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Analysis and data-driven reconstruction of bivariate jump-diffusion processes
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We introduce the bivariate jump-diffusion process, consisting of two-dimensional diffusion and two-
dimensional jumps, that can be coupled to one another. We present a data-driven, nonparametric estimation
procedure of higher-order (up to 8) Kramers-Moyal coefficients that allows one to reconstruct relevant aspects
of the underlying jump-diffusion processes and to recover the underlying parameters. The procedure is validated
with numerically integrated data using synthetic bivariate time series from continuous and discontinuous
processes. We further evaluate the possibility of estimating the parameters of the jump-diffusion model via
data-driven analyses of the higher-order Kramers-Moyal coefficients, and the limitations arising from the scarcity
of points in the data or disproportionate parameters in the system.
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I. INTRODUCTION

Research over the last two decades has demonstrated the
high suitability of the network paradigm in advancing our
understanding of natural and man-made complex dynamical
systems [1–7]. With this paradigm, a system component is
represented by a vertex and interactions between components
are conveyed by edges connecting vertices, and graph theory
provides a large repertoire of methods to characterize net-
works on various scales.

Characterizing properties of interactions using the knowl-
edge of the dynamics of each of the components is key
to understanding real-world systems. To achieve this goal,
a large number of time-series-analysis methods have been
developed that originate from synchronization theory, non-
linear dynamics, information theory, and statistical physics
(for an overview, see Refs. [8–15]). Some of these methods
make rather strict assumptions about the dynamics of network
components generating the time series and many approaches
preferentially focus on the low-dimensional deterministic part
of the dynamics.

Real-world systems, however, are typically influenced by
random forcing, and interactions between constituents are
highly nonlinear, which results in very complex, stochastic,
and nonstationary system behavior that exhibits both de-
terministic and stochastic features. Aiming at determining
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characteristics and strength of fluctuating forces as well as
at assessing properties of nonlinear interactions, the analysis
of such systems is associated with the problem of retrieving
a stochastic dynamical system from measured time series.
There is a substantial existing literature [16–19] for the
modeling of complex dynamical systems which employs the
conventional Langevin equation that is based on the first- and
second-order Kramers-Moyal (KM) coefficients, known as
drift and diffusion terms. All functions and parameters of this
modeling can be found directly from the measured time series
employing a widely used nonparametric approach. There are
by now only few studies that make use of this ansatz to char-
acterize interactions between stochastic processes [20–24].

Despite its successful application in diverse scientific
fields, growing evidence indicates that the continuous stochas-
tic modeling of time series of complex systems (the white-
noise-driven Langevin equation) should account for the pres-
ence of discontinuous jump components [19,25–33]. In this
context, the jump-diffusion model [34–37] was shown to
provide a theoretical tool to study processes of known and
unknown nature that exhibit jumps. It allows one to separate
the deterministic drift term as well as different stochastic
behaviors, namely, diffusive and jumpy behavior [19,32,33].
Moreover, all of the unknown functions and coefficients of a
dynamical stochastic equation that describe a jump-diffusion
process can be derived directly from measured time series.
This approach involves estimating higher-order (�3) KM
coefficients and it provides an intuitive physical meaning of
these coefficients.

The focus of this paper is to introduce a method to
investigate bivariate time series with discontinuous jump
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components. We begin with an overview of bivariate diffusion
processes that exhibit the known relation between the param-
eters and functions in stochastic modeling and the KM coeffi-
cients. Exemplary processes are portrayed, and we propose a
measure to judge the quality of our reconstruction procedure.
We then present bivariate jump-diffusion processes alongside
the associated KM expansion [32], and investigate the suit-
ability of our reconstruction procedure using various exam-
ples. We conclude this paper by summarizing our findings.

II. BIVARIATE JUMP-DIFFUSION MODEL

A bivariate jump-diffusion process can be modeled via
[19,32]

y︷ ︸︸ ︷(
dy1(t )
dy2(t )

)
=

N︷︸︸︷(
N1

N2

)
︸︷︷︸

drift

dt +

g︷ ︸︸ ︷(
g1,1 g1,2

g2,1 g2,2

) dw︷ ︸︸ ︷(
dw1

dw2

)
︸ ︷︷ ︸

diffusion

+

ξ︷ ︸︸ ︷(
ξ1,1 ξ1,2

ξ2,1 ξ2,2

) dJ︷ ︸︸ ︷(
dJ1

dJ2

)
︸ ︷︷ ︸

Poissonian jumps

, (1)

where all the elements of vectors N, dJ, and dw as well as of
matrices g and ξ may, in general, be state and time dependent
(dependencies not shown for convenience of notation). The
drift coefficient is a two-dimensional vector N = (N1, N2)
with N ∈ R2, where each dimension of N, i.e., Ni, may depend
on y1(t ) and y2(t ). The diffusion coefficient takes a matrix
g ∈ R2×2. The two Wiener processes w = (w1,w2) act as
independent Brownian noises for the state variables y1(t )
and y2(t ). The diagonal elements of g comprise the diffusion
coefficients of self-contained stochastic diffusive processes,
and the off-diagonal elements represent interdependencies
between the two Wiener processes, i.e., they result from an in-
teraction between the two processes. Each single-dimensional
stochastic process element dwi of dw is an increment of
a Wiener process, with 〈dwi〉 = 0, 〈dw2

i 〉 = dt,∀i. The dis-
continuous jump terms are contained in ξ ∈ R2×2 and dJ ∈
N2, where dJ represents a two-dimensional Poisson process.
These are Poisson-distributed jumps with an average jump
rate λ ∈ R2 in unit time t . The average expected number of
jumps of each jump process Ji in a timespan t is λit . The
jump amplitudes ξ are Gaussian distributed with zero mean
and standard deviation ξi, j .

We here consider merely autonomous systems. Nonergodic
problems are beyond the scope of this paper, and a more
delicate approach to both bivariate stochastic processes would
be needed.

III. BIVARIATE DIFFUSION PROCESSES

Let us begin with bivariate diffusion processes, for which
the model takes the form

y︷ ︸︸ ︷(
dy1(t )
dy2(t )

)
=

N︷︸︸︷(
N1

N2

)
dt︸ ︷︷ ︸

drift

+

g︷ ︸︸ ︷(
g1,1 g1,2

g2,1 g2,2

) dw︷ ︸︸ ︷(
dw1

dw2

)
︸ ︷︷ ︸

diffusion

. (2)

The model consists of six functions, two for the drift coeffi-
cients and four for the diffusion coefficients. Given a bivariate
diffusion process, can we reconstruct the aforementioned pa-
rameters strictly from data? Extensive work exists on this mat-
ter [18], especially covering purely diffusion processes, and
we will use these now as a stepping stone to jump-diffusion
processes. Understanding the working and contingencies of
reconstructing the parameters of a diffusion process [Eq. (2)]
will serve as a gateway to understand how a similar procedure
awards equivalent measures for jump-diffusion processes. We
address the aforementioned question first by revisiting the
mathematical foundation that allows one to recover, strictly
from data, the drift N and diffusion g coefficients. Subse-
quently, we numerically integrate diffusion processes with a
priori fixed values of the drift N and diffusion g coefficients
and aim at retrieving these values strictly from the generated
data (the Euler-Mayurama scheme with a time sampling of
10−3 over a total of 105 time units, i.e., 108 number of
data points). If the actual and retrieved values match, the
reconstruction method is effective.

A stochastic process has a probabilistic description given
by the master equation [16,19]. It does not describe a specific
stochastic process in itself, but the probabilistic evolution of
the process in time. The master equation accepts an expan-
sion in terms, the KM expansion, that allows for a purely
differential description of the process. More importantly, the
coefficients of the expansion, known as KM coefficients,
entail directly a relation to the aforementioned parameters of a
stochastic process given by Eq. (1). The exact relation will be
given below. There is, though, an important detail regarding
the KM coefficients: they are in themselves not constants
but functions on the underlying space or, in other words, a
scalar field, and for our purposes here they can be understood
as two-dimensional surfaces. We will denote these as KM
surfaces.

Lastly, and more familiar, the Fokker-Planck equation is
a truncation of the KM expansion at second order. It is
especially relevant given its connection to physical processes
and the Pawula theorem [38]. The Pawula theorem ensures
that the truncation is not ill suited for the underlying process
if the fourth-order KM coefficient approaches zero in the limit
dt → 0. It is now crucial to understand that the theorem holds
for a one-dimensional process, and we are not aware of a proof
for higher dimensions. This contrasts the common notion that
studying only the first two KM coefficients of two- or higher-
dimensional processes is sufficient (see Refs. [32,33,39] and
references therein).

The KM coefficients M[�,m](x1, x2) ∈ R2 of orders (�, m)
are defined as

M[�,m](x1, x2)

= lim
�t→0

1

�t

∫
[y1(t + �t ) − y1(t )]�[y2(t + �t ) − y2(t )]m

× P(y1, y2; t + �t |y1, y2; t )|y1(t )=x1,y2(t )=x2 dy1dy2

and can be obtained from bivariate time series (y1(t ), y2(t )).
Theoretically, �t should take the limiting case of �t → 0,
but the restriction of any measuring or storing devices—or
the nature of the observables themselves—permits only time-
sampled or discrete recordings. The relevance and importance
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of adequate time sampling was extensively studied and dis-
cussed in Refs. [19,33].

In the limiting case where �t is equivalent to the sampling
rate of the data, the KM coefficients take the form

M[�,m](x1, x2) = 1

�t

〈
�y�

1�ym
2

∣∣
y1(t )=x1,y2(t )=x2

〉
,

�yi = yi(t + �t ) − yi(t ). (3)

The algebraic relations between the KM coefficients and
functions in Eq. (2) are given by [19,32]

M[1,0] = N1,
(4)

M[0,1] = N2,

M[1,1] = g1,1g2,1 + g1,2g2,2,

M[2,0] = [
g2

1,1 + g2
1,2

]
, (5)

M[0,2] = [
g2

2,1 + g2
2,2

]
.

An explicit derivation can be found in Appendix A. Evidently,
this underdetermined set of five equations is insufficient to
uncover the six functions of a general stochastic diffusion
process. One must bare this in mind, for the same issue
will arise again when reconstructing jump-diffusion processes
from data. Nonetheless, under certain assumptions it is pos-
sible to reduce the dimension of the problem and therefore
obtain a system of equation which is not underdetermined.
Two methods for these cases are presented in Ref. [19] and
another criterion will be presented later.

In order to relate the results obtained from studying the
KM coefficients against the theoretical functions, we propose
a method to assess the difference between the values of the
theoretically expected functions and the estimated values of
the KM coefficients. Since for bivariate processes the KM
coefficients are two-dimensional—as are the parameters of
Eq. (1)—an adequate “distance” measure between the result-
ing two-dimensional surfaces is required.

Following Ref. [20], we propose a distance measure that
allows for the variability of the density of data in some regions
of the underlying space to be taken into consideration.

Let f [�,m](y1, y2) denote the theoretical value for orders
(�, m) introduced in the model, i.e., a nonlinear combination
of the various parameters of the system. The distance between
each surface can be defined as∫ ∫

U
(M[l,m](y1, y2) − f [l,m](y1, y2))2dy1dy2 =: V 2, (6)

where U denotes the domain of M[l,m](y1, y2). The least-
squared distance volume V between the surfaces is zero
if M[l,m](y1, y2) = f [l,m](y1, y2). It is this volume that one
aims to minimize such that the reconstructed KM coefficients
match the underlying theoretical functions in the model.
Since M[l,m](y1, y2) is a real-valued function measured over
a distribution space U , the density of data points is not
uniform over U . This implies that a comparative measure
on distances between M[l,m](y1, y2) and f [l,m](y1, y2) would
be non-normalized to the density of points of the space. We
therefore introduce a normalization to Eq. (6) that ensures
the less dense areas of U are normalized accordingly, thus
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FIG. 1. Two-dimensional Kramers-Moyal coefficients M[�,m] for two independent diffusion processes given by Eq. (11). The uncovered
KM surfaces match the expectation. In panel (a) the cubic term in the drift term N1 = −x3

1 + x1 along the first variable is visible in M[1,0], and
in panel (b) the negative-slope surface is visible in M[0,1]. In panel (d) the flat surfaces reproduce as well the expected form of the constant
terms involved in the diffusion terms for M[2,0]. Moreover, in panel (c), M[1,1], which accounts for the stochastic coupling terms of all diffusion
terms, is also zero almost everywhere, as expected, given that g1,2 and g2,1 are zero. In each panel, the theoretical expected surface, given by
Eqs. (4) and (6), is indicated by a grid, with f [�,m] denoting the respective theoretical values introduced in the model.
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FIG. 2. Two-dimensional Kramers-Moyal coefficients M[�,m] for two independent diffusion processes given by Eq. (12) and the theoretical
expected functions f [�,m] associated with each coefficient, according to Eq. (6). KM coefficients M[1,1], M[2,0], M[0,2], and M[2,2] exhibit the
quadratic multiplicative dependencies of the diffusion terms. In addition, M[1,1] in panel (a) displays both an offset from zero as well as a
quadratic shape, entailing the desired results emerging from Eq. (6), i.e., the noise-coupling term g1,2 with g2,2. In panel (b) M[2,0] displays an
offset and has a minimum close to g2

1,1/2 + g2
1,2/2 = 0.13. We also show the higher-order coefficient M[2,2] in panel (d) and the corresponding

theoretically expected value [given by Eq. (6)], both of which vanish. All obtained KM surfaces fit considerably well their theoretically
expected ones (V [1,1]

err = 0.03, V [2,0]
err = 0.94, V [0,2]

err = 0.03, V [2,2]
err < 0.01; error volumes are estimated over the displayed domain).

mitigating the effect of scarcity of points at the borders of
U and an overestimation of V due to outliers in the distri-
bution. We derive such a normalization by considering the
zeroth-order KM coefficient M[0,0](y1, y2) which captures
exactly the density of points in U , although it is in itself
not normalized as a distribution. The resulting normalized
volume error measure Verr between surfaces takes the form
(state dependencies not explicit)

∫ ∫
U

(M[l,m] − f [l,m] )2 p(y1, y2)dy1dy2 = V 2
err, (7)

where p(·) denotes the probability density. Coincidentally, the
numerical evaluation implemented via either a histogram or a
kernel-based estimator immediately yields this density, i.e.,
the zeroth power of the right-hand side of Eq. (3), before
applying the estimation operator. This makes it easy to retrieve
p(y1, y2) as one numerically evaluates data.

With this at hand, it is now possible to relate theoretical and
numerical results and to quantify the deviation of the obtained
KM coefficients from the functions employed.

To showcase what two-dimensional KM coefficients are
as well as how to identify drift and diffusion terms of bi-
variate diffusion processes, we present in the following two
exemplary processes with a priori known coefficients. In this
manner, by employing Eqs. (4) and (5), one can judge the
outcome of the KM coefficient estimation procedure from
discrete data in comparison with the expected theoretical
functions.

We begin with two uncoupled processes, where one has
constant diffusion and a quartic potential as the drift term:

N =
(

N1

N2

)
=

(−x3
1 + x1

−x2

)
,

g =
(

g1,1 g1,2

g2,1 g2,2

)
=

(
0.5 0.0
0.0 0.5

)
. (8)

In Fig. 1, we show the corresponding KM coefficients
M[1,0], M[0,1], M[1,1], and M[2,0] together with the the-
oretically expected functions. The per-design cubic-linear
function (N1 = −x3

1 + x1) acting as drift coefficient along the
first dimension as well as the negatively sloped surface of
N2 = −x2 are evident. Likewise, the constant diffusion term
leads to a flat constant-valued M[2,0], and the absence of
any nondiagonal elements (g1,2 = g2,1 = 0) agrees with the
zero-valued M[1,1]. Alongside the surfaces are plotted the
theoretically expected values, which agree well with the data
recovery.

We next extend Eq. (8) by adding multiplicative noise to
the diffusion term and by including a noise-coupling term
g1,2 �= 0:

N =
(

N1

N2

)
=

(−x3
1 + x1

−x2

)
,

g =
(

g1,1 g1,2

g2,1 g2,2

)
=

(
0.1 + x2

1 0.5
0.0 0.2 + 2x2

2

)
. (9)

The recovered KM coefficients (see Fig. 2) of the drift
terms remain unaltered, but as posited the second-order KM
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FIG. 3. Two-dimensional Kramers-Moyal coefficients M[�,m] of bivariate diffusion processes given by Eq. (15) (with φ = 0.0) together
with the theoretically expected functions f [�,m] associated with each coefficient according to Eqs. (13), (15), and (18). KM coefficients M[1,0],
M[0,1], M[1,1], M[2,0], M[0,2], M[2,2], M[4,0], M[0,4], and M[4,4] are shown in panels (a)–(i), respectively. Although seemingly small, the
higher-order moments [panels (f)–(i)] are all present and nonzero. We find M[4,0] = 0.012 in panel (g) and M[0,4] = 0.009 in panel (h), as
expected from Eq. (18). All obtained KM surfaces fit considerably well their theoretically expected ones (V [1,0]

err = 0.68, V [0,1]
err = 0.18, V [1,1]

err <

0.01, V [2,0]
err = 0.01, V [0,2]

err = 0.01, V [2,2]
err < 0.01, V [4,0]

err = 0.01, V [0,4]
err = 0.01, V [4,4]

err < 0.01; error volumes are estimated over the displayed
domain).

coefficients, i.e., M[1,1], M[2,0], M[0,2], and M[2,2], clearly
exhibit the influence of the multiplicative noise. The quadratic
multiplicative dependencies of M[2,0] and M[0,2] and their
offsets from zero are evident. More pertinently, one can notice
M[1,1] to display the expected shape arising from Eq. (5),
i.e., this value is nonzero and exhibits the parabolic shape
of g1,2g2,2 = 0.5(0.2 + 2x2

2 ). For x2 = 0, the minimum of
M[1,1] coincides with 0.1, as expected. This indicates that
the presence of the multiplicative noise does not hinder the
assertion of the KM coefficients. Again, the recovered KM
coefficients match the theoretical ones.

IV. BIVARIATE JUMP-DIFFUSION PROCESSES

The KM coefficients of bivariate jump-diffusion processes
take the following form [under the parameter prescription
used in the jump-diffusion model in Eq. (1)] [19,32,33]:

M[1,0] = N1,
(10)

M[0,1] = N2,

M[1,1] = g1,1g2,1 + g1,2g2,2,

M[2,0] = [
g2

1,1 + s1,1λ1 + g2
1,2 + s1,2λ2

]
, (11)

M[0,2] = [
g2

2,1 + s2,1λ1 + g2
2,2 + s2,2λ2

]
,

M[2,2] = [s1,1s2,1λ1 + s1,2s2,2λ2],

M[4,0] = 3
[
s2

1,1λ1 + s2
1,2λ2

]
,

(12)
M[0,4] = 3

[
s2

2,1λ1 + s2
2,2λ2

]
,

M[4,4] = 9
[
s2

1,1s2
2,1λ1 + s2

1,2s2
2,2λ2

]
,

M[6,0] = 15
[
s3

1,1λ1 + s3
1,2λ2

]
,

M[0,6] = 15
[
s3

2,1λ1 + s3
2,2λ2

]
, (13)

M[6,6] = 225
[
s3

1,1s3
2,1λ1 + s3

1,2s3
2,2λ2

]
,

M[8,0] = 105
[
s4

1,1λ1 + s4
1,2λ2

]
,

M[0,8] = 105
[
s4

2,1λ1 + s4
2,2λ2

]
, (14)

M[8,8] = 11 025
[
s4

2,1λ1 + s4
2,2λ2

]
,

where 〈ξ 2�
i j 〉 = s�

i j are the variances of the Gaussian-distributed
jump amplitudes. An extended derivation can be found in
Appendix A. The last equations here are taken from the
general form

M[2�,2m] = (2�)!

2��!

(2m)!

2mm!

[
s�

1,1sm
2,1λ1 + s�

1,2sm
2,2λ2

]
.

062127-5



LEONARDO RYDIN GORJÃO et al. PHYSICAL REVIEW E 100, 062127 (2019)

A. Understanding the impact of jumps

As an illustrative case study, we investigate a general jump-
diffusion process that is based on Eq. (9) but excludes the
multiplicative diffusion terms. Taking into account the effect
of the jump terms, but maintaining the system independent in
at least one of the dimensions, we extend Eq. (9) to include
jumps only in the diagonal terms of ξ:

N =
(

N1

N2

)
=

(−x3
1 + x1

−x2

)
,

g =
(

g1,1 g1,2

g2,1 g2,2

)
=

(
0.1 0.5
0.0 0.2

)
,

ξ =
(

ξ1,1 ξ1,2

ξ2,1 ξ2,2

)
=

(
0.2 0.0
φ 0.1

)
,

λ =
(

λ1

λ2

)
=

(
0.1
0.3

)
,

(15)

where for the present case φ = 0.0. In this manner, jumps
are added to the first dimension of the process, having an
amplitude of ξ1,1 = 0.2 and occurring every 0.1t , given λ1 =
0.1. Similarly, jumps are added to the second dimension,
ξ2,2 = 0.1, but the jumps occur three times more often than
the aforementioned, given λ2 = 0.3. The influence of jumps
can be observed across all KM coefficients (see Fig. 3). The
previously smooth KM surfaces become rugged from the fast
variations emerging due to the jumps, and the higher-order
KM coefficients—although small compared to the lower-
order ones—clearly do not vanish. This indicates that the
continuous stochastic modeling of time series of complex
systems (the white-noise-driven Langevin equation) is invalid
for jump-diffusion processes. Modeling these processes with
only the first two orders of the KM expansion of the master
equation is therefore insufficient.

In order to understand further if it is possible to uncover
the jump amplitude terms of coupled processes, we use the
previous model Eq. (15) with φ = 0.3, thereby effectively in-
troducing a stochastic coupling via the off-diagonal elements
of the jump matrix ξ. We show, in Fig. 4, the corresponding
fourth-order KM coefficients. The impact of the stochastic
coupling is visible, although small, in M[4,4], which is no
longer zero. Likewise, M[4,0] and M[0,4] also do not vanish.
In Appendix B, we present the corresponding KM coefficients
up to order 8.

B. Criteria for recovering coefficients in diffusion
and jump-diffusion models

For the case of vanishing off-diagonal elements g2,1 and
ξ1,2, we can identify ways to recover the remaining coeffi-
cients of these processes.

First, given that the noise dω is Gaussian distributed, g is
sign-reversal symmetric and one can thus assume that it takes
only positive values. One obtains that if M[1,1] = 0 then at
least two elements of g must be zero, and if M[2,2] = 0 then
at least two elements of ξ must be zero (by assuming that
λ1 and λ2 are nonvanishing rates). These findings reduce the
dimensionality of the estimation procedure and ensure that the
underlying processes are less complex that the full-fledged
description of Eq. (1), although they do not grant which
coefficients are zero valued.

Second, if one either employs a heuristic argument of in-
dependence of the jump processes or neglects the off-diagonal
jump amplitudes ξ1,2 and ξ2,1 (e.g., by assuming they are small
compared to the diagonal terms of ξ), one finds the following
approximations:

1

5

M[6,0]

M[4,0]
= 1

5

15

3

s3
1,1λ1

s2
1,1λ1

= s1,1,

1

5

M[0,6]

M[0,4]
= 1

5

15

3

s3
2,2λ1

s2
2,2λ1

= s2,2. (16)

Likewise, the jump rates λ1 and λ2 can be obtained equiva-
lently as

105

9

M[4,0]2

M[8,0]
= 105

9

32

105

(
s2

1,1λ1
)2

s4
1,1λ1

= λ1,

105

9

M[0,4]2

M[0,8]
= 105

9

32

105

(
s2

2,2λ2
)2

s4
2,2λ2

= λ2. (17)

Taking again model Eq. (15) with φ = 0.0 and following
Eq. (16), we obtain

sest
1,1 = 0.16 ≈ 0.2 = s1,1,

sest
2,2 = 0.09 ≈ 0.1 = s2,2.

These estimated values (indicated by the superscript “est”)
are close to the actual ones. The criteria and approxima-
tions are especially relevant when constructing or analyzing
systems which are known to have a specific unidirectional
stochastic coupling form, e.g., a master-slave system, where,
for example, the noise or the slave system is dictated by the
driving master system.

-0.8-0.40.00.40.8

-0.2

0.0

0.2

0.003
0.006
0.009

M[4,0] and f [4,0]

y1

y2

(a)

-0.8-0.40.00.40.8

-0.2

0.0

0.2

0.003
0.006
0.009

M[0,4] and f [0,4]

y1

y2

(b)

-0.8-0.40.00.40.8

-0.2

0.0

0.2

0.0
0.2
0.4

M[4,4] and f [4,4]

y1

y2

(c)
×10−4

FIG. 4. Two-dimensional Kramers-Moyal coefficients M[4,0], M[0,4], and M[4,4] of bivariate jump-diffusion processes given by Eq. (15)
(with φ = 0.3) together with the respective theoretically expected functions f , associated with each coefficient according to Eqs. (13), (15),
and (18). Notice that the estimated KM coefficients agree well with the theoretical expected functions in all orders. For further details, see
Appendix B.
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FIG. 5. Error volume Verr for a bivariate jump-diffusion process
[Eq. (15)] depending on the number of data points n in the time
series, with the abscissa given in logarithmic scale. Each process is
numerically integrated with random initial conditions, for varying
number of data points n ∈ [104, 5 × 107] and over 50 times. The
time sampling used was of 10−3. The average value of Verr and
one standard deviation (shaded area) are displayed. Notice the clear
decrease on all KM coefficients with either � = 0 or m = 0, e.g.,
M[2,0] or M[0,2], as the number of data points n increases. This can
be seen since the volume between the theoretically expected values
and the KM coefficients decreases consistently, i.e., V [�,m]

err decreases
for an increasing number of data points. The KM coefficients with
� �= 0 and m �= 0, such as M[4,4] or M[6,6], present themselves as
nondecreasing, but the error volume is overall considerably small
in value (cf. Fig. 6). It is important to notice that V [1,0]

err does not
converge to zero since the KM coefficient is associated with the
quartic potential (i.e., the term N1 = −x3 + x). Due to its shape, the
process has two preferred states, at either x = −1 or 1, and thus
spends little time at any intermediary point, like x = 0, damaging
the statistics of the recovery.

C. Factors influencing the quality of recovery of coefficients

In order to validate the quality of the nonparametric recov-
ery of the KM coefficients, we now turn to two critical aspects:
first, bivariate processes may require a high number of data
points in a time series for the estimation to be reliable; second,
the interplay between the drift, diffusion, and jump parts of a
stochastic processes may render the estimation incorrect.

Addressing these aspects, we include a more contrived
model involving stochastic couplings and interactions in both
the diffusion and jump terms, thus theoretically resulting in
having all higher-order KM coefficients nonzero, and espe-
cially the KM coefficients with � �= 0 and m �= 0. The param-
eters for the model read

N =
(

N1

N2

)
=

(−x3
1 + x1

−x2

)
,

g =
(

g1,1 g1,2

g2,1 g2,2

)
=

(
0.1 0.5
α 0.2

)
,

ξ =
(

ξ1,1 ξ1,2

ξ2,1 ξ2,2

)
=

(
0.2 0.5
β 0.1

)
,

λ =
(

λ1

λ2

)
=

(
0.1
0.3

)
. (18)
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FIG. 6. Same as Fig. 5 but for the bivariate jump-diffusion
process [Eq. (18)] with α = β = 0.3, with the abscissa given in
logarithmic scale. Integration parameters are as in Fig. 5.

The diffusion-scaling parameter α and the jump-scaling pa-
rameter β (jump term) can be freely varied.

Let us focus first on the number of data points in a
time series. We utilize the models Eq. (15) with φ = 0.3
and Eq. (18) with α = β = 0.3, and show in Figs. 5 and 6,
respectively, the error volumes Verr for the KM coefficients for
an increasing number of data points. The reliability of the
recovery of the KM coefficient is valid for a higher amount
of data (n � 105), as expected, although the scarcity of data
posits no extensive problem for the calculation. It is especially
important to notice that a time series with a lower amount of
data entails naturally fewer jumps in the process, hindering the
possibility of accurately recovering the jump terms from such
short time series. For n � 106, the estimation seems reliable,
the standard deviations become minute, and most error values
approach zero, i.e., the theoretical and estimated KM surfaces
are close. Such a large number of data points might not be
available when investigating time-varying dynamical (e.g.,
biological) systems. Nevertheless, the amount of data needed
to reliably estimate KM coefficients can be considerably
reduced with kernel-based estimators [40].

One remark is necessary on the recovery of the drift terms.
The presence of noise and jumps in the process takes its toll
on the recovery of the exact form of the KM coefficients as
well as the explicit dependence of the state variables, i.e.,
the quartic potential in both Eqs. (15) and (18). A finer time
sampling can help to improve the results.

To further test the limitation of retrieving the KM coeffi-
cients from data, we utilize model Eq. (18) once more and
investigate the influence of the diffusion-scaling parameter α

and the jump-scaling parameter β. For increasing diffusion-
scaling parameter α (α ∈ [10−2, 102]) and jump-scaling pa-
rameter β = 0.3, we observe a considerable impact on the
error volume Verr after the order of magnitude on the diffusion
parameter α is tenfold bigger in comparison to the diffusion
parameter g1,2 (Fig. 7). Similarly, for increasing jump-scaling
parameter β (β ∈ [10−2, 102]) and diffusion-scaling param-
eter α = 0.3, the error volume Verr is considerably impacted
already when β is of similar size as the other parameters,
namely, ξ1,2 = 0.5 (Fig. 8).
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FIG. 7. Error volume Verr for the bivariate jump-diffusion process
Eq. (18) for a varying diffusion-scaling parameter α ∈ [10−2, 102],
given in double logarithmic scale. The vertical dotted line at α = 0.5
indicates the point where the the diffusion-scaling parameter α =
g2,1 = 0.5 is equal to g1,2 = 0.5. A small value of the diffusion-
scaling parameter α, in comparison to the diffusion parameters g2,1

and g1,2, ensures a good reconstruction, i.e., a small error volume Verr.
The average and one-standard deviations (shaded area) are displayed.
For each point 50 iterations are taken, each with a total number of
data points of 5 × 106 and a time sampling of 10−3.

These findings point to the difficulty of recovering the
KM coefficients in the presence of jumps. Nonetheless, our
findings indicate that the current understanding, modeling,
and numerical recovery of KM surfaces, for the case of jumps
of comparable size to the diffusion terms, is possible and
reliable [41]. This can be performed in minimal times on a
regular computer [42].

V. CONCLUSION

We introduced the bivariate jump-diffusion process, which
consists of two-dimensional diffusion and two-dimensional
jumps that can be coupled to one another.

For such a process we presented a data-driven, nonpara-
metric estimation procedure of higher-order Kramers-Moyal
coefficients and investigated its pros and cons using syn-
thetic bivariate time series from continuous and discontinuous
processes. The procedure allows one to reconstruct relevant
aspects of the underlying jump-diffusion processes and to
recover the underlying parameters.

Having now a traceable mathematical framework, the
model can be extended to embody other noise and jump
properties. An extension from the underlying Wiener process
to include, e.g., fractional Brownian motion is straightfor-
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FIG. 8. Error volume Verr for the bivariate jump-diffusion process
Eq. (18) for a varying jump-scaling parameter β ∈ [10−2, 102], given
in double logarithmic scale. The vertical dotted line indicates the
biggest jump term value ξ1,2 = 0.5 to compare with β. In direct
analogy to Fig. 7, a small jump-scaling parameter β ensures a good
reconstruction, i.e., a small error volume Verr. Increasing values of the
jump-scaling parameter β in comparison to the other parameters in
the system make the reconstruction unreliable. The iteration scheme
is identical to the one in Fig. 7.

ward but nevertheless requires further investigations to de-
rive an explicit forward Kolmogorov equation [19]. Also,
a generalization to continuous jump processes—originating
from alpha-stable or other heavy-tailed distributions (the Lévy
noise-driven Langevin equation)—is possible, however, with
the drawback that calculating the conditional moments may
not always be mathematically possible [19]. On the other
hand, a numerical estimation of generalized moments should
be possible but these still require a physical interpretation.

We are confident that our approach provides a general av-
enue to further understanding of interacting complex systems
(e.g., brain or power grids [33,43–45]) the dynamics of which
exhibit nontrivial noise contributions.
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APPENDIX A: EXTENDED DERIVATION OF THE TWO-DIMENSIONAL KRAMERS-MOYAL
COEFFICIENTS FOR A JUMP-DIFFUSION PROCESS

The following derivations stem from Eq. (3) and apply to the two-dimensional jump-diffusion process (y1, y2), as in Eq. (1).
All orders of the Kramers-Moyal coefficients M[�,m] are (�, m) ∈ N+.
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1. Kramers-Moyal coefficients M[1,0] and M[0,1]

M[1,0](x1, x2) = lim
dt→0

1

dt
〈(dy1)1(dx2)0〉|y1(t )=x1,y2(t )=x2

= lim
dt→0

1

dt
〈dy1〉|y1(t )=x1,y2(t )=x2

= lim
dt→0

1

dt
〈N1dt + g1,1dw1 + g1,2dw2 + ξ1,1dJ1 + ξ1,2dJ2〉|y1(t )=x1,y2(t )=x2

= lim
dt→0

1

dt
[N1dt + g1,1〈dw1〉 + g1,2〈dw2〉 + 〈ξ1,1〉〈dJ1〉 + 〈ξ1,2〉〈dJ2〉]

= N1,

where 〈gi, jdWj〉 = 〈gi, j〉〈dWj〉 = 0, because a Wiener process has the property 〈dWj〉 = 0. Further, 〈ξi, jdJj〉 = 〈ξi, j〉〈dJj〉 = 0,
since ξi, j is a Gaussian with zero mean, i.e., 〈ξi, j〉 = 0.

The same is true, mutatis mutandis-, for M[0,1].

2. Kramers-Moyal coefficient M[1,1]

M[1,1] = lim
dt→0

1

dt
〈(dy1)1(dy2)1〉|y1(t )=x1,y2(t )=x2

= lim
dt→0

1

dt
〈(N1dt + g1,1dw1 + g1,2dw2 + ξ1,1dJ1 + ξ1,2dJ2)

× (N2dt + g2,1dw1 + g2,2dw2 + ξ2,1dJ1 + ξ2,2dJ2)〉|y1(t )=x1,y2(t )=x2

= lim
dt→0

[
N1N2dt + g1,1g2,1〈(dw1)2〉 1

dt
+ g1,2g2,2〈(dw2)2〉 1

dt
+ O(dt )

]
= g1,1g2,1 + g1,2g2,2,

where higher-order terms O(dt )ε , with ε > 0, vanish in the limit dt → 0. Recall as well 〈(dwi )2〉 = dt .

3. Kramers-Moyal coefficients M[2,0] and M[0,2]

M[2,0] = lim
dt→0

1

dt
〈(dy1)2〉|y1(t )=x1,y2(t )=x2

= lim
dt→0

1

dt
〈(N1dt + g1,1dw1 + g1,2dw2 + ξ1,1dJ1 + ξ1,2dJ2)2〉|y1(t )=x1,y2(t )=x2

= lim
dt→0

[
N2

1 dt + g2
1,1〈(dw1)2〉 1

dt
+ g2

1,2〈(dw2)2〉 1

dt
+ 〈

ξ 2
1,1

〉〈(dJ1)2〉 1

dt
+ 〈

ξ 2
1,2

〉〈(dJ2)2〉 1

dt
+ O(dt )

]
= [

g2
1,1 + s1,1λ1 + g2

1,2 + s1,2λ2
]
,

using the previously employed nomenclature 〈ξ 2
i j〉 = σ 2

ξi j
= si j as well as 〈(dJi )2〉 = λidt .

Mutatis mutandis, the case for M[0,2] reads as

M[0,2] = [
g2

2,1 + s2,1λ1 + g2
2,2 + s2,2λ2

]
.

4. Kramers-Moyal coefficient M[2,2]

M[2,2] = lim
dt→0

1

dt
〈(dy1)2(dy2)2〉|y1(t )=x1,y2(t )=x2

= lim
dt→0

1

dt
〈(N1dt + g1,1dw1 + g1,2dw2 + ξ1,1dJ1 + ξ1,2dJ2)2

× (N2dt + g2,1dw1 + g2,2dw2 + ξ2,1dJ1 + ξ2,2dJ2)2〉|y1(t )=x1,y2(t )=x2
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= lim
dt→0

1

dt

[
terms(N1, N2, O(dt4)) + terms(gi j, O(dt2)) + terms(mixing ξi j )

+ 〈
ξ 2

1,1

〉〈
ξ 2

2,1

〉〈(dJ1)4〉 + 〈
ξ 2

1,2

〉〈
ξ 2

2,2

〉〈(dJ2)4〉 + 〈
ξ 2

1,1

〉〈
ξ 2

2,2

〉〈(dJ1)2〉〈(dJ2)2〉 + 〈
ξ 2

1,2

〉〈
ξ 2

2,1

〉〈(dJ1)2〉〈(dJ2)2〉]
= [s1,1s2,1λ1 + s1,2s2,2λ2].

Terms including dt on the right-hand side of the above equation vanish for dt → 0, where as well 〈ξ1,1ξ1,2〉 = 〈ξ1,1〉〈ξ1,2〉 = 0,
and 1

dt [〈(dJ1)2〉〈(dJ2)2〉] = 1
dt [λ1dtλ2dt] ∝ dt vanishes in the limit dt → 0.

5. Kramers-Moyal coefficients M[�,m], for 2 × (�, m) � 2

For (2�, 2m), with (�, m) � 4, the Kramers-Moyal coefficients M[2�,2m] are as follows:

M[2�,2m] = lim
dt→0

1

dt
〈(dy1)2�(dy2)2m〉|y1(t )=x1,y2(t )=x2

= lim
dt→0

1

dt
〈(N1dt + g1,1dw1 + g1,2dw2 + ξ1,1dJ1 + ξ1,2dJ2)2�

× (N2dt + g2,1dw1 + g2,2dw2 + ξ2,1dJ1 + ξ2,2dJ2)2m〉|y1(t )=x1,y2(t )=x2

= lim
dt→0

1

dt

[〈
ξ 2�

1,1

〉〈
ξ 2m

2,1

〉〈(dJ1)2(�+m)〉 + 〈
ξ 2�

1,2

〉〈
ξ 2m

2,2

〉〈(dJ2)2(�+m)〉]
= [〈

ξ 2�
1,1

〉〈
ξ 2m

2,1

〉
λ1 + 〈

ξ 2�
1,2

〉〈
ξ 2m

2,2

〉
λ2

]
= (2�)!

2��!

(2m)!

2mm!

[
s�

1,1sm
2,1λ1 + s�

1,2sm
2,2λ2

]
.

In the last step, take the fact that the jump amplitudes ξi, j are Gaussian distributed; thus, 〈ξ 2�
i, j〉 ∝ σ 2�

ξi, j
= s�

i, j . In this manner, all

Kramers-Moyal coefficients M[2�,2m] with (�, m) � 1 are obtained.

APPENDIX B: EXTENDED RESULTS FOR MODELED DATA BY EQ. (15)

Figure 9 extends Fig. 4 and includes the Kramers-Moyal coefficients M[1,0], M[0,1], M[1,1], M[2,0], M[0,2], M[2,2], M[4,0],
M[0,4], M[4,4], M[6,0], M[0,6], M[6,6], M[8,0], and M[0,8].
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FIG. 9. Two-dimensional Kramers-Moyal coefficients M[�,m] of bivariate jump-diffusion processes given by Eq. (15) and all theoretical
expected functions f [�,m] associated with each KM coefficient according to Eqs. (13), (15), and (18). Shown are the KM coefficients M[1,0],
M[0,1], M[1,1], M[2,0], M[0,2], M[2,2], M[4,0], M[0,4], M[4,4], M[6,0], M[0,6], M[6,6], M[8,0], and M[0,8]. The respective error volumes read
V [1,0]

err = 0.6836, V [0,1]
err = 0.23, V [1,1]

err = 0.01, V [2,0]
err = 0.01, V [0,2]

err = 0.03, V [2,2]
err = 0.01, V [4,0]

err = 0.02, V [0,4]
err = 0.03, V [4,4]

err < 0.01, V [6,0]
err =

0.02, V [0,6]
err = 0.01, V [6,6]

err = 0.01, V [8,0]
err = 0.04, and V [0,8]

err = 0.26.
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