This allows us to
obtain networks of variable Z all the way from Z = 9 down

to Zc = 6 = 2d which coincides with the rigidity transition
where the shear modulus goes to zero. This system presents
several analogies with jammed packings of soft frictionless
spheres [29]: The shear modulus G goes to zero as ∼(Z − Zc)
exactly like at the unjamming transition of compressed soft
spheres, and the crossover frequency ω∗ at which the VDOS
drops and corresponding to which there is an excess of modes
(the Boson peak) also exhibits scaling with Z − Zc [30]. Fur-
thermore, the VDOS for these elastic networks is very similar
to the VDOS of jammed packings and presents the same
features [29,31]: There is a Debye ω2 regime extending from
ω = 0 up to ω∗, approximately, which shrinks on decreasing
Z until it vanishes at Z = Zc. Previous discussions about
jamming, marginal stability, and low-temperature anomalies
in structural glasses have already appeared in Refs. [32–34].

An advantage of our system is that all bonds are harmonic
springs, and the system being at T = 0 there are no compli-
cations that may arise from anharmonicity (the latter is also
known to generate a boson peak). Hence one can properly
isolate the effect of structural disorder on the vibrational and
thermal properties.

III. RANDOM-MATRIX FITTING OF
THE VDOS SPECTRUM

We start out from the well-known Marchenko-Pastur dis-
tribution of eigenvalues for random matrices drawn from the
Wishart ensemble of matrices M. The Wishart ensemble is
created by starting from a m × n Gaussian random matrix A
using M = 1

n A AT . This matrix has the eigenvalue distribu-
tion (M v = λv):

p(λ) =
√

((1 + √
ρ )2 − λ)(λ − (1 − √

ρ)2)

2πρλ
, (1)

where we introduced the parameter ρ = m/n. Since we are
interested in the vibrational density of states D(ω) of the
eigenfrequencies ω = √

λ, we transform p(λ) to the fre-
quency space, p(λ)dλ = D(ω)dω,

D(ω) =
√

((1 + √
ρ)2 − ω2)(ω2 − (1 − √

ρ)2)

πρ ω
. (2)

The bare random-matrix spectrum lacks mechanical sta-
bility, since it does not contain acoustic phonons and can-
not describe elasticity correctly, as was originally shown by
Parshin and coworkers [35,36]. This can be fixed by adding a
positive-definite matrix to M with a multiplicative coefficient
which correlates positively with the shear modulus [35,36].
Following a similar procedure, we shift the distribution Eq. (2)
in the frequency space by δ and introduce the width of the
spectrum b by the transformation ω → 2

b (ω − δ), which
gives:

D(ω) =
√[

(1 + √
ρ)2 − 4

b2 (ω − δ)2
][

4
b2 (ω − δ)2 − (1 − √

ρ )2
]

πρ 2
b |ω − δ| . (3)

This shifted spectrum belongs to a matrix M ′ that can be
derived by the original Wishart matrix M in the following

way [35,36]: (M ′)1/2 = b
2 M1/2 + δ1, where δ and b both

depend on the minimal and maximal eigenfrequencies of
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FIG. 2. Numerical VDOS (symbols) and RMM analytical fitting
provided by Eq. (4) (solid lines) for different values of the harmonic
spring network connectivity, Z .

the system, ω− = b
2 (1 − √

ρ) + δ and ω+ = b
2 (1 + √

ρ ) + δ,
respectively, which define the support of the random-matrix
spectrum.

In particular, the value of δ controls the shift of the lower
extremum of the support of the random-matrix distribution,
and thus its value controls the frequency ω∗ ≈ ω− which is
associated with the boson peak.

The shift of the random-matrix spectrum toward higher
frequency has a deeper physical meaning. The random-matrix

part of the VDOS, described by Eq. (3), must have a gap if the
system is fully rigid (Z > 6). This is because the gap is pop-
ulated with the Goldstone excitations (the acoustic phonons),
which arise from symmetry breaking and which follow the
ω2 Debye law starting from ω = 0 and up to the point where
the random-matrix part of the spectrum sets in. Obviously,
the acoustic phonons cannot be present in the random-matrix
part [i.e., Eq. (3)] of the VDOS spectrum which only takes
care of quasilocalized excitations (the randomness causes
scattering of the excitations which, unlike phonons, cannot
propagate ballistically over long distances). The fact that δ

is an increasing function of (Z − 6) is certainly consistent
with previous work, e.g., simulations of Ref. [29], where the
low-frequency phononic part of the spectrum described by
the Debye law ω2 extends up to larger frequencies as Z is
increased. The trend of the width b is also consistent with
those numerical data.

By choosing ρ = 1.6, a numerical fitting to the VDOS
spectra of Fig. 2 gives δ = [2.72 + 0.074(Z − 6)] and b =
[2.4 − 0.056(Z − 6)]2.

In order to fit our data accurately we need to make two
additional modifications that cannot be induced by a corre-
sponding change in the matrix M ′: First we need to correct
the lower edge of the spectrum by a factor that behaves like
∼ω−1/2 for ω → 0 and like ∼1 for ω 	 0, and, second, we
need to add peak functions to model the relics of the van
Hove singularity peaks which become more prominent for
systems with high values of Z due to the topology of the
random network becoming influenced by the limiting FCC
lattice to which any lattice will converge for Z = 12. This
second correction is achieved by modeling the two relics of
the van Hove peaks with two Gaussian functions. The final
result for the fitting formulas of the VDOS reads:

D(ω) =
√[

(1 + √
ρ)2 − 4

b2 (ω − δ)2
][

4
b2 (ω − δ)2 − (1 − √

ρ )2
]

πρ 2
b |ω − δ|

[(
0.65

ω

)2

+ 0.25

]1/4

+ G1(Z, ω) + G2(Z, ω), (4)

where G1 = [0.011(Z − 6)2 + 0.175]
√

2
π

exp[−2(ω − 1.6)2]

and G2 = [0.011(Z − 6) + 0.045]
√

8
π

exp{−8[ω − 2.3 −
0.07(Z − 6)]2} are the two Gaussian functions used to model
the van Hove peaks.

The comparison between Eq. (4) and the numerical data
is shown in Fig. 2, whereas in the Appendix the comparison
between model and numerical simulations in terms of the cor-
responding eigenvalue distribution ρ(λ) can be found. In both
cases it is seen that the model parametrization given by Eq. (4)
is excellent and provides a very accurate description of the
data for all Z values considered in the broad range from Z = 9
down to the unjamming transition at Z = 6. In particular, the
expressions of all the parameters δ, b, ρ, and those inside
G1, G2, either remain fixed on changing Z or evolve with Z .
Hence, Eq. (4) captures the variation of the VDOS spectrum
on varying the coordination number Z of the network.

We also note that the random-matrix part of Eq. (4),
which is given by the first line in Eq. (4), has a leading

term which gives the scaling D(ω) ∼ ω + const. This is very
important, as this is the signature of random-matrix behav-
ior. The scaling is, indeed, D(ω) = Aω + B in the regime
just above the crossover frequency, which means that the
eigenvalue distribution scales as ρ(λ) = (A/2) + (B/2)λ−1/2,
on recalling the definition ω = √

λ. Below the Boson peak,
and for Z > 6, the behavior is instead D(ω) ∼ ω2, i.e., fully
consistent with the Debye law. On approaching Z = 6, the
coefficient A becomes smaller and eventually leaves the clean
random-matrix scaling p(λ) ∼ λ−1/2 found analytically in the
Marchenko-Pastur distribution of random-matrix theory. For
Z > 6 the Debye regime extends to larger and larger ω and
alters this scaling.

IV. SPECIFIC HEAT AND BOSON PEAK

Equipped with a fully analytical parametrization of the
VDOS which explicitly contains the contribution from
random-matrix behavior of the eigenvalues of the Hessian,
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FIG. 3. Normalized specific heat for Z = 6, 7, 8, 9 from blue to
red curve. The stars indicate the position of the maxima.

and which correctly reproduces the scaling with Z − Zc, we
can now proceed to the evaluation of the specific-heat contri-
bution from the part of the VDOS which excludes the Debye
regime (the latter is known to provide a C ∼ T 3 contribution).

Indeed, in order to evaluate the specific heat we do not
need anything else than the VDOS, because the specific heat
is given by the following integral [37]:

C(T ) = kB

∫ ∞

0

(
h̄ω

2 kB T

)2

sinh

(
h̄ω

2 kB T

)−2

D(ω) dω.

(5)
On plugging a spline interpolation of the data in Fig. 2 into

the integral in Eq. (5), we obtain the specific heat for different
values of Z plotted in Fig. 3 (normalized by the Debye law)
and in Fig. 4 (not normalized). This is the contribution to the
specific heat from the random-matrix part of the spectrum
plus the corrections outlined above and with the Goldstone
phonons which fill the gap between ω = 0 and ω−. The
linear-in-T regime is controlled by the low-frequency side of
the random-matrix spectrum, which goes as D(ω) = Aω + B,

�T
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FIG. 4. A loglog plot of the specific heat for Z = 6, 7, 8, 9 from
blue to red curve. The scalings are indicated. The specific heat
is calculated using a spline interpolation to the whole numerical
spectrum, which thus includes both Goldstone phonons and random-
matrix part.

FIG. 5. Structure of the VDOS of the harmonic random network
model of amorphous solids. The RMM allows us to disentangle the
random-matrix contribution to the spectrum, which is gapped with a
gap width that becomes larger on increasing Z − Zc. The gap is filled
with Goldstone phonons.

stemming directly from the Marchenko-Pastur scaling in the
low-eigenvalue regime, ρ(λ) = (A/2) + (B/2)λ−1/2 (see the
Appendix).

This result shows that at very low T the specific heat of the
random spring network is linear in T , and that this behavior is
controlled by random-matrix statistics and its interplay with
the Goldstone phonons.

Let us be more precise on this point. As shown in Fig. 5, the
spectrum obtained from the analytic random-matrix formula
(orange curve) parametrizes only a part of the full VDOS
spectrum and in particular it does not include the low fre-
quency Debye part ∼ω2 (red line), which is seen directly in
the data from the simulations (blue bullets). Despite the linear-
in-T behavior of the specific heat comes from the constant
in frequency RMM contribution, the presence of the Debye
phonons is fundamental (at least for Z 
= Zc). If that part of the
spectrum, ∼ω2, is not considered, then the spectrum obtained
from RMM is gapped and therefore the corresponding specific
heat has an exponential decay at low T of the form ∼Te−A/T .
This is indeed what is shown in Fig. 6. If we compute the
specific heat using only the RMM part of the spectrum, then
we obtain the previously mentioned exponential behavior
and the linear-in-T scaling at low temperature is completely
lost. Nevertheless, when the Debye part of the VDOS is
considered, the gap in the spectrum disappears and with it
the exponential falloff. At this point, the low-T behavior is
linear ∼T and dominated by the constant in frequency term
D(ω) ∼ B coming from the RMM scaling, D(ω) ∼ Aω + B,
see Appendix. The role of the Debye phonons disappear at
the edge of marginal stability, i.e., Z = Zc, at which the RMM
VDOS is not gapped anymore (see Fig. 2) and it gives directly
the linear-in-T scaling of the specific heat at low temperatures.

As recalled above, the VDOS becomes flat at a crossover
frequency ω∗, very close to the BP frequency [28], and which
turns out to exhibit scaling:

ω∗ ∼ ( Z − Zc ), Zc = 6, (6)

as displayed in Fig. 7 (top left panel). As a consequence,
the normalized specific heat [C(T )/T 3] displays a maximum
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FIG. 6. The specific heat of our system for Z = 9. The dashed
line is the curve we would obtain if we considered only the RMM
part, with the already-mentioned exponential behavior. The blue
and red curves take into account also the low-frequency Debye
part of the spectrum. The exponential behavior disappears and the
low-temperature scaling is linear ∼T and dictated by the constant in
frequency contribution D(ω) ∼ B of the RMM part of the VDOS,
see the Appendix.

(also known as the boson peak in the specific heat) at a
temperature:

kB T ∗ = h̄ ω∗ ∼ ( Z − Zc ), Zc = 6, (7)

as shown in Fig. 7 (top right panel). This peak is well
documented also in the experimental literature, e.g., in metal-
lic glasses [38]. Equation (7) is an important observation,
which tells us two things: (i) the temperature of the boson
peak in the specific heat exhibits scaling with respect to the
critical rigidity point Z = Zc = 2d and (ii) the boson peak
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FIG. 7. Scalings of various key parameters related to the boson
peak in the VDOS and in the specific heat. (a) The correlation
between the frequency ω∗ at which the density of state D(ω) becomes
flat and the coordination parameter Z − Zc. (b) The correlation
between the temperature T ∗ of the maximum of C(T )/T 3 and the
coordination parameter Z − Zc. (c) The correlation between the
amplitude of the boson Peak aBP = C(TBP )/T 3

BP and the coordination
parameter Z − Zc.

temperature is proportional to the shear modulus G: T ∗ ∝ G,
since in this system it is known [28,29,39] that G ∼ (Z − Zc).

Finally, we can also plot the amplitude aBP of the boson
peak in the specific heat, or its reciprocal, as a function of the
coordination parameter Z − Zc. Also in this case scaling is
found: The amplitude of the peak is inversely proportional to
Z − Zc, although in this case the scaling law sets in only from
Z = 7, which may suggest the presence of non-mean-field
effects close to the critical point Z = Zc. This scaling in turn
implies that 1/aBP ∼ G, as shown in Fig. 7 (bottom), which
provides a theoretical explanation to experimental results
reported in Ref. [27].

V. CONCLUSION

We presented a minimal model of a glass at low T as a
random elastic network of (two-sided) harmonic springs. The
control parameter in the model is the coordination number
Z (as Z decreases it eventually approaches the critical point
Zc = 2d = 6, which coincides with a rigidity transition [28]).
As Z decreases toward Zc, the random-matrix character of the
VDOS becomes more prominent, in the form D(ω) = Aω + B
with the coefficient A decreasing as Z decreases further toward
the rigidity transition. At the transition, the flat shoulder
D(ω) ∼ B of the random-matrix part of the spectrum extends
all the way to ω = 0 and the spectrum is totally dominated
by disorder, phonons are no longer present, and the spectrum
is entirely populated by quasilocalized excitations (diffusons
[40]) [41].

However, importantly, the features of disorder (like boson
peak, etc.) persist well above Z = 6, i.e., for fully rigid and
strongly connected states with, e.g., Z = 7 or Z = 8, which in-
dicates that the boson peak and random-matrix behavior of the
spectrum are not necessarily, or exclusively, a consequence of
the proximity to the rigidity transition as advocated by recent
approaches [42,43].

An approximate analytical description of the VDOS called
RMM has been developed based on the Marchenko-Pastur
spectrum as the starting point. As summarized in Fig. 5, the
RMM analytical fitting of the numerical VDOS data of the
random network allows us to single out the random-matrix
character of the spectrum, especially close to the crossover
frequency ω∗ ≈ ω−. The latter marks the shoulder below
which the RMM contribution to the VDOS goes to zero
and leaves behind a gap filled with the Goldstone phonons
arising from the breaking of translation symmetry (due to the
existence of a characteristic bonding or caging length in the
random network). Using the RMM analytical formula, Eq. (4),
we evaluate the specific heat and we find a linear-in-T law at
very low T . This linear-in-T specific-heat anomaly of glasses
is directly related to the random-matrix form D(ω) = Aω + B
in the VDOS [or ρ(λ) = (A/2) + (B/2)λ−1/2, in terms of
eigenvalues, see the Appendix].

Furthermore, the model also reproduces the well-
documented boson peak in the normalized specific heat and,
for the first time, shows that also the temperature of the peak
exhibits critical scaling with distance Z − Zc to the rigidity
transition. Importantly, the model predicts that the amplitude
of the boson peak in the specific heat is inversely propor-
tional to the shear modulus G (which in this system goes as
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FIG. 8. Numerical eigenvalue spectrum and RMM fitting us-
ing Eq. (4) in the main article and the transformation p(λ) =
1/2D(

√
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√
λ to convert the VDOS D(ω) into the eigenvalue

spectrum p(λ).

G ∼ (Z − Zc), i.e., 1/aBP ∼ (Z − Zc) ∼ G. The latter relation
between the peak amplitude and the shear modulus explains
recent experimental data on specific heat in metallic glasses
(see Eq. (4) in Ref. [27]). It could be interesting in future work
to study how these findings can be extended to glasses with
covalent bonds, where the rigidity transition occurs at a much
lower connectivity [44].

ACKNOWLEDGMENTS

We thank Giovanni Cicuta for critical reading of the
manuscript. We thank Miguel Angel Ramos, Silvio Franz, and
Giorgio Parisi for useful comments about a previous version
of this manuscript. M.B. acknowledges the support of the
Spanish Agencia Estatal de Investigacion through the grant
IFT Centro de Excelencia Severo Ochoa SEV-2016-0597.

APPENDIX: EIGENVALUE SPECTRUM AND ITS
ANALYTICAL FITTING WITH THE RMM FORMULA

In this Appendix we report the comparison between the
numerical simulations for the eigenvalue distribution of the
random harmonic networks, shown in Fig. 8, and the analyt-
ical fitting using Eq. (4) of the main article (on minding the
change of variable ω → λ).

The eigenvalue spectrum in the simulations is obtained
from direct diagonalization (with ARPACK) of the Hessian
matrix H = ∂2U

∂ri∂r j
, where U is the potential energy and ri is a

position vector of particle i.
In the plots for Z = 6, 7, 8 the cusp behavior p(λ) ∼ λ−1/2

which is typical of the Marchenko-Pastur spectral distribution
is clearly identifiable. This is the signature of the random-
matrix behavior of the eigenvalue spectrum of a disordered
solid, which translates into the form D(ω) = Aω + B in the
VDOS. The latter becomes dominant at the epitome of disor-
der, i.e., on approaching the jamming limit Z → 6, although
it is present (at frequencies above the Debye phonons) also in
fully rigid networks with Z > 6.
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