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In a recent letter we presented a framework for predicting the concentrations of many-particle local structures
inside the bulk liquid as a route to assessing changes in the liquid approaching dynamical arrest. Central to
this framework was the morphometric approach, a synthesis of integral geometry and liquid-state theory, which
has traditionally been derived from fundamental measure theory. We present the morphometric approach in a
new context as a generalization of scaled-particle theory, and we derive several morphometric theories for hard
spheres of fundamental and practical interest. Our central result is a new theory that is particularly suited to
the treatment of many-body correlation functions in the hard-sphere liquid, which we demonstrate by numerical
tests against simulation.
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I. INTRODUCTION

Since the beginning of modern liquid-state theory [1], the
hard-sphere liquid has remained the archetypal model for
atomic systems and soft matter. The dynamics of the system
at high density in the metastable regime above the freezing
transition are hotly debated, despite relentless study. Proposed
mechanisms for dynamical phenomena all loosely fall under
the broad umbrella of many-body correlations; nucleation
occurs via crystal seed formation [2], and to explain dynamic
arrest approaching the glass transition thermodynamic theo-
ries invoke cooperatively rearranging regions [3] or elastic
soft modes [4], while kinetic theories posit the existence of
dynamical defects [5]. In a recent letter [6] we proposed a
framework for treating many-body correlations, and devel-
oped an operational scheme for predicting the populations and
dynamics of local structural motifs within a uniform liquid.
Central to this is the use of the morphometric approach.

The morphometric approach provides an efficient means
of treating the thermodynamics of a bulk liquid without fully
determining its equilibrium density profile [6–9]. Detailed
investigations have shown that it is highly accurate in the
hard-sphere liquid regime [10–15], so we can expect an ac-
curate treatment where the bulk system provides background
depletion interactions while its detailed microstates remain
unimportant. This feature makes it ideally suited for many-
body correlations if we can identify relevant dynamical de-
grees of freedom. While existing morphometric theories have
been proven accurate in the liquid regime, we require a theory
which works in the supercooled regime. Here we derive such
a theory using scaled-particle theory (SPT).

SPT determines bulk properties from consideration of a
spherical solute of varying radius. It remains one of most
enduring theories of simple liquids; though 60 years old as
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of this year [16], aspects of this approach remain in modern
theories. This is particularly true for hard spheres where SPT
has been unified with the Percus-Yevick integral equation
solution [17], another old theory, in the form of fundamental
measure theory (FMT) [18]. Though originally a theory of
single-component hard spheres [16], SPT has been extended
to other potentials [19–21] and shapes [22,23], mixtures [24],
dimers [25,26], and disks [27–29]. Morphological thermody-
namics can be seen as a modern generalization of SPT for
a wide class of physically relevant geometries. Its basis in
integral geometry replaces the semi-empirical approach of
classical SPT with clearly defined postulates. In this work we
present the morphometric approach in the context of SPT and
derive a new theory suitable for high densities above freezing.
In the Appendices, we show that minor modifications of our
arguments can be used to derive previous theories: the clas-
sical SPT coefficients, and the White Bear II morphometric
coefficients of Ref. [30].

In Sec. II we show how one can map the problem of treat-
ing many-body correlations onto a solvent-solute problem. We
spend the rest of the paper discussing the solvation problem
through the lens of SPT. We introduce the morphometric
approach as a useful generalization of SPT in Sec. III, and de-
rive a theory well-suited for treating many-body correlations
using scaled-particle arguments. In Sec. IV we numerically
test these theories’ two- and three-body correlation func-
tions to demonstrate their effectiveness in treating correlation
functions.

II. SOLVATION EXPRESSION FOR MANY-BODY
CORRELATIONS

A. Correlations in terms of the insertion cost

We will show that correlations of n particles at positions
�rn := {�r1, · · · , �rn} can be expressed in terms of the free-
energy cost of inserting them at �rn, by generalizing the
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potential distribution theorem [31,32] to many particles. The
classical approach, also known as Widom’s insertion method,
expresses the (excess) chemical potential μex of a single-
component system as the free-energy cost of inserting an
additional particle. See Ref. [33] and references therein for a
detailed review of this classical approach. Our generalization
results in a potential of mean force for interactions between
the n particles, which is formally identical to the chemical
potential of a solute; this latter form is particularly suitable
for geometric approximation schemes.

We consider a bulk liquid (the solvent) of N particles with
interaction potential energy UN . Integrating over all solvent
arrangements in the absence of any external field gives the
(grand-canonical) average,

〈· · · 〉 = 1

�

∞∑
N=0

zN

N!

∫
(· · · )e−βUN d�rN ,

with partition function � := e−β�hom , where �hom = −pV is
the usual homogeneous grand potential. The activity is z =
exp βμ/�d in terms of the (total) chemical potential μ and
the thermal de Broglie wavelength �.

Descriptions of many-body correlations naturally employ
the n-particle density ρ (n), defined as

Prob
[
anyn particles in volume d�rn

]
:= ρ (n)(�rn) d�rn. (1)

The n-density can be obtained by integrating the full (config-
urational) probability distribution over the remaining degrees
of freedom. For the single-component system this yields [34]

ρ (n)(�rn) = 1

�

∞∑
N=n

zN

(N − n)!

∫
e−βUN d�r (N−n).

Changing the summation limits N → N + n we obtain

ρ (n)(�rn) = zn

�

∞∑
N=0

zN

N!

∫
e−βUN+n d�rN

= zne−βUn
〈
e−βUn↔N

〉
, (2)

where in the latter step we decomposed the total potential
UN+n into purely local and solvent terms, i.e., UN+n = Un +
UN + Un↔N , where Uα for α ∈ {n, N} indicates the internal
interactions between particles in component α. The “inter-
species” interactions are contained within Un↔N which acts
as an external field for the solvent. Thus, Eq. (2) becomes

ρ (n)(�rn) = zne−β(Un+�−�hom ),

where � is the grand potential of the solvent in the presence of
the n-particle inhomogeneity. Splitting the chemical potential
into its ideal and excess parts so that βμ = ln �dρ + βμex

gives

ρ (n)(�rn) = ρne−β(Un+�−�hom−nμex ).

The n-particle distribution functions are then determined from
[34]

g(n)(�rn) := ρ (n)(�rn)

ρn
= e−β(Un+��−nμex ), (3)

where �� := � − �hom is the reversible (free-energy) cost
of inserting the particles at fixed position �rn, or equivalently

FIG. 1. The system considered for many-body correlations
showing (a) the local particles surrounded by the remaining liquid
acting as a thermal reservoir at fixed chemical potential and tem-
perature and (b) possible partitions of space into the local L and
remaining R components for two choices of dividing surface: ∂L1

is the molecular surface, while ∂L2 is the solvent accessible surface
[see discussion around Eq. (10)].

describes the average depletion interactions between mobile
particles. For n = 1 we have �� = μex and this is identical
to the potential distribution theorem of Widom [31,32]. The
distribution functions are written in terms of the potential

φ(n)(�rn) := −kBT ln g(n)(�rn)

= Un + �� − nμex, (4)

which we call the generalized potential of mean force. For the
case n = 2 this reduces to the usual potential of mean force in
the liquid-state literature [34].

This completes our proof that the correlations can be trans-
formed to a potential, and we can proceed with a geometrical
construction for ��.

B. Representing the insertion cost as a solvation problem

For systems with excluded volume interactions, we can
divide the space into a local component L ⊂ Rd of volume VL
inaccessible to solvent degrees of freedom and the remaining
space R = Rd \ L of volume VR filled by the rest of the
liquid (Fig. 1). The total volume is V = VL + VR so the
homogeneous grand potential is

�hom = −pV.

After inserting the inhomogeneity the total volume accessible
to the rest of the liquid will be reduced by VL, so the grand
potential becomes

� = −pVR + �ex[∂L],

where �ex is an excess term brought about by the introduction
of a dividing surface ∂L between the two liquid components.
Subtracting these two expressions gives

�� := � − �hom = pVL + �ex[∂L].

This dividing surface has area A∂L, creating a surface tension
γ so we can write the excess term as

�ex[∂L] = γ [∂L]A∂L,

which is a formal definition of surface tension and depends on
the choice of dividing surface [see two examples in Fig. 1(b)].
We know from density functional theory [35] that the excess
free energy is a functional of the density profile, which will
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in turn depend on the shape of the boundary; we write γ =
γ [∂L] to indicate this functional dependence on the surface
shape. The solvation form of the inhomogeneous grand poten-
tial term in Eq. (4) is then

��[L] = pVL + γ [∂L]A∂L. (5)

The problem of determining the n-particle distributions has
been reduced to a solvation problem: we must find the surface
tension between a solute (the specific local arrangement) and
a solvent (the rest of the liquid). We will use the solute–
solvent terminology, but one could also think of local-bulk
nomenclature.

III. OBTAINING A MORPHOLOGICAL THEORY
FOR MANY-BODY CORRELATIONS

We will consider a single-component hard-sphere fluid, for
particles of diameter σ and bulk volume fraction η. Using
the correspondence between many-body correlation functions
and chemical potentials, we require an approximate model for
solvation and a choice of surface in Eq. (5) to evaluate �� in
Eq. (4). We introduce our central approximation in Sec. III A
and our choice of surface in Sec. III B. Then, we show that pre-
vious theories fail to produce accurate correlation functions at
high densities in Sec. III C and derive a new theory to rectify
this in Sec. III D.

A. Our central approximation: the morphometric
or scaled-particle ansatz

Our key approximation, the morphometric approach, can
be understood as a generalization of scaled-particle theory.
In every formulation of scaled-particle theory one considers a
hard spherical solute of radius R. In most approaches, the cost
�� is assumed to have an analytic expansion in powers of
the radius; in classical approaches this was simply postulated,
however, we will be able provide proper justification below
through geometric arguments. Recognising that terms scaling
faster than R3 must be zero for it to remain well-defined in the
limit of large solutes leads to the third-order polynomial [16]

��(R) = p
4πR3

3
+ a2 4πR2 + a1 4πR + a0 4π, (6)

where we identified the largest power with the work term pV
from comparison with Eq. (5), and {a0, a1, a2} are thermody-
namic coefficients describing the subleading corrections. We
have chosen to introduce factors of 4π in front of the sub-
leading terms to lead into the generalization beyond spherical
geometries. For a general solute K ⊂ R3 we then write the
morphometric insertion cost as

��[K] = pV [K] + a2A[K] + a1C[K] + a0X [K], (7)

where C and X are the integrated mean and Gaussian curva-
tures. For a spherical solute these reduce to the values given in
Eq. (6), so this represents a proper generalization of SPT for
more general geometries. The ansatz Eq. (7) can be justified
through integral geometric arguments [6,7].

The key advantage of a geometric expansion of the free
energy is that the role of thermodynamics and geometry
are kept separate. Thermodynamics only enters through the

coefficients {p, a2, a1, a0}, so they can be determined in sim-
ple geometries to obtain a general theory. As a linear theory,
only four (independent) equations are required to fix these
coefficients; with many thermodynamic relations to choose
from this approximate theory is overconstrained in general.
We must use physical intuition to choose suitable equations,
after which the accuracy of the resulting coefficients can be
assessed. After determining these coefficients all the complex-
ity of computing �� is reduced to measuring the geometric
quantities {V, A,C, X } of the specific solute. However, we
must first specify a choice of surface ∂L in Eq. (5) before we
can proceed.

B. Choice of dividing surface

All coefficients we give are for the molecular geometry
bounded by the molecular surface [∂L1 in Fig. 1(b)], the
surface where interactions occur between the solute and a
test particle representing the remaining liquid. However, it is
usually more convenient to do calculations with the excluded
geometry: the space inaccessible to the centre of a test particle
bounded by the solvent accessible surface [∂L2 in Fig. 1(b)].
Note that there is also an infinite family of well-defined
parallel surfaces between these two extremes, but they are not
widely used in practice so we will not consider them [10]. The
choice of dividing surface will change the surface tension, and
thus requires new coefficients {a′

0, a′
1, a′

2}, i.e.,

��[K] = pV+[K] + a′
2A+[K] + a′

1C+[K] + a′
0X+[K], (8)

where the excluded geometry terms transform via the canoni-
cal relations [10,30,36,37]

X+[K] = X [K], (9a)

C+[K] = C[K] + σ

2
X [K], (9b)

A+[K] = A[K] + σ C[K] + σ 2

4
X [K], (9c)

V+[K] = V [K] + σ

2
A[K] + σ 2

4
C[K] + σ 3

24
X [K]. (9d)

It is straightforward to transform between these two con-
ventions via [10,30]

a′
0 = a0 − σ

2
a1 + σ 2

4
a2 − σ 3

24
p, (10a)

a′
1 = a1 − σa2 + σ 2

4
p, (10b)

a′
2 = a2 − σ

2
p. (10c)

The resulting �� will be identical whichever surface is
chosen, except when there is a topological change in the
molecular surface marking the breakdown of the theory; this
is discussed in detail in Ref. [10].

C. Failure of previous morphometric theories in treating
correlations

Having specified the surface, we can examine the self-
consistency of correlation functions determined through pre-
viously known morphological theories. We briefly state the
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main theories below, then proceed to show how they produce
inaccurate correlation functions at high densities. This under-
scores the need for a more accurate theory, and the specific
inconsistency we highlight in this section will be used to
construct one in the next section.

With either the scaled particle or morphometric ansatzes,
Eq. (6) or Eq. (7), a specific theory comprises the set of
coefficients {p, a2, a1, a0}. In Appendix A we summarize
the classical scaled-particle arguments of Refs. [16,24] using
modern notation, which produce coefficients

βaSPT/PY
0 = − ln (1 − η)

4π
, (11a)

βaSPT/PY
1 = 3η

2πσ (1 − η)
, (11b)

βaSPT/PY
2 = 6η + 3η2

2πσ 2(1 − η)2
, (11c)

βpSPT/PY

ρ
= 1 + η + η2

(1 − η)3
. (11d)

In this classical approach, the Percus-Yevick (PY) equation
of state emerges as an output of the theory. More recently,
morphometric theories have been obtained as the bulk limit of
FMT, with the hitherto most successful theory determined in
Ref. [30] as

βaSPT/CS
0 = − ln (1 − η)

4π
, (12a)

βaSPT/CS
1 = 1

2πσ

[
5η + η2

1 − η
+ 2 ln (1 − η)

]
, (12b)

βaSPT/CS
2 = 1

πσ 2

[
η(2 + 3η − 2η2)

(1 − η)2
− ln (1 − η)

]
, (12c)

βpSPT/CS

ρ
= 1 + η + η2 − η3

(1 − η)3
, (12d)

obtained from a functional constructed to impose the
Carnahan-Starling (CS) equation of state Eq. (12d). The latter
equation of state is known to be highly accurate across the
whole stable liquid regime, and even at the high density
limits accessible to simulation in the supercooled regime [38].
The same equations are also obtained in the bulk limit of
the functional of Ref. [39], which similarly imposes the CS
pressure but is slightly more self-consistent. Curiously, we
can make a minor modification to SPT arguments to impose
the CS equation of state as an input to obtain the above
coefficients without invoking FMT (details in Appendix B).
We thus label this theory as SPT/CS.

To demonstrate the inaccuracy of the correlation functions
produced by these known theories using Eq. (3), we consider
what happens to the pair correlation at high densities. The
potential of mean force Eq. (4) for nonoverlapping spheres
with the morphometric ansatz Eq. (7) is written

φ(2)(r) := −kBT ln g(2)(r)

= pV (r) + a2A(r) + a1C(r) + a0X (r) − 2μex[p].

(13)

As a self-consistency test, we will compare this explicit result
at contact against the exact value of g(2)(σ ) predicted by the
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FIG. 2. Contact values of the radial distribution function against
volume fraction η and reduced pressure for the hard-sphere liq-
uid with Eqs. (3) and (7) for the explicit form of g(2), assuming
the Carnahan-Starling (CS) and scaled-particle theory and Percus-
Yevick (SPT/PY) equations of state. Contact values are determined
with three sets of morphometric coefficients: virial/CS, derived in
this work to be quasiexact [i.e., satisfying the virial theorem (14)]
by construction; SPT/CS, a generalization of scaled-particle theory
which imposes the CS equation of state; and SPT/PY, the classical
scaled-particle solution. The latter two scaled-particle theories fea-
ture a spurious decay in the supercooled regime (shaded area). The
hard-sphere freezing and melting volume fractions are indicated by
pink dashed lines to show the onset of the supercooled regime.

virial theorem as [34]

g(2)(σ ) = 3

2πσ 3ρ

(
βp

ρ
− 1

)
. (14)

To evaluate Eq. (13) we need to calculate the size measures
for the two particle solute resembling a “dumbbell.” It is
easier to calculate these for the excluded volume geometry,
after which we can obtain the molecular volumes using the
canonical relations Eq. (9). The excluded volume consists of
the union of two balls of radius σ separated by a distance r.
The geometric properties at contact are then [10]

X+(σ ) = 4π,

C+(σ ) =
(

6 − π

2
√

3

)
πσ,

A+(σ ) = 6πσ 2,

V+(σ ) = 9πσ 3

4
.

Transforming to the parallel molecular surface using the in-
verse transformation of Eq. (9) gives the solute parameters as

C(σ ) =
(

4 − π

2
√

3

)
πσ, (15a)

A(σ ) =
(

1 + π

2
√

3

)
πσ 2, (15b)

V (σ ) =
(

7

12
− π

8
√

3

)
πσ 3. (15c)

Figure 2 shows the contact value g(2)(σ ) from inserting
these geometric parameters into Eq. (13), and the quasiexact
result of Eq. (14) assuming the CS equation of state Eq. (12d).
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We find that both known morphometric theories Eqs. (11) and
(12) are reasonably accurate until around the freezing density,
above which contact correlations spuriously decay. Thus, a
new theory is needed to treat correlations at high densities; in
the next section we will construct one which satisfies Eq. (14)
by construction.

D. Obtaining the new theory by self-consistency of the contact
value of g(2)(r) with the virial theorem

Our goal is to develop a morphometric theory which pro-
duces accurate correlation functions g(n). As described at the

end of the last section, the correlation functions produced by
an SPT approach are inaccurate at high densities. We will
correct the spurious decay of the contact value of the pair
distribution function g(2)(r) at high densities by building this
into the theory explicitly, with the aim of producing more
accurate correlation functions. A working understanding of
scaled-particle arguments is necessary to follow the details of
this derivation, which we lay out in Appendices A and B.

Inserting the volumes at contact Eq. (15) into Eq. (13) and
applying the virial theorem Eq. (14) for the contact value of
g(2) gives the final expression

p

(
7

12
− π

8
√

3

)
πσ 3 + a2

(
1 + π

2
√

3

)
πσ 2 + a1

(
4 − π

2
√

3

)
πσ + a0 4π = 2μex[p] − β−1 ln

3

2πρσ 3

(
βp

ρ
− 1

)
. (16)

We will use this last expression instead of the contact theorem Eq. (A4) in order to obtain new coefficients. Together Eqs. (A2a),
(A3), and (16) solve to give coefficients

βavirial
0 = − ln (1 − η)

4π
, (17a)

βavirial
1 = 1

(
√

3π − 4)πσ

[(
5 − 5π

2
√

3

)
η
βp

ρ
−

(
2 − π√

3

)
βμex[p] + π√

3
ln (1 − η) + 2 ln

(
βp
ρ

− 1

4η

)]
, (17b)

βavirial
2 = − 1

(
√

3π − 4)πσ 2

[(
6 − 2π√

3

)
η
βp

ρ
− π√

3
βμex[p] +

(
4 − π√

3

)
ln (1 − η) + 4 ln

(
βp
ρ

− 1

4η

)]
. (17c)

We refer to coefficients obtained this way for the CS pres-
sure (12d) as virial/CS, but we will not give them explicitly.
Unlike the WBII coefficients above these are new. The pair
correlation produced by these coefficients (black line in Fig. 2)
is self-consistent with CS at contact by construction.

IV. NUMERICAL RESULTS

We apply the thermodynamic coefficients determined in
previous sections for a system of hard spheres to obtain
two- and three-body distribution functions using the gener-
alized potential of mean force Eq. (4) with the morphometric
approach Eq. (7), and compare these against molecular dy-
namics simulations. For the analytics we determine the in-
put geometric quantities {V, A,C, X } using the algorithms of
Refs. [41,42]. For the simulations we performed event-driven
molecular dynamics of N = 1372 monodisperse hard spheres
using the DynamO software package [43]. We measure the
pair and triplet distribution functions g(2) and g(3) for simula-
tions at η = 0.45. For simulations above freezing η � 0.494
we used a five-component equimolar distribution with ∼8%
polydispersity.

For g(2) shown in Fig. 3 we find the virial/CS theory
outperforms the SPT/CS theory even away from contact.
The agreement with the molecular dynamics simulations is
excellent, until r �

√
3σ , where the solute boundary self-

intersects marking the end of the theory’s regime of validity.
Geometrically, the regime r <

√
3σ is the regime where the

canonical relations Eq. (9) apply so the thermodynamics is
independent of the choice of surface definition. Physically,
for r >

√
3σ interactions between solvent particles can occur

through the solute, and these correlations are not captured by
the theory. More discussion of this breakdown can be found
in Ref. [10]. Only the contact value was fixed, so accuracy for
r > σ was not guaranteed; the accuracy is a welcome bonus.

r/σ

1

2

3

4

g
(r

)

SPT/CS
virial/CS
MD

1 2 3 4

1 2r/σ
−0.3

0.3

Δ
g
(r

)

FIG. 3. Comparing radial distribution functions of the morpho-
metric theories which impose the Carnahan-Starling equation of state
Eq. (12d), against results of molecular dynamics (MD) simulations
at volume fraction η = 0.45. The inset shows the difference between
the two theoretical distribution functions and the molecular dynam-
ics. The purple dashed line indicates where the molecular surface
self-intersects at r = √

3σ , marking the end of the theory’s regime
of validity.
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FIG. 4. Errors in different morphometric theories for hard
spheres. Top panel: error in the coordination defined in Eq. (18),
giving the average number of neighbours in the shell r < 1.4σ

around a particle. Bottom panel: planar surface tensions against
volume fraction, using the highly accurate result Eq. (19) from
Ref. [40] valid until η ∼ 0.5.

We can quantify this accuracy through the integrated value

z(δ) = 4π

∫ σ+δ

σ

ρ (2)(r) r2 dr (18)

shown in the top panel of Fig. 4 where we take δ = 0.4σ .
We find this integrated quantity is within 10% accuracy across
the liquid regime for all three theories, with the new theory
performing substantially better overall. Despite the improved
accuracy, the errors begin to increase in magnitude at the end
of the liquid regime so we expect them to become significant
with very deep supercooling.

Next we compare the theories’ predicted surface tension
against simulation data. The surface tension at a planar wall is
simply a2 because it conjugates with the area. In Ref. [40] a
highly accurate a2 was measured for hard spheres through ex-
tensive simulation, which was parameterised by the following
expression:

βa2 = 1

πσ 2

[
η(2 + 3η − 9

5η2 − 4
5η3 − (5 × 104)η20)

(1 − η)2

− ln (1−η)

]
. (19)

Comparing this highly accurate expression against the
values predicted from the morphometric coefficients, we
find the virial/CS surface tension is less accurate than the
SPT/CS prediction (Fig. 4 bottom panel) despite its superior
correlation functions at high densities. Moreover, we find
that at low densities the new theory is less accurate than
classical SPT/PY theory. This discrepancy occurs because
both SPT/PY and SPT/CS feature the correct low density
asymptotics of a2 ∼ O(η), which is imposed through the
radial derivative of ��(r) in the point solute limit Eq. (A2b).
This suggests that the new virial/CS theory sacrifices asymp-
totic accuracy at low densities, for more self-consistency
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FIG. 5. Comparison of predicted correlations for the morphome-
tric approaches in triangular geometries, i.e., the first correlations
beyond the pair level, against molecular dynamics simulations at
volume fraction η = 0.45. In the bottom panel we also include the
tabulated values of Ref. [44] for comparison.

of the surface tension at moderate to high densities. One
of the great strengths of the SPT/CS theory is its accuracy
in the planar limit [30], and so SPT/CS coefficients may give
more accurate grand potentials (and thus correlations) for
large solutes where the surface becomes approximately
planar.

Our goal was to develop a theory capable of treating corre-
lations at the many-body level, so we now examine three-body
correlation functions. Triplet geometries are characterised by
a triangle of side lengths r, s, t so g(3) = g(3)(r, s, t ). We also
compare the morphometric theories against the Kirkwood
approximation [1], i.e.,

g(3)(r, s, t ) ≈ g(2)(r)g(2)(s)g(2)(t ), (20)

where we take the values of g(2) from the virial/CS theory
because of its already demonstrated accuracy at the two body
level. Comparison of the morphometric correlation functions,
and the Kirkwood closure, against molecular dynamics are
shown in Fig. 5. The virial/CS closure most closely matches
the simulations at high densities, suggesting the theory is
suitable for modeling complex many-particle local structures
[6]. For comparison we also include the tabulated values of
Ref. [44], where g(3) is used to treat polyatomic molecules
[46]; our theory is marginally more accurate, and more im-
portantly it provides a recipe for treating the higher-order
correlation functions.

To quantify accuracy at the three-body level we con-
sider the concentration of triangles with side lengths r, s, t ∈
[σ, σ + δ] in the bulk liquid, from Eq. (1) we find this as [47]

C�(δ) = 8π2
∫ σ+δ

σ

∫ σ+δ

σ

∫ σ+δ

σ

ρ (3)(r, s, t ) rst drdsdt . (21)

Comparison with molecular dynamics simulations in Fig. 6
shows similar levels of accuracy for small δ, though the per-
formance decreases as it is increased above the first minimum
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FIG. 6. Concentration of triangles in the hard-sphere liquid with
side lengths r, s, t ∈ [σ, σ + δ] versus volume fraction. Direct mea-
surements by molecular dynamics using a single-component system
and an 8% polydisperse system, while the lines show predictions
from the morphometric theories described in text. The hard-sphere
freezing and melting volume fractions are indicated by pink dashed
lines to show the onset of the supercooled regime. Inset: contact
value of g(3) showing how the errors in the SPT/CS theory arise from
underestimation close to contact.

of the g(2)(r); this is not surprising as our virial closure only
enforces accuracy approaching contact. Notably, the Kirk-
wood approximation Eq. (20) performs surprisingly well at
the three-body level in both of these tests.

V. DISCUSSION AND SUMMARY

We have presented the morphometric approach as a gen-
eralization of SPT, thus placing the scaled-particle ansatz
on more precise and physically motivated assumptions, i.e.,
those underlying the theorems of integral geometry. Using
the scaled-particle approach we have systematically derived
a new theory capable of accurately calculating many-body
correlations in the hard-sphere liquid; we recently used this to
accurately treat local structures in Ref. [6]. Our scaled-particle
formalism is flexible enough to derive all known morphomet-
ric theories without involving fundamental measure theory.

In principle this approach could be extended to simple
liquids where the interaction potential can be approximated as
a perturbation around a hard core. However, as we exploited
features of the hard-sphere interaction potential to achieve
closed form expressions, more realistic interaction potentials
would likely require numerical expressions. Additionally, at-
tractions can introduce nonanalytic behavior surface phase
transitions not present in our theory [48,49].

By making the underlying assumptions explicit we can
better understand the limits of the theory: any deviation from
the morphometric/SPT ansatz must be due to a violation of
translation or rotation invariance, additivity or continuity [7].
The fact that these theories are very accurate for hard spheres
suggests that the assumptions are only weakly violated for

this system. While translational or rotational invariance and
continuity are physically plausible conditions on ��, additiv-
ity is a very strong assumption. In particular, we expect sig-
nificant deviations from additivity where the liquid develops
a static length scale exceeding the size of the solute [7]. As
such, we expect the validity of the morphometric approach to
require the solute to be larger than the point-to-set length [50],
which acts as an upper bound for all structural length scales
[51]. The morphometric ansatz must break down approaching
a critical point, so it cannot be used to obtain asymptotics in
the event of a thermodynamic glass transition.

Finally, we remark that while it is tempting to call the
treatment of bulk degrees of freedom with the morphometric
approach mean-field, this would not be completely accurate.
Mean-field theories typically become formally exact in the
limit of infinite spatial dimensions, where the thermodynamic
role of fluctuations disappears. By contrast, the morphometric
approach (and related theories like SPT and FMT) become
formally exact in the one-dimensional limit of hard rods.
Though this theory does not explicitly describe fluctuations,
they are built into the choice of thermodynamic coefficients.
In this sense it is more accurate to describe the morphometric
approach (and related theories) as an excluded volume theory,
or as a free volume theory because the thermodynamics only
shows divergent behavior as η → 1.
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APPENDIX A: CLASSICAL SCALED-PARTICLE
RELATIONS

Following the protocol of scaled-particle theories, we con-
sider the insertion of a hard spherical solute of radius R into
the liquid. Assuming the morphometric form for the insertion
cost returns us to the ansatz Eq. (6). Below we give the exact
thermodynamic relations for hard spheres which produce the
classical SPT coefficients.

It is possible to consider the insertion of a solute with a
negative radius: The hard core interaction between the two
particles only occurs when the solute is “inside” a solvent
particle. In this limit the insertion cost can be determined
exactly as [16]

β�� = − ln

[
1 − 4π

(
R + σ

2

)3

3
ρ

]
(A1)

for − σ
2 � R � 0. It may appear concerning that this result

does not possess the morphometric form Eq. (7); however, this
does not discount the validity of the morphometric approach
as the nonphysical geometry violates the continuity assump-
tion [7] because it cannot be approximated by polyhedra.
This places the result for R < 0 outside the theory’s stated
regime of validity, however �� is continuous up to its second
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derivative across R = 0 with a discontinuity in its third deriva-
tive [16]. In the limit R → 0 the expression above corresponds
to the cost of inserting a hard point, giving

β��(R = 0) = − ln (1 − η), (A2a)

β

(
∂��

∂R

)
μ,V,T

∣∣∣∣∣
R=0

= 6η

σ (1 − η)
, (A2b)

β

(
∂2��

∂R2

)
μ,V,T

∣∣∣∣∣
R=0

= 12η2 + 24η

σ 2(1 − η)2
. (A2c)

Note that Eq. (A2a) can also be justified by considering
that the probability of a randomly selected position in space
being empty is simply the free volume 1 − η.

Together applying Eq. (A2) to Eq. (6) fixes the coefficients
{a0, a1, a2}, so the theory requires an additional thermody-
namic relation to determine the pressure. When R = σ

2 the
solute is equivalent to the solvent particles themselves and we
recover �� = μex, so from Eq. (6) we have

��
(

R = σ

2

)
= πσ 3

6
p + πσ 2 a2 + 2πσ a1 + 4π a0 = μex.

(A3)

Combining this expression with the thermodynamic relation
Eq. (B1) gives a differential equation for βp whose solution
gives the classical SPT coefficients for hard spheres [Eq. (11)].
The equation of state Eq. (11d) is equivalent to the one
obtained through the solution of the Percus-Yevick (PY) inte-
gral equation [17]; these two routes have been unified within
FMT [18].

A final thermodynamic relation can be determined as
[6,52]

β

(
∂��

∂R

)
μ,V,T

∣∣∣∣∣
R= σ

2

= 4πσ 2ρ g(2)(σ ).

So inserting the SPT ansatz Eq. (6) gives

πσ 2 p + 4πσ a2 + 4π a1 = 6

βσ

(
βp

ρ
− 1

)
, (A4)

after inserting the virial theorem Eq. (14). This relation is
satisfied by the coefficients Eq. (11), which is surprising given
that it was obtained from a completely different thermody-
namic route and the ansatz Eq. (6) is inexact. Nonetheless,
this self-consistency is a testament to the effectiveness of SPT
and related approaches.

APPENDIX B: FIRST GENERALIZATION: SPT WITH
AN EMPIRICAL EQUATION OF STATE

In the classical SPT approach described in the previous
section, the SPT/PY equation of state emerges as an output
of the theory. Taking inspiration from the White Bear free-
energy functional [53], we reformulate the SPT argument so
that the equation of state is an input to the theory. In so doing
we aim to construct a theory from a more accurate equation
of state, with the trade-off being that we must sacrifice some
self-consistency. The main equation of state we impose is the
CS relation Eq. (12d) [54]. This ultimately results in a theory

previously known as a limit of a free-energy functional [30],
but through simpler arguments. We extend these arguments in
the main text to arrive at a new theory capable of accurately
treating correlation functions.

Since the pressure is now a known input, the excess chem-
ical potential can be determined via

βμex[p] =
(

βp

ρ
− 1

)
+

∫ η

0

(
βp

ρ
− 1

)
dη′

η′ . (B1)

With the pressure fixed we have three free parameters in the
theory {a0, a1, a2}; we must thus choose three out of the five
available thermodynamic relations in Eqs. (A2), (A3), and
(A4) to satisfy. Therefore, we must lose consistency with two
of these relations to obtain a more accurate theory for practical
applications.

To set the correct energy scale we choose to fix ��(R =
0) and ��(R = σ/2) through Eqs. (A2a) and (A3) using
the chemical potential determined by Eq. (B1). This in turn
imposes the consistency of the osmotic pressure Eq. (B1). For
the final equation we choose to set the contact value of g(2)

through Eq. (A4) which better represents solutes of interest
than the two relations for point geometries at R = 0. Solving
these three equations gives the generalized SPT coefficients

βaSPT
0 = − ln (1 − η)

4π
, (B2a)

βaSPT
1 = 1

2πσ

[
(η − 3)

βp

ρ
+ 2βμex[p] + 2 ln (1 − η) + 3

]
,

(B2b)

βaSPT
2 = − 1

πσ 2

[
(2η − 3)

βp

ρ
+ βμex[p] + ln (1 − η) + 3

]
.

(B2c)

It can be verified that inserting the Percus-Yevick equation
of state Eq. (11d) into these expressions yields the previously
obtained coefficients Eq. (11), as expected. Inserting the CS
equation of state we obtain Eq. (12) which are identical
to the coefficients derived from the White Bear II (WBII)
free-energy functional of Ref. [30], although this is only
clear after transforming to the excluded geometry through the
canonical relations Eq. (10). Remarkably, we have obtained
these coefficients through a route completely different from
their original derivation.

In Ref. [30] the coefficients were determined within FMT
by taking the limit of a binary mixture where one compo-
nent is infinitely dilute. Here we completely avoided FMT,
in favour of geometrical arguments similar to the classical
SPT approach outlined in the previous section. This suggests
that this generalized scaled-particle argument is built into
the structure of the WBII functional of Ref. [30]; this is
not an obvious fact as the derivation of this functional did
not explicitly involve these arguments. Rather, the WBII
functional was constructed based on a novel extension of
the CS equation to mixtures by requiring self-consistency
of the osmotic pressure [55]. We imposed this relation by
setting the chemical potential in Eq. (A3) using Eq. (B1). It
is unclear to us how our final choice of using Eq. (A3) instead
of one of the two relations at the origin, i.e., Eq. (A2b) or
Eq. (A2c), is built into the WBII functional.
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