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Optimization induced by stability and the role of limited control near a steady state
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A relationship between stability and self-optimization is found for weakly dissipative heat devices. The effect
of limited control on operation variables around an steady state is such that, after instabilities, the paths toward
relaxation are given by trajectories stemming from restitution forces which improve the system thermodynamic
performance (power output, efficiency, and entropy generation). Statistics over random trajectories for many
cycles shows this behavior as well. Two types of dynamics are analyzed, one where an stability basin appears
and another one where the system is globally stable. Under both dynamics there is an induced trend in the
control variables space due to stability. In the energetic space this behavior translates into a preference for better
thermodynamic states, and thus stability could favor self-optimization under limited control. This is analyzed
from the multiobjective optimization perspective. As a result, the statistical behavior of the system is strongly
influenced by the Pareto front (the set of points with the best compromise between several objective functions)
and the stability basin. Additionally, endoreversible and irreversible behaviors appear as very relevant limits:
The first one is an upper bound in energetic performance, connected with the Pareto front, and the second one

represents an attractor for the stochastic trajectories.
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I. INTRODUCTION

Regarding heat devices optimization, there is a growing
number of papers aiming to approach Carnot efficiency for
irreversible heat devices [1-13] and challenging the idea that
you can’t have it all, in other words, the panacea of ther-
modynamic optimization. Until recently, it was an accepted
statement that for heat engines (HE) it was not possible
to optimize—simultaneously—power output, efficiency, and
entropy production. For this reason, compromise functions
among different thermodynamics functions have acquired a
major relevance. The present paper is framed within this
context.

The initial paradigm of heat devices optimization was the
improvement of the efficiency in the conversion of heat into
work, mostly in the realm of cyclic reversible and steady-
state processes. Later, the development of finite-time thermo-
dynamics brought a second paradigm, the maximum power
regime (MP) [14], with the drawback of relying on a number
of assumptions on the heat fluxes, dissipation, and consid-
erations on the degree of irreversibility [15-24]. Nowadays,
to prove the equivalence of the existing irreversible models
is an ongoing subject of research, such is the case, for ex-
ample, of the low-dissipation model, the linear irreversible
model, the irreversible Carnot like model from finite-time
thermodynamics, and some more specific cases for stochastic
heat engines. More recently, the better use of energy and the
impact of energy waste has become a priority and has turned
the minimization of entropy into another desirable ingredient
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in the optimization. Then, trade-off objective functions (such
as the ecological [25], Omega [26], and efficient power [27]
functions) came into play [28-32].

Nowadays, the aim to uncover general aspects related to
operation regimes, beyond specific models and heat transfer
mechanisms, is an active field [33—42]. For this purpose, the
analysis of the maximum power regime is the most developed
one so far. Of special interest is the so-called Curzon-Ahlborn
efficiency [14], until now, a kind of signature of this regime
[33,36-38]. Without so much prominence, compromise-based
efficiencies such as the so-called ecological and the Omega
functions displayed this very same feature in their corre-
sponding efficiencies [34]. Additionally, the knowledge of
the influence of control on the operation variables in heat
devices remains as an unsolved issue [43]. There are open
questions regarding the role of constancy [44] (fluctuations
in the energetic output records), which could be lastly re-
lated to power fluctuations with large efficiencies in HE’s,
although subtle differences have been recently reported for
quasistatic and steady-state HE models [45]. In this way,
issues as the Carnot efficiency at finite power and efficiency
at maximum power have been widely analyzed by different
strategies to account for control of parameters and engine lay-
outs in macroscopic, mesoscopic, and quantum frameworks
[1-12,46-49].

The proposal of dynamics on the optimization variables
allowing the departure from the stationary state has recently
motivated the search for a possible relation between stability
and optimization [50-52]. In view of this evidence, there is
a promising way to incorporate stability as a new ingredient
in the optimization of HE’s with new features appealing for a
better understanding of the thermodynamics behind stability,
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which allows to show figures of merit as an emergent property
that balances power, entropy and efficiency.

One needs only to look at these, so far, separated compo-
nents and naturally wonder whether a kind of optimization
underlies stability. This is one of the main concerns of the
paper. For this purpose local stability will be analyzed at the
light of optimization processes in order to unify these two
elements, usually considered as separated issues. For weakly
dissipative heat devices, it will be shown that they are indeed
linked. By means of external perturbations on the control
parameters that define the operation regime, a behavior that
favors the simultaneous optimization of all the relevant ther-
modynamic functions is achieved to some extent. Thus, the
trajectories toward the steady state constitute an optimization
mechanism. This could be useful to face limitations in control
and fine-tuning [53-56].

In addition to the possible limitations in the control of
the system operation, external fluctuations around the steady
state during the cyclic process would induce stochastic tra-
jectories. The analysis of this situation will provide a vision
of the statistical consequences of what can be considered as
limited control on the operation regime, showing a favorable
outcome regarding optimization. To this end, a general model
describing weakly dissipative devices is used. Such is the
so-called low-dissipation heat engine model [57], which offers
a quite straightforward unified heat devices analysis for HE’s
and refrigerator engines (RE’s) [58]. This first-order approach
for irreversible deviations from a Carnot cycle makes no use
of specific heat transfer mechanisms and focuses instead on
the dissipation symmetries in the contact with the hot and
cold reservoirs and time constraints. This model constitutes
a suitable way to explore general behaviors not linked with
particularities in the heat transfer mechanism, with validity
in a broad temperature range and including valuable infor-
mation about possible symmetries [59-63]. An advantage
of this model is the capability to reproduce results from a
variety of models in the macroscopic and microscopic regime
[15,61,63-72].

The present study considers a heat engine described by
the low-dissipation model, in which the internal dynamics
(including the stochastic nature of the system, if that is the
case) is already accounted through some dissipation coeffi-
cients. This is more obvious in mesoscopic devices, where
the low-dissipation model has gained a greater relevance,
however, this could apply to macroscopic systems as well.
Once the thermodynamic description is established, the effect
of external perturbations on the heat fluxes will be considered
under the assumption of a restitution dynamics allowing the
system to return to the initial steady state, fixed by the elected
operation regime. Possible application of this study could in-
clude: (i) a macroscopic solarized irreversible Brayton engine
with fluctuations stemming from a wide variety of sources
linked to the control variables (see concluding remarks); (ii) a
low-dissipation micrometric HE experimentally realized by a
single particle in an optical trap through an optical harmonic
potential [73,74]; and (iii) a spin vortex confined on a disk
with a harmonic potential [75,76]. It is remarkable that the last
two systems present a harmonic oscillator confinement poten-
tial, which suits well with the stability dynamics used in this
work.

In the companion letter [77] the main points on the en-
ergetic self-optimization induced by stability have been pre-
sented for a dynamic yielding to a unique equilibrium point
when the system is perturbed from the stationary state. Here,
extended details of these calculations are explicitly given and,
beside this, a second and more rich dynamics yielding a basin
of attraction is also presented first. The paper is structured
as follows. In Sec. II we briefly introduce the model. In
Sec. I11, in order to have access to a phenomenology linked to
endoreversible and irreversible behaviors, one pair of control
variables are introduced. The maximum power and maximum
Omega regimes are discussed in Sec. III A. In Sec. III B,
to provide a general optimization framework and compare it
with stability results, the Pareto front is obtained. With this
at hand, in Sec. III C, stability in a basin of attraction is
addressed for the MP and M2 regimes and the behavior the
trajectories to the stable state are studied. In Sec. III D, ran-
dom consecutive perturbations time are analyzed. In Sec. IV
the same procedure is repeated using another pair of control
variables which give access to another phenomenology and
stability dynamics with a single stable point. In Sec. V some
concluding remarks are presented. In Appendix the statistical
convergence of the analysis of several trajectories is presented
using the Kullback-Leibler divergence.

It is noted that Secs. II and IIT A contain known results for
the low-dissipation model that we include for completeness
[50-52]. Additionally, the behavior of trajectories stemming
from the stability dynamics due to a single perturbation for the
dynamics introduced in Sec. III C were discussed in Ref. [52]
but we include them to provide parallel and self-included
description of both dynamics.

II. THE MODEL

Since the Carnot cycle is one of the cornerstones of
thermodynamics, it is natural to depart from it for the pro-
posal of describing irreversible devices operating between two
thermal reservoirs at constant temperatures 7, and 7j, > T..
Irreversibilities are introduced in the contacts between the
working fluid and the reservoirs. Under the weakly dissipa-
tion hypothesis, the resulting heat engine [57] is described
by the contact time of each isothermal process, {t.,#,} and
the dissipation coefficients {X., ¥;} containing all the in-
trinsic information about irreversibilities of the fluid and
the internal dynamics while in contact with each reservoir.
The input and output heats are Q. = —T.AS(1 + Zc ) and

t.AS
On =T,AS(1 — thhS), respectively; where AS is the en-
tropy change at the hot isotherm of the baseline Carnot
cycle. The total entropy change is then ASi: = ./t +
¥n/ty. The duration of adiabatic processes is neglected.
The reversible limit is recovered whenever {z., t,} — oo or
{EC, Eh} — 0.

The main energetic quantities are the efficiency, n =
(On + O.)/QOp; the power output, P = (Qy + Q.)/(t. + t);
and entropy production o = ASyy/(t. + ;). The Q func-
tion is defined as the difference between maximum power
gain [Payin = P — Pyin = (0 — Nmin)O,] and the minimum
power 108S [Pioss = Prax — P = (max — MOr]; 2 = Pgain -
Pioss [26]. Since the minimum achievable efficiency is 0, and
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the maximum is nc = 1 — 1. /Ty,
QZZP_Pmax_Plossz(zn_nC)Qh» (1)

where n¢ =1 — T /T, is the Carnot efficiency. Under these
conditions, the €2 function is equivalent to the so-called eco-
logical function, a compromise between power output and en-
tropy production, whose mathematical form is £ = P — T.o
[25]. Below, two equivalent optimization variables give rise,
nonetheless, to different phenomenologies in the energetic
space with the aid of time constraints [50,58]. They give also
two different stability behaviors under the assumption that
stability is linked with the variation of the control parameters.

III. TOTAL TIME AND ONE PARTIAL CONTACT TIME AS
CONTROL VARIABLES OF THE OPERATION REGIME

The control parameters involved in the operation regime
are the contact times with the hot and cold reservoirs, ¢, and #;;
however, an interesting phenomenology arises by considering,
instead, one contact time and the total cycle time. By defining
dimensionless variables that accounts for the system size [60],
E = X¥./%7 (and Eh =1-3 ¢), only one fraction of the
total dissipation coefficients is needed, o = 1./(¢. + t3,), =
AS (t. +ty)/ 27, with r = 2, + 2. and t = T;./Tj, and it
is possible to introduce dimensionless input and output heats

[501,
5 _ O [, _1-%1]1
Al @
0 T\ 1
0.= TT.AS _(1 + oT?) T )

By scaling according to the size of the baseline Carnot
cycle, the characteristic total entropy production, efficiency,
power, and the €2 function can be obtained [60],
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In this way, all thermodynamw functions, f, are of the
form f = f(r, ¥, «, t) with 7 and &, fixed properties of
the device and & and 7 the optimization variables. Originally,
Esposito et al. [57] showed that the optimization variables
were the contact times 7. and #,. In Ref. [60], & and 7 were
introduced as more suitable independent variables, accounting
for the overall system size (through AS) and overall dissipa-
tion (through 7). This allows a description of irreversible
and endoreversible behaviors from time constraints.

A. Maximum power and maximum £ regimes

It has been shown that efficiency and entropy production
have no global optimum, but under the constraint of fixing
the total time, the optimum value with respect to «, that is,

maximum efficiency (M) and minimum entropy production
(Omin) can be obtained [62]:

- 1
¥ = )

-5,
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On the other hand, P and €2 have global maxima, achieved
when [62]
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The resulting efficiencies are monotonically decreasing func-
tions of X, € {0, 1}, bounded by the limits [62]

Nc MP Nc

— < < —. 14

5 S Py (14)
3nc 3—-2nc
A O LR ——— 15
1 ST 4—377ch (15)

If £. = 1/2 (dissipation coefficients symmetry), then the
Curzon-Ahlborn efficiency, nca, and the so-called ecological
efficiency, ng, are obtained [62],

n™M =nca =1- 7, (16)

pe =gy =1 [T (7

Compromise function benefits are summarized in the upper
and lower bounds, achieved when . — {1, 0} [62],

| 2 pMP 4
1< ﬁ < = < -, (18)
1427 pMe "~ 3
KM
<(U+1)< vig <4 (19)
AS
2 g 4-3
Sl _< <, (20)
3 7 M2 T (2 —ne)3—2n¢)

depending on the value of ic significant saving on entropy
production and improvement in efficiency can be obtained
from small sacrifices of power. For instance, from Egs. (18)—
(20) in a limiting case . — 0, with a similar efficiency and
a sacrifice of 1/3th of power output it could be possible to
have only 1/4th of the entropy production compared to the
MP regime.

A key feature of this representation is the appearance of
endoreversible and irreversible behaviors, depending on the
time constraints [58]. Endoreversible behavior in finite-time
thermodynamics is linked to open 1-P parametric curves with
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respect to the thermal gradient t. In this case, efficiency is
allowed to approach the Carnot limit when the gap between
the two external reservoirs tends to zero or the contact times
are infinite.

On the other hand, irreversible behaviors are linked to loop-
like n-P parametric curves, a signature commonly representa-
tive of internal irreversibilities due to all kind of dissipations
from the working fluid.

These two behaviors appear from the constraint of fixed
o (being equivalent to the endoreversible hypothesis [70])
and from fixing 7 (i.e., fixing the irreversibility of the sys-
tem). From now on, the two cases will be denoted as the
endoreversible and irreversible limits, respectively. They are
discussed in detail in Ref. [58], as part of a unified phe-
nomenology for HE’s and RE’s and will become relevant
in the analysis of a stability-optimization relation. Insights
on these behaviors from time constraints in the stability and
optimization are also discussed for HE’s in Ref. [70] and for
RE’s in Ref. [78].

Since the simultaneous optimization of the most significant
energetic functions of the system plays a role in the relaxation
trajectories after a perturbation, in the following subsection
the multiobjective optimization problem is addressed, provid-
ing a standpoint to compare the results stemming from the
stability analysis.

B. The best energetic performance: The Pareto front

Since there are no configurations fulfilling altogether the
maximization of efficiency, power, €2, and entropy minimiza-
tion, a compromise in the optimization of these quantities
should be tackled by means of a multiobjective optimization.
This involves the simultaneous maximization or minimization
of a number of objective functions [79,80] to obtain the so-
called Pareto front, which gives the best compromise among
desirable quantities and where a further improvement in one
function involves the degrading of the rest.

Two complementary outcomes will be pursued by this
analysis: to obtain the Pareto front in the thermodynamic
space and its corresponding Pareto optimal set in the time
variables space. o

Consider the vector (n,P,d,2) (the thermodynamic
space), the Pareto optimal set comprise the points («, 7)’s (the
phase space) for which none of the objectives can be improved
without degrading any of the others [79,80], this is known as
dominance. The algorithm introduced here is the following:

(1) In the phase space, the physical region is defined (pos-
itive values of power output and efficiency).

(i1) A random set of points in the phase space is obtained
along with its image in the energetic space.

(iii) With this set of points a provisional Pareto optimal set
is found by means of a sorting algorithm based in the concept
of dominance [79,80].

(iv) At this point, a novel technique is introduced to search
for new elements in the Pareto front: A convex region con-
taining the provisional Pareto optimal set is computed and
expanded in order to cover a larger region to search for new
points in the Pareto front. In every iteration the expansion of
this region decreases with the value of the Kullback-Leibler
divergence [81]. As the statistical information of the Pareto
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FIG. 1. (a) Endoreversible (parabolic curves, purple online) and
irreversible (closed curves, orange online) limits stemming from the
constraints &« = o M? and & = o M?, or T =7 MP and ¥ =7 M2, are
represented in solid and dashed curves for the MP and M2 regimes,
respectively. Endoreversible curves are very close to each other. The
Pareto front represents an upper bound of the endoreversible limits.
In (b) the Pareto optimal set. The Pareto front has been computed
for the region 7 € (0, 15). For values 7 ~ 10? the Pareto front would
reach the Carnot efficiency in (a). Here T = 2/5 and =1 /2.

front converges to a value, this divergence tends to zero and
the expansion tends to zero as well. Details on the definition
of the expanded region are given in the next paragraph.

(v) From the new region another set of random points in
the phase space is proposed and a new provisional Pareto
optimal set is found.

The Kullback-Leibler divergence (KLD) [81] is calculated
between the distribution of points of the ith and the (i — 1)th
iterations. The boundary of the convex region in the phase
space is expanded with a radii that decreases in every iteration.
In the initial iterations it decreases proportionally to 1/i, and
from i = 5, with the KLD value. When this relative entropy
is very small there is no information gain in iterating more
times, then, the searching for new points in the Pareto optimal
set stops.

Figure 1(a) shows the Pareto front with the objective func-
tions & (minimization), n, P, and (maxiLnization). Adding
compromise functions stemming from &, P, and 7, such that
Q2 does not contribute to obtain new points, since they are
already contained in the optimal set. Figure 1(a) shows the
endoreversible and irreversible limits for both regimes as well.
The optimal set forms an envelope for the endoreversible
limits (for MP and MQ); furthermore, it provides an upper
boundary for every endoreversible limit of compromise-based
functions. The Pareto optimal set is depicted in Fig. 1(b).
In these figures X, = 1/2; thus, the depicted efficiencies
correspond to nca, for MP, and ng for MQ [see Eqgs. (16)
and (17)].

C. Control and stability

One of the first concerns when dealing with cyclic pro-
cesses lies in the ability to maintain an stationary state, which
defines an operation regime. Thus, avoiding the system to
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evolve far from the desired operation regime is a key point.
In this context appears control theory as a tool to provide a
way to keep dynamical systems under continuous operation.
To achieve this, a corrective behavior is needed, depending
on the difference between an actual state and a reference or
desired one (a feedback). Although this corrective mechanism
is left to external controllers, in the case at hand, the very
nature of the weakly dissipative system provides an intrinsic
way to come back to the operation state as will be shown later.

The problem of describing stable systems lead the math-
ematical development of dynamics [82]. This is done in
the most simple way through ordinary differential equations.
Which in a general framework can be provided by the system
dx;/dt = fi(x1,...,x,,t) withi =1, ..., n. Since the oper-
ation regime and further description of the system does not
require information on previous states (or the history of the
system) there is no need to include explicitly the dependence
of time in the last equation, this is known as an autonomous
system.

Our interest will remain in the subject of linear systems
where all x; appear on the right-hand side to the first power
only, and no products of x;’s appear. State variables (f and
«), which define the operation regime, will be represented
as functions of time (dynamical time); leading in a natural
way to the time-domain approach, justifying the use of first-
order differential equations. Since the phase space involves
two variables, the analysis is restricted to a two-dimensional
system (a second-order system).

If one defines x; =« —a* and x, =7 — 7, then the
second-order system above mentioned will have one fixed
point at (x;,x) = (0, 0), meaning the point (o*,7*) in the
phase space. In this case da/dt = 0 and df/dt = 0, corre-
sponding to an equilibrium solution (also called steady state
or constant or rest solution) since the systems will remain in
that state for further times.

D. Stability dynamics

Time variables are associated with heat fluxes between the
system and the heat reservoirs. If the system intrinsic prop-
erties and external thermal baths are unaltered, then to keep
{X., X5} unchanged is reasonable. This makes plausible to
link external perturbations as variations of the operation times,
affecting the energy fluxes. Notice that these perturbations
come from external sources and are not linked to the internal
dynamics, already accounted by the coefficients X ;.

It is assumed that the system has an equilibrium point at
the operation regime. With no further information regarding
the specific energy transport, 7 and « are assumed to follow,
within the first-order scheme [82], typical relations for an
autonomous system. Within the first-order scheme, a typical
(and the simplest) relation for an autonomous system in
one dimension is given by a dynamical equation x = —Ax,
which mimics the restitution force of a harmonic oscillator, a
good approximation near a stable point. For the present two-
dimensional case, the generalization of the above dynamical
equation [82] will be given by

X =—-AAX, (21)

where X = (o« — a*,7 — 7%), X = d X /dt with t a dynamical
dimensionless time with a characteristic timescale to be cho-
sen later, and A € M,,.

Before introducing in the last expression the roles of heat
and power output, a priori consideration to understand this
linking is that for the time variable «, Q. would be the natural
energy flux associated (variations of o will produce changes
in the output heat). Meanwhile for 7, its associated energy flux
will be P, so that variations on the total time affect the power
output. ~ N

From a first-order expansion of Q. and P around the steady
state one obtains

Oc(a.T) = Ol )] [a—e
[ P(a,T)— P(a*,T*) } =7 [?—?* } @2

with J the Jacobian matrix

d0.(a.1) d0.(a.1)
da o, dr a*,r*
J=1 Nl (23)
dP(a,r) dP(a,1)
da o, a7 o

Then, as long as the perturbations in Q. and P are small,
the linear system in Eq. (21) can be written as

da A~y ~ ~
E = C[Qc(a 5 t ) - Qc(a7 t)]9 (24)
dr ~ e~
o = D[P(a*,1") — P(a, 1)], (25)
where A = —[§  91.7; C and D are positive constants deter-

mining the response speed to perturbations from the steady
state that we will refer as the restitution strength [5S0-52].
Their values may depend on multiple characteristics, but
usually the system size is the most important. Because large
systems are more likely to respond slowly to perturbations
on the control variables than small systems, the larger the
system the smaller the values of C and D. From a dynamical
perspective, their inverse values set a characteristic timescale,
so that large values of C and D correspond to large restitution
strength and short characteristic times. In the forthcoming
analyses, results are referred to this timescale.

In the linear approximation, steady-state local stability is
determined by A

a0, 30,
Colpr CHlyr
A=— - ~ . (26)
aP dP
D8a ot*,tN* D?fe a*,tN*

The second row in the MP regime is zero, and for the
MS regime is a linear combination of the first row; thus,
the determinant of A is zero and there is only one eigen-
value corresponding to A} =C 8@0/ da|,« 7 and stability is
described through the evolution of «, having an infinite set
of fixed points, from which only a*, * correspond to the
operation regime. This forms the so-called nullcline of «. Its
geometrical space [Z]ullcline(av Y., 7)] can be obtained from
solving da /9t = 0. This curve plays an important role on the
statistical behavior of the system, being an attractor on the
evolution of the system under continuous perturbations, as
will be shown.
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Relaxation time in each regime is given by fex = AI’I R

MP __ 2(1 —nc) TMP

ax = , 27
relax C ne ( )
41 —nc) ~
o =~ 1, (28)
Ul

where C and C’ are used to distinguish between the constant
in Eq. (24) in the MP and the M2 regimes. This result is
relevant for our analysis since it relates two timescales, one
linked with stability, given by #.1ax, and the other linked with
optimization, 7. Moreover, in a cyclic process it would be
required to impose the constraint tepax < 7, which determines
the restitution strength by means of the constants C and C’,
fulfilling that

2(1 —nc)
Ne '
4(1 —ne)

nc

Although D is not involved in these constLaints, it affects
the basin shape, which also depends on t and X.. Considering
D larger (smaller) than C produces narrower (wider) stability
basins in the 7 direction.

The system given by Egs. (24) and (25) can be solved
numerically for the whole dynamics. Representative trajec-
tories stemming from the numerical solution of the dynamic
equations with initial points in which « is small are depicted in
Fig. 2 for the MP and M2 regimes. Perturbations driving the
system into the basin of attraction produce trajectories leading
to the steady state (red curves), meanwhile perturbations out-
ward (blue curves) lead to a nonphysical state where P < 0.
All blue trajectories approach to the shaded region depicted in
Fig. 2. Dashed blue lines arrive from the left to this diverging
trajectory and solid lines surround the stability basin. The
nullcline using Egs. (24) and (25) is shown for each regime.
Additionally, the constraints of constant  and 7 with o =
a ™ (or a M?) corresponding to vertical lines and 7 = MP
(or £ M2) corresponding to horizontal lines lead to irreversible
and endoreversible behaviors (see orange looplike and purple
parabolic-like curves in Fig. 1, respectively). Note that these
constraints yield to trajectories crossing at the steady state.

Figure 3 shows the representative trajectories displayed in
Fig. 2 in the phase space but in the energetic space accounted
for n, P, &. Notice that far from the steady state, trajectories
tend to reach the endoreversible limit by improving simul-
taneously all the energetic functions n, P, and o. Later, one
or more energetic functions have to compromise; however,
red curves have the smallest drops and arrive to the steady
state in a decaying trajectory bounded by the irreversible
limit. The endoreversible limit acts as an attractor involved
in an energetic self-improvement of the system, meanwhile
the irreversible limit bounds the basin of attraction. The
nullcline is shown as well. Arrows point out, in dynamic
trajectories, to the forward direction in dynamic time; in the
endoreversible limit, the increasing of 7. in the irreversible
limit and the nullcline, the increasing of . A black point
over the irreversible curve indicates the minimum entropy
production state, which [see Fig. 3(c)] does not correspond
to the maximum efficiency. The nullcline seems very close to

C>CcM = (29)

C/ 2 C/MQ — (30)

54/ Endoreversible

8 E Optimal set

_______ ; 7 Irreversible
7

Null. LA
6
5
Irreversible
4
3 .
Endoreversible

0.2 0.4 o 0.6 0.8

FIG. 2. Basins of attraction for MP and M. Trajectories inside
(red online) evolve to the steady state and the rest (blue online)
to @« = 0, 7 — 00, and P — 0. The nullcline of the dynamics is
depicted for each regime. The Pareto optimal set is depicted as well.
For each regime, their endoreversible (vertical lines) and irreversible
(horizontal lines) limits are shown in solid lines for MP and in
dashed lines for the MQ2 regime. v = 2/5 and i. = 1/2 are used.
In both regimes the representative case C = D = C MP (or C'M®) is
presented, although the qualitative behavior is the same for other
values.

the irreversible limit. Analog results are obtained for the M2
regime [see Figs. 3(d)-3(f)].

E. Random perturbations and Markovian cycle to cycle
performance

When the precision on the control variables is not enough,
fluctuations due to random perturbations around the steady
state are expected and in the cyclic process the system under-
goes stochastic trajectories. Below it is assumed the evolution
of the system under consecutive random perturbations. This
provides a vision of the statistical consequences of stability
under limited control on the operation regime and what could
be considered as a disadvantage (at first glance) might result
instead in a favorable outcome regarding optimization. No-
tice that these perturbations might well come from external
sources to the system.

A simple model for consecutive perturbations can be ac-
complished by considering a large number, N, of perturba-
tions equally distributed in time along one cycle in subinter-
vals of length Ar. The state after each step is computed by
solving the stochastic differential equation (SDE) based on the
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FIG. 3. Relaxation trajectories for the MP case. Endoreversible (purple) and irreversible (orange) limits are depicted, as well as the nullcline
of the whole dynamics (siena). In (a) relaxation trajectories in the (13, o) plane. In (b) the same trajectories but in the (1, &) plane and in (c) in the
(ﬁ, n) plane. As in Fig. 1, blue lines are for trajectories outside the stability basin, from which solid lines round the stability basin; meanwhile,
dashed lines arrive directly to the diverging trajectory. Red trajectories arrive to the steady state. In all figures 7 )F = T™MP T =2/5, and
f)c = 1/2. The red point indicates the MP state and the black point the o, state with the constraint T=7TMP In (d)—(f) the corresponding
relaxation trajectories for the M2 regime are presented. Their behavior is qualitatively the same than in the MP case. Far from the steady state,
trajectories head to the endoreversible limit with increasing P, decreasing &, and increasing 1, a simultaneous optimization of the most relevant
functions. After arriving to the endoreversible curve those evolving to the steady state are bounded by the irreversible curve. The nullcline of
the whole dynamics is depicted in dot-dashed line (green online). In these figures fej.x = M with the representative case C = D = C MP (or
C™®)_ Note that all the depicted curves lie in two-dimensional manifold in the ﬁ-n-g space. The relaxation trajectories are similar to those

shown in Figs. 4 and 5 of Ref. [52].
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proposed stability dynamics [Eqgs. (24) and (25)]. By means
of a normally distributed random variable as an additive white
noise, the SDE can be solved through the Euler-Maruyama
method [83]. The points in the phase space are computed by
iterating

A()[i = C[éc(a*, ?*) - éc(ai’ Z)]At + ‘gl \/Ev (31)

AT = D[P(a*,7*) — P(a;, T)]AL + E5VAL,  (32)

where the independent stochastic variables {&, &} in the a-f

directions obey a two-dimensional Gaussian distribution,

2 5

oy B P+ (E
fi,—'(tc’th) - 27_[ a* ’t"* e ’ (33)
where B is such that standard deviations are proportional to
the control variables, o7 = 7/ and o, = «/B. It is important
to highlight that ¢ (and for extension At) in above equations
for the stochastic dynamics is different from 7. which refers to
the operation (thermodynamic) time. However, both of them
are bounded by the relaxation time f.j,x, Which, as stated
above, fixes the restitution strengths given by C and D.

Trajectories for a complete cycle (10* steps) for the MP
regime, considering (o1, ;) = (a« MP, 7 MP) with At a 10~*th
of a cycle period 7 MP are obtained from (31) and (32). Due to
the random nature of these external perturbations one might
expect that the system run away from the fixed point. However
(see below), the size of the perturbations is such that even for
extended periods of time, the system will remain close to the
stable state.

For each trajectory final and average states for P, n,
Q, and & are computed. This is repeated for 10° cycles.
After 10° trajectories or cycles, an statistical convergence
is accomplished according to the relative entropy given by
the Kullback-Leibler divergence (Appendix). The results are
presented in Fig. 4(a), distinguishing points ending inside
(green) and outside (blue) of the stability basin to determine
the distinctive behaviors. The nullcline is an attractor in each
stochastic trajectory. Statistically, its relevance can be seen
from Fig. 4, showing that the final states locus are located
around it.

For each trajectory average values of the thermodynamic
functions are calculated, which are depicted in Fig. 4(b). In
comparison with the steady-state values, the cases ending
outside the basin of attraction have larger €2 values and effi-
ciencies, as well as smaller entropy production. The opposite
occurs with green points. Also, the number of cases inside the
attraction basin is larger than those outside. In Fig. 4(c) the
corresponding probability distribution functions for €2, , and
o show the distinctive behavior, with averages displaced from
the center and with different heights. In Figs. 4(d)—4(f) the
same information for M2 is also shown.

_ InFig. 5(a), final states after each cycle are displayed in the
P-n-o space. The endoreversible limit establishes an upper
bound for all configurations, which are located around the
irreversible limit. It is not guaranteed that the final states will
reflect the average behavior of the system. For this reason
in Fig. 5(b) the averaged states in each cycle are depicted.
Finally, in Fig. 5(c) the averaged states are depicted. The
performance of the 103 cycles is very close to the irreversible
behavior. A similar analysis is made for the MQ regime,

having the same behavior, which is depicted in Figs. 5(d)-5(f).
Here, once more, the attracting role of the nullcline is visible.
These results reinforce the idea that the endoreversible
limit represents an upper bound for the energetic performance,
being an attractor involved in the simultaneous improvement
of energetic functions. The irreversible limit discriminates tra-
jectories converging to the steady state, affecting also the over-
all statistical behavior of many trajectories. Near the steady
state, trajectories that cross the irreversible limit (see yellow
curve in Fig. 3) will not converge to the steady state but to a
decaying trajectory toward P — 0, as discussed in Ref. [52].

IV. PARTIAL CONTACT TIMES AS CONTROL VARIABLES
OF THE OPERATION REGIME

Another description of the weakly dissipative heat engine
is achieved by means of the dimensionless variables 7. =
t. AS/ %y, =t AS/%y, that account for the system size,
and ¥ = X./%,. It is easy from these variables to express
in a dimensionless way the most relevant thermodynamic
functions for heat engines,

~ z ~ 1
0 = —r(l + =), 0 = —(1 - 7)’ (34)
h

where Qc =Qc/(ThAS) and 0y, = 04/(T;AS), with & =
o/AS=1"+% ti 'and

S e
n=n= =, (35)
s
~ P -7 -1 -2
pP= = e (36)
T, AS te+1y
. g l-g-t_u=
= — - t/x~ I . (37)
T,AS th+ 1,

Except for the heats, all the above thermodynamic func-
tions are of the form f = f(7, X tc, th) where T and X are
fixed properties of the device and {., 7;,} are the OptlleatIOIl
variables. There are no_global maxima for 1 and &, but there
are maxima for P and €2,

Fmp _ 27X <1+ ! ) (38)
S B NEWA
- 2
Bt =V, (39)
—'L’
~ 4t 1+
Ma — 1+ ) 40
¢ 1—T( V22 “0)
- 2(1+1) 27y
PMe - . 41
h 1—1 + 147 “D

The resulting efficiencies are monotonically decreasing
functions of ¥, bounded by ¥ — {00, 0}, in agreement with
Egs. (14) and (15), reproducing the symmetric cases X = 1
[see Egs. (16) and (17)]. Total operation times are

~ ~ ~ 2
t&“’zth"+thMP=n—[1+ (I—no)TP 42
C
2
~ ~ 22 — 1— >
PN pNe | e _ (77 77c)|:1+ (2 77;) ](43)
C —Ic

The multiobjective optimization is addressed below.
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(@) (b)  Averages in each cycle (©)

Optimal set
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Basin of attraction
S
I ~ 1 ) 1
0.3 04 @ 05 0.6 0 2x10*  4x10* MP State
g Trajectories
@) © Averages in each cycle (f)
7.5K : - 1
_Opt|mal set
t
Final points
7 Basin of attraction
L

04 a 05 0 2x10*  4x10* MQ State
Trajectories

FIG. 4. (a) Final states after 10* perturbations in one cycle are depicted for 10° cycles. In blue, states outside the stable region and
in green those inside the stable region. Shghtly more points are found inside the stability region. Standard deviations of perturbations are
(0w, o7} = {@ M2/100,7M2/100}; ¢, M =7MP and C = D, the values T = 2/5 and $. = 1/2 are used. In (b) average values of &, 7, and
o for each cycle. The mean values for all trajectories inside and outside are depicted as horizontal lines (light green and light blue online),
and the horizontal line in between (red online) corresponds to the MP state. In (c) the probability distribution function (PDF) for the same
energetic functions. It is considered the commonly used square-root criterion [84] for choosing the number of bins or intervals to compute the
distribution function, resulting in V103 equal intervals. In (d)—(f) the same is reproduced for the M2 regime. The perturbations in this case are

smaller than in the MP case: {0, 07} = {o M® Ar/1004/10,7M® Ar/100+/10}. The relaxation time considered is frepx = 7 V.

A. The best energetic performance: The Pareto front first set of variables (corresponding to curves of constant 7 and
a, respectively) are depicted in the 7., 7, space [see the straight
lines depicted in Fig. 6(a)].

As expected, the Pareto front is near the endoreversible
limit passing by the MP and M2 states [see Fig. 6(b)]. This
zone is close to the endoreversible curves and contains the two

The algorithm introduced in Sec. IIIB is used and the
corresponding results are displayed in Fig. 6. The optimized
functions are P, n, 2, and o

In Fig. 6 the optimal set and the Pareto front are displayed.
The endoreversible and irreversible limits appearing in the
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@) Final states (b)  Averaged states () Means

ag

Endoreversible 0.117 g MP  0.12 G

(d) Final states (e) Averaged states
- o041 9 £ 0.0405 9
. "A'/T/Enderevérsible*

0468

FIG. 5. In (a) P, n, and & of the final states for the 10° trajectories depicted in Fig. 4, along with the mean value for trajectories inside
or outside the basin of attraction. In (b) the averaged values of each trajectory are displayed along with their mean values. In (c) the means
displayed in (a) and (b). Notice that they are very close to the irreversible limit (orange online) and close to the nullcline (dark magenta
online). In (d)—(f) the corresponding trajectories around the M2 steady state. All points, nullclines, and irreversible or reversible curves lie on
a two-dimensional manifold. Notice that they are closer to the nullcline (darker cyan) than to the irreversible limit (orange). Representative
values of T = 2/5 and )EL. = 1/2 are used.

endoreversible curves. Endoreversible and irreversible curves On the other hand, the first-order expansion of @c and Qh
are depicted in solid lines for the MP regime and in dashed  around the steady state gives
lines for the M2 regime.

B. Stability dynamics ~ ~ ~ d éc )] ~ ~
. . : Qclte) = Qcty) = —=—| (e — 1), (40)
Similarly to the previous dynamics, let us assume that the dt. |
operation regime corresponds to an equilibrium state given by -~
iz and ;. For fixed 7 and X (intrinsic properties of the system) 3uG) — On) = d Q}flh) G-, @7
perturbations to the steady state arise solely from variations on dt, 7

the operation times. Each heat only depends on the associated
partial contact time, i.e., Q. = Q.(t.) and O, = Q(t,) [see
Eq. (34)], and then variations on the contact times can be
effectively linked to variations on the corresponding input or
output heats. The matrix formulation given in the previous
section can now be addressed as a first-order one-dimensional
uncoupled system [82]. The autonomous equations for the
dynamics now have the form ~

By combining Egs. (44)—(47), it is possible to provide a
dynamics linking the contact times with variations in the input
and output heats as follows:

dt. ~ o~ ~ o~
d o — =A[Q:(t.7) — Oc ()], (48)
E(tc - tc) 6.8 (tc tc ): (44) C;iti
d . . diy oo
E(th — 1) o —(fy — ). (45) i B[On(tn ) — On(tn)], (49)
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0.35 0.4 0.45 n

0.027 I

FIG. 6. In (a) the optimal set and in (b) the Pareto front. En-
doreversible or irreversible limits are depicted as well (purple and
orange), in dashed. Here T = 2/5 and ¥ = 1 as a representative case.

where A and B are positive constants, giving the restitution
strength. !

In a linear approximation the local stability of this steady
state is determined by the eigenvalues, A; and A,, and eigen-
vectors of the Jacobian matrix:

szl o
j = — <l ~
0 B

oty P

Relaxation times, | = Afl andf, = A, U are [50]

4
M = m[\/m —nc) + 112, (50)

c li
e 4 [4/722(1 —7c)

2Ll 2-nc

1.

2
i + 1} 2—=nc), (5D
where i = {1, 2},1; = A, and I, = B. The operation and relax-
ation times are proportional,

* * * A_1+B_] % 2Z %

helax =1 +1 = 2<—>tt0t = — Il (52)

Nc Nc

where z = A~! + B~ is the same for both regimes. In a cyclic
process the system should remain close to the steady state

within a cycle time, thus %, <7, constraining A and B

'An alternative interpretation is to associate stability to “forces”
stemming by the well-known harmonic oscillator potential [V, =
V()1 fulfilling that dr, /dt = —dV, /d't;, each one with a minimum
located at 7*, where V, = 0. In this way, df,/dt = —dV,/dt, =
—d?V,[di} | (t, = T7) with &V, /dT ] > 0.

14— |
12
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N
ANAY
N§
—4

IVRAAR Y abuaa:

te

il

6 8 10

FIG. 7. Stream plots of the dynamics given by Eqs. (48) and (49)
for the case where t M =7 MP for the MP regime in (a) and # }I =
?t(ﬁ’m for M2 in (b). Level curves of constant velocities, vqy, [see
Eq. (54)], are displayed to show patterns over time and how fast the
velocity changes as the systems head toward the steady state. 7 =

2/5 and ¥ =1 are used.

(determining the restitution strength)

Nc
z < 5 (53)

Beyond the linear approximation, the system given by
Egs. (48) and (49) can be solved numerically. In Fig. 7 it is
shown the stream plot of the complete dynamics, showing the
existence of a stable point. Level curves for the dynamical
velocity vgy, are depicted,

Vayn = v/ (d1,/dt)? + (dip/d1)* = const (54)

to show the patterns over time and how fast the velocity
changes as the systems head toward the steady state. For the
MP case these contours are closer to the steady state and
depict a faster transition to the stable point than in the MQ
case, shown in Fig. 7(b).

In both regimes faster transitions occur when 7. < 7* and
< ?;l" Near the stable point velocities are slightly slower in
the 7. direction but as the perturbations increase the 7, axis
becomes much slower, pushing the system further away. A
more symmetric situation is obtained in the M2 case.
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FIG. 8. Stability around the operation regimes. In (a) and (g) the line integral convolution plot of Egs. (48) and (49), which simulate stream
lines of fixed arc length over a set of random initial conditions (denoted by transitions from yellow — red — black). [(b) and (h)] Trajectories
for the solution of the system Eqgs. (48) and (49) in the phase space. (c) Trajectories toward relaxation in the n-ﬁ-&' surface corresponding to
all possible 7. and 7, values. [(d)—(f) and (j)—(1)] Trajectories in the efficiency vs entropy production plane, power output vs entropy production
plane and efficiency vs power plane, respectively. In all cases £ = 1, T = 2/5 and A and B are chosen to fulfill that A = B and £} = Z(ﬂ’lp as
a representative case, the qualitative behavior for other parameters is equivalent. The stability-induced optimization (SO) boundary region is

depicted in (d) and (j).

Figure 8 displays some behaviors linked to the stability respectively. They are shaded in different colors to emphasize
around the MP state. Figure 8(a) shows the line integral differences among these trajectories in the different energetic
convolution plot of Egs. (48) and (49) over a random distribu- planes plotted in Figs. 8(c)-8(f). Notice that trajectories in
tion of initial conditions, simulating stream lines. Figure 8(b) each quadrant evolve in a slightly different way, which yields

shows representative relaxation trajectories. Regions I-IV in- to noticeable energetic repercussions. Of special relevance are
dicate where 7, and 7, are larger or smaller than 7.MF and 7,MP, regions I and III, colored in orange and yellow, respectively.

062128-12



OPTIMIZATION INDUCED BY STABILITY AND THE ...

PHYSICAL REVIEW E 100, 062128 (2019)

In Fig. 8(c) the E-n-ﬁ surface describes a sharp crest
whose lateral sides are associated to states in regions II and
IV; meanwhile, the shoulders are associated to regions I
and III. Figures 8(d)-8(f) show that regions I and III have
straight relaxation trajectories to the stable point and the best
compromise between power and efficiency. The trajectories in
region I, contrary to those of region III, have the lesser entropy
production and evolves a decreasing efficiency at the time that
entropy increases.

In regions II and IV there are wider areas in which tra-
jectories decrease entropy production, increasing efficiency
and power output. In this sense, region III and most of II and
IV are linked to trajectories in which the engine experiences
an optimization induced by stability, coincidentally, located
where transitions to the stable point are faster (see Fig. 7).

When the contours start to separate, the velocity in the
relaxation starts to increase. According to Fig. 8 there is some
point at which relaxation paths exhibit a decreasing efficiency
and increasing entropy production [see Fig. 8(d)]. By looking
at the derivatives of the contours of constant velocities, it is
possible to define a region linking how fast the system evolves
and where simultaneous optimization occurs. This is done by
means of the derivative of Eq. (54) (dvayn/dt, see Fig. 7) and
constraining the resulting slope to a certain value. This will be
referred as a region of self-optimization. The boundary of this
region is explicitly depicted in Fig. 8(d).

It is noteworthy that the region of no-self-optimization
coincides with the region where the system takes longer to
arrive to the stable state (see Fig. 7), This means that self-
optimization while arriving to the steady state is achieved fast,
meanwhile in the no self-optimization the evolution is slowly,
but these trajectories spend more time in the region toward
the Pareto front. This feature will have repercussions in the
statistical behavior of many perturbations as will be discussed
later.

The consequences of the dynamics on the system energetic
properties could imply the use of a disadvantage, such as
limited control, to yield a favorable self-optimization mecha-
nism. For this purpose one could search, for instance, a biased
control to favor perturbations in some region of the phase
space.

In order to get insights about these issues, the influence
of continuous random perturbations over a cycle is addressed
below.

C. Random perturbations and Markovian cycle to cycle
performance

The N steps are computed by solving the stochastic differ-
ential equation based on Egs. (48) and (49), using normally
distributed random variables following a two-dimensional
Gaussian distribution, {&;, &} in the {tNC, }71} directions, as
additive white noise and using the Euler-Maruyama method,

Aty = A[Qc@, 1) — Oclfor, in) ] AL + &1V AL, (55)

Al = B[O, 1) — On(te 1) | AL + E2v/AL, (56)

where &; and &, follow the Gaussian distribution,

B> -BiE R

1,1 = — 57
Sete, ty) AT (57)

and B is such that standard deviation oy = t* /B and o7

/ﬂ The initial state is (tLl,thl) = (tC ,th DR At is tot/IO4
so that after 10* steps one cycle is fulfilled. A = B = 40/nc,
stemming from requiring that fej,x :Z’gl /10 [see Eq. (53)
from the linear approximation].

After one cycle has ended, the system starts another ran-
dom trajectory starting from the steady state, without any
information regarding previous cycles. This procedure is re-
peated for 5 x 10* trajectories or cycles. The statistical con-
vergence is tested using the Kullback-Leibler divergence of
the system energetic distributions (see Appendix). The results
are shown in Fig. 9. In Fig. 9(a) the averaged states for each
trajectory are depicted making a distinction on whether in
average the system is inside the stability-induced optimization
region or not. Despite of covering a significantly smaller area,
green points comprise 47% of the trajectories. In most of
the blue region the system converges faster to the steady
state, and, thus, it is more likely that the system is closer
to it than in the green region where transitions are slower.
The faster decay corresponds to an overall improvement, the
slower type of trajectories keep the system in a less entropy
and larger efficiency state for longer. The result is an average
performance improvement. To notice this displacement in
the averaged states, the distinction according to quadrants
(I-1V, see Fig. 8) is depicted in Fig. 9(b). In both figures
the geometric centers of the depicted points in each region
are displaced toward the direction at which the optimal set is
found.

In Fig. 9(c) the fluctuations of 1 vs ¢ around the steady
state are depicted, these fluctuations are given by

)% (58)

Fluc(5) = (3 M — (5))?, (59)

Fluc(n) = (n M —

where () refers to average over one trajectory. In the green
region these fluctuations form a sharper region (less disper-
sion). In Fig. 9(d) the 7 vs P plane is analyzed. Again, the
endoreversible limit is an upper bound of the thermodynamic
performance of many trajectories. Those cases of improving
n, o, and P are located around the irreversible limit. Green
points reproduce a compromise in which power is sacrificed in
order to increase efficiency and diminish entropy production.
Additionally, less fluctuations comes with smaller drops in
power.

V. CONCLUDING REMARKS AND PERSPECTIVES

The local stability of the maximum power and maximum
Omega regimes have been analyzed under two different dy-
namics. One with perturbations on the output heat flux and
the power output and another one with perturbations on the
input or output heats.

Relaxation trajectories are such that far from the steady
state they exhibit a simultaneous improvement of power, effi-
ciency, and entropy production with trajectories that approach
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FIG. 9. In (a) the averaged position in each cycle or trajectory is shown. Colors indicate whether trajectories starting at the average state
would exhibit a simultaneous improvement of 7, P, and & (blue points) or the increasing of power comes hand in hand with decreasing
efficiency and increasing entropy production (green points). In a close caption the average displacement of each type of points (light blue and
yellow stars) and the overall performance (red cross) is depicted. The latter is slightly moved onto the direction of the optimal set. In (b) the
final points after each trajectory are shown but having under consideration in which quadrant the trajectory remains in average. These final
points have the same behavior as the average states but are more spread out. A close-caption shows that the averages in each quadrant (stars
with colors according to Fig. 8) are displaced toward quadrant I. In (c) the fluctuations in efficiency vs fluctuations in entropy production, green
trajectories are much less spread, mean values for green and blue points are denoted by light blue and yellow stars. In (d) the results of n vs P
are shown. In (e) and (f) the behavior of power output and efficiency according to the entropy generation are shown. In both cases green points
are closer to the steady state, according to the means indicated by stars. For this case A = B = 4/(1 — ) so that t }* =7 M°, Ar is 7 MP/10%,
0y =a™MP/10, 07 =1T™MP/10, T = 2/5 and X = 1, this is a representative case, but the behavior for other combinations of parameters is the
same. In (g)—(1) the same is done for the M2 regime.

to the Pareto front, which gives the best compromise among An analysis of consecutive random perturbations has been
the most relevant thermodynamic quantities of the system, in addressed. Trends due to the proposed dynamics appear in
a multiobjective optimization perspective. It is shown that the  the statistical behavior of many cycles, indicating a link be-
Pareto front is an upper envelop of the endoreversible limit ~ tween the overall behavior and the Pareto front. The accuracy
(resulting from constraining the partial contact times with the of the statistical treatment is supported by the Kullback-
external thermal baths). Leibler divergence approaching zero, thus, adding more
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trajectories makes no difference in the statistical description
of the problem.

In the first dynamics there is a basin of attraction and
a nullcline linked to the restitution forces involved in the
dynamics. Outside the attraction basin, relaxation trajectories
lead the system to a nonphysical region. The endoreversible
limit is an attractor in the relaxation far from the steady state.
Meanwhile near the steady state the so-called irreversible
limit, stemming from fixing the operation time, plays a role
in determining which trajectories arrive to the steady state.
For many stochastic trajectories the nullcline has a relevant
influence on the final points of each trajectory [see Fig. 4(a)].
By separating points having a final state inside or outside the
attraction basin different energetic behaviors are obtained with
energetic Gaussian distributions displaced from the steady
state in opposite directions. Inside the stability basin there
is a decreasing efficiency and increasing entropy production
while the contrary occurs for points outside. Averaged ener-
getic states and final states are compared, showing that the
endoreversible limit is an energetic upper boundary and the
irreversible behavior is an attractor of both: final and averaged
states in each trajectory.

The second dynamics always exhibits a stable state reveal-
ing a relation between how fast the system arrives to it and
whether the trajectory describes a simultaneous optimization
of power output, efficiency, and entropy production. Fast
transitions occur where the system exhibits a simultaneous
improvement of efficiency and entropy production. In the no
self-optimization region transitions are slow but the system
remains over the Pareto front for longer periods. In the analy-
sis of many stochastic trajectories the irreversible limit acts an
attractor for trajectories that experience either simultaneous
improvement or a simultaneous increment of entropy produc-
tion and decrements of efficiency (fast or slow relaxations,
respectively). Thus, under persistent perturbations the net
effect is to drive the system toward the Pareto front.

In both dynamics the relaxation time is of the order of
the operation time or less to guarantee cyclic processes. For
completeness, combinations of the size of the perturbations
and restitution strengths (given by A, B, C, and D) have been
tested and the obtained behaviors are found to be qualitatively
similar. One thing to notice in the 1st dynamics is that quite
strong restitution forces might act against the system stability,
its effect being equivalent to consecutive perturbations during
an enough extended period of time. This can be seen from
Egs. (31) and (32), where increments in C and D can be
compensated by shorter steps in the stochastic trajectories and
a larger stochastic variable, or equivalently, to having larger
steps At (larger dynamical time) but smaller influence of the
stochastic variable.

The above results indicate that for weakly dissipative heat
engines there could be an optimization induced by stability,
either under a sole perturbation or due to consecutive stochas-
tic noise. In this sense, a limited control in the operation
variables or biased control might turn out in favor of the
system performance. Some examples in which this analysis
could be of interest are (i) a low-dissipation micrometric
HE experimentally realized by a single particle in an optical
trap through an optical harmonic potential [73,74]; (ii) a spin
vortex confined on a disk with a harmonic potential [75,76];

and (iii) a macroscopic solarized irreversible Brayton engine
with fluctuations in the operation variables. In all these cases
their stability dynamics could be addressed in an equivalent
way but eventually depending on the natural variables of each
model.

For the first system it has been established that it can
be described by the low-dissipation model. For the second
example the modeling of the system by means of the low-
dissipation model represents an ongoing task that needs to be
confirmed, although the dynamic is the analog to that of the
optical trap with a confining potential that corresponds to the
one addressed in this paper. The representation of the Brayton
and Otto systems in terms of the low-dissipation model needs
further research as well. In previous works the Otto and Bray-
ton cycles have been related with the irreversible Carnot cycle
[13], where the linking of both models depends on the heat
capacity of the working fluid. Furthermore, the irreversible
Carnot model has been linked to the low-dissipation model,
where the mapping between these two models is constrained
to a certain family of heat capacities [70]. Thus, it is expected
that the Otto and Brayton heat engines can be mapped into
the low-dissipation model. For a nonregenerative irreversible
Brayton cycle this can be done by matching entropy changes
in both models, obtaining:

1=y _ 1y
Zh/thszVln[r,, VV +77;1(1—I‘p VV)], (60)

=y
12

X /t. =mCy ln[r,,

Iy
- n,(r,,V — 1)] (61)
where m is the working fluid mass, Cy is the heat capacity at
constant volume, y = C,/Cy is the adiabatic factor, r), is the
pressure ratio, and (7., ) are the isentropic efficiencies of the
compressor and turbine, respectively. External perturbations
on this device arise, for instance, if the turbine is combined
with a solar collector and fluctuations in the direct solar irra-
diance due to meteorological conditions (cloudy days induce
a power law distribution). A completely analog description
of the Otto engine can be done, where external perturbations
could arise from cycle-to-cycle combustion variability.

In the line of thought of a unified study of HE’s and RE’s
[58], it is expected that the extension of the analysis here
reported could yield to similar results for refrigerator devices,
which is still a work in progress.

A possible perspective on this subject is the study of
lack of control in more specific systems to get hints on
natural optimization requirements, or “natural optimization
preferences” [85-90]. Let us recall that the nondominance
concept used to obtain the Pareto front uses the same weight
in all the objective functions, then, inference of a hierarchy
in the objective functions could shed some light regarding
evolutionary adaptation in specialized systems [91].
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FIG. 10. Kullback-Leibler divergence comparison at every 1000
trajectories or cycles. A good convergence is obtained for the number
of trajectories analyzed in Sec. Il E.

APPENDIX: NUMBER OF TRAJECTORIES FOR
STATISTICAL CONVERGENCE

1. Dynamics involving éc and P

Before, it was mentioned the use of the Kullback-Leibler
divergence, Dy, [81], to test statistical convergence. Dy
gives a measure of how distant are two distributions, so that if
its value is zero, then the information stemming from both
distributions is the same. Since this is a relevant issue to
demonstrate that the obtained trend is not due to the lack of
additional data, the details of the divergence are addressed
here.

For this test the evolution in the discrete probability distri-
bution for the power will be used. From the averaged P in N >
1000 trajectories, the interval between the largest and smallest
P value is divided in /N (rounded to the upper next integer)
equal intervals or bins of length AP. From this partition
the discrete probability distribution of the first 2k-thousand
trajectories, py are obtained. The Kullback-Leibler divergence
is calculated comparing pr_; with pg, Dkr  according to
Eq. (Al).
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FIG. 11. Kullback-Leibler divergence comparison at every 1000
trajectories or cycles. A good convergence is obtained for the number
of trajectories analyzed in Sec. IV C.

The resulting D, values are shown in Fig. 10 for N =
10° trajectories, showing that from 7 x 10* trajectories the
statistical behavior does not vary significantly and adding
more trajectories will not give much further information.

2. Dynamics involving Qc and Qh

From the averaged P values computed of N > 1000 trajec-
tories, the interval between the largest and smallest P values
is divided by +/N (rounded to the upper next integer) equal
intervals, or bins, in this way, the same partition is used for
the to compute the discrete probability distributions of the
first k-thousand trajectories, p; are obtained, and the Dgy is
calculated comparing p;_; with p;. Dxp ¢ is given by

Pk,i
DxLi(oirllpe) = =D it 10g<p ' >,

k—1,i

(Al)

giving a measure of how much information is gained by
adding more trajectories. In Fig. 11, it is is shown that from
4 x 10* trajectories the statistical behavior does not vary
significantly and adding trajectories will not provide much
further information.
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