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Oscillations in nonequilibrium noisy systems are important physical phenomena. These oscillations can
happen in autonomous biochemical oscillators such as circadian clocks. They can also manifest as subharmonic
oscillations in periodically driven systems such as time crystals. Oscillations in autonomous systems and, to a
lesser degree, subharmonic oscillations in periodically driven systems have been both thoroughly investigated,
including their relation with thermodynamic cost and noise. We perform a systematic study of oscillations in a
third class of nonequilibrium systems: feedback-driven systems. In particular, we use the apparatus of stochastic
thermodynamics to investigate the role of noise and thermodynamic cost in feedback-driven oscillations. For
a simple two-state model that displays oscillations, we analyze the relation between precision and dissipation,
revealing that oscillations can remain coherent for an indefinite time in a finite system with thermal fluctuations
in a limit of diverging thermodynamic cost. We consider oscillations in a more complex system with several
degrees of freedom, an Ising model driven by feedback between the magnetization and the external field. This
feedback-driven system can display subharmonic oscillations similar to the ones observed in time crystals. We
illustrate the second law for feedback-driven systems that display oscillations. For the Ising model, the oscillating
dissipated heat can be negative. However, when we consider the total entropy that also includes an informational
term related to measurements, the oscillating total entropy change is always positive. We also study the finite-size
scaling of the dissipated heat, providing evidence for the existence of a first-order phase transition for certain
parameter regimes.
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I. INTRODUCTION

Oscillations are a phenomena of paramount importance in
physics, biology, chemistry, and economy. They can happen
on scales ranging from microscopic to astronomical. They
often take place in autonomous nonequilibrium noisy systems
that dissipate energy to sustain the oscillations. Prominent ex-
amples are autonomous biochemical oscillators, such as sys-
tems of interacting molecules that display circadian rhythms
driven by the consumption of chemical energy [1,2].

Fluctuations can fundamentally change the behavior of
biochemical oscillations [3–7]. For instance, noise can gen-
erate oscillations, in the sense that a biochemical system
that has no oscillations in its deterministic description with
nonlinear rate equations can display oscillation at the the level
of a stochastic description that accounts for fluctuations in
the finite number of chemical species. Oscillations in such
finite noisy systems also have a limited precision. In fact,
the relation between the precision of biochemical oscillations
and the amount of dissipated energy required to maintain
them, analyzed through the lens of stochastic thermodynamics
[8], has been the subject of several works [9–15]. Another
example of an autonomous nonequilibrium oscilator recently
analyzed with the theory of stochastic thermodynamics is the
so-called electron shuttle [16].

A second class of nonequilibrium noisy systems that dis-
play oscillations is a certain phase of periodically driven

many-body systems known as time crystals. Time crystals are
systems driven by a time-periodic Hamiltonian that display
oscillations with a period larger than the period of the drive,
so-called subharmonic oscillations. Time crystals have been
studied in closed quantum systems [17–19] and open systems
that dissipate energy [20–23]. Besides displaying spontaneous
symmetry breaking of time translation symmetry, i.e., the
onset of subharmonic oscillations, they also display spatial
long-range order. The relation between thermodynamics and
the precision of subharmonic oscillations in finite stochastic
systems has also been investigated with the theory of stochas-
tic thermodynamics in Ref. [24]. Furthermore, the relation
between thermodynamics and oscillations in a system that
acquires the period of an oscillating effective force has been
analyzed in Ref. [25].

Hitherto we have mentioned two classes of nonequilibrium
systems, autonomous systems driven by a fixed thermody-
namic force such as biochemical oscillators and periodically
driven systems such as time crystals. A third class of nonequi-
librium systems showing oscillations are feedback-driven sys-
tems [26], which are of central importance in engineering
and technology [27]. These systems are driven out of equi-
librium by measurement and feedback, i.e., a change in the
Hamiltonian of the system that depends on the measurement
outcome. Within stochastic thermodynamics, feedback-driven
systems have played an important role in elucidating the
relation between information and thermodynamics [28–30].
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In particular, the total entropy for feedback-driven systems in-
cludes an informational term related to the increase in entropy
generated by the controller that performs the measurements
and applies the feedback. An important general feature of
deterministic feedback-driven systems is that they start to
develop oscillations when the controller tries to fix the system
onto unstable states, in the presence of nonlinearities [27,31].

In this paper we provide a systematic analysis of the ther-
modynamics of temporal oscillations in stochastic feedback-
driven systems. We start with a simple two-state model that
displays oscillations and that can be solved exactly. We then
proceed to study a more complex system with several de-
grees of freedom, a fully interacting Ising model driven by
a feedback scheme, which is discrete in time, between the
external field and the magnetization. This is a generaliza-
tion of the model with continuous feedback introduced in
Ref. [32], which has been shown to display self-oscillations
that persist in the thermodynamic limit below the static critical
temperature.

The two-state model introduced here provides a paradig-
matic, exactly solvable, example of oscillations in feedback-
driven systems. We show that the number of coherent oscil-
lations, an observable that quantifies the precision of noisy
oscillations, can be arbitrarily large in finite feedback-driven
systems subjected to thermal fluctuations. The size of the
system does not impose a fundamental bound on the preci-
sion of oscillations in feedback-driven systems, in contrast
to autonomous systems, for which the number of coherent
oscillations is fundamentally bounded by the number of states
[11]. We also analyze the relation between thermodynamic
cost and precision for this two-state system.

We show that feedback-driven systems display a phase
similar to time crystals: the Ising model with discrete feedback
we introduce here displays subharmonic oscillations with a
period larger than the time interval between two measure-
ments, which can be taken as the natural period of a feedback
driven systems. The oscillations in the magnetization, which
persist indefinitely in the thermodynamic limit, take place for
temperatures below the critical static temperature.

Concerning the scaling of the rate of entropy production
per spin with system size, we show that in the thermodynamic
limit this rate is zero above the critical temperature and is
larger than zero below the critical temperature. At criticality,
the rate of entropy production per spin can either go to
zero with a mean-field exponent or it can be finite, which
correspond to second-order and first-order phase transitions,
respectively.

Thermodynamic quantities such as heat and work also
oscillate below the critical temperature. We show that while
the oscillating dissipated heat can be negative, if we also
include the informational contribution to the total entropy
change that appears in the second law for feedback-driven
systems, the total entropy change is positive for all times.

The paper is organized in the following way. In Sec. II
we analyze the two-state model. Section III is dedicated
to the Ising model. We conclude in Sec. IV. Appendix A
contains a brief introduction to the stochastic thermodynamics
of feedback-driven systems. The finite-size scaling analysis
of the rate of entropy production for the Ising model with
continuous feedback is reported in Appendix B.

II. TWO-STATE MODEL WITH FEEDBACK

A. Definition of the model

We first introduce a simple feedback-driven system that
displays oscillations. A general definition of thermody-
namic quantities in feedback-driven systems is provided in
Appendix A. The system consists of a single spin with two
states s = ±1. The energy is given by Es = −hs, where h is
the external magnetic field. The spin is in contact with a heat
bath at temperature T ; it flips between these two states due to
thermal fluctuations for a time interval τ . We assume that the
dynamics of the system during this time interval is Markovian.
The master equation for the evolution of the probability to be
at state s = 1 during the nth time interval reads

d

dt
pn(t ) = w

hn
1 [1 − pn(t )] − w

hn
2 pn(t ), (1)

where w
hn
1 is the transition rate from state s = −1 to state

s = 1 and w
hn
2 is the reversed transition rate. These transition

rates fulfill the detailed balance condition

w
hn
2

w
hn
1

= e−2βhn , (2)

where β = 1/(kBT ) and kB is the Boltzmann constant that is
set to kB = 1 throughout.

A feedback-driven system is also characterized by mea-
surement and feedback. At the end of a time interval, the
state of the system is measured without measurement error.
The feedback scheme is such that if the system at the end of
the nth time interval is in the state sn = 1 (sn = −1), then the
magnetic field for the next time interval is set to hn+1 = −h0

(hn+1 = h0), where h0 � 0. We note that the transition rates
in Eq. (1) are not fixed quantities, but rather they depend on
the state of the system in the previous time interval, i.e., they
are random quantities that depend on the particular stochastic
trajectory.

B. Oscillatory behavior

This feedback scheme generates oscillations on the average
spin orientation at the end of a time interval as a function
of n. In the following we show this property with the exact
calculation of the average spin orientation.

We assume that τ is large as compared to the relaxation
time to reach the stationary distribution. The probability to be
in state s = 1 at the end of the nth time interval pn is then

pn = eβhn

2 cosh(βhn)
. (3)

From the feedback rule that the the external field for the
next time interval has the opposite sign to the orientation of
the spin at the end of the present time interval, we obtain that
the probability pn follows the recursion relation:

pn+1 = (1 − pn)p + pn(1 − p), (4)

where

p = eβh0

2 cosh(βh0)
. (5)
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FIG. 1. Oscillations in the two-state model. The inverse tempera-
ture is set to β = 1. The average spin orientation sn is given in Eq. (7).

As initial condition we set h1 = h0 for the first time interval
n = 1. The solution of Eq. (4) is given by

pn = 1
2 [1 − (1 − 2p)n]. (6)

Hence, the average spin orientation sn = pn(+1) +
(1 − pn)(−1) reads

sn = (−1)n+1[tanh(βh0)]n, (7)

where we have used Eq. (5). As shown in Fig. 1, sn oscillates
between positive and negative values with a period nosc = 2
in terms of the integer n. In terms of time such oscillations
correspond to a period 2τ , where τ is the time interval
between two measurements. Oscillations in feedback-driven
systems with a discrete feedback scheme are subharmonic,
i.e., they have a period of oscillation larger than the natural
period of the feedback-driven system τ . We point out that
oscillations between two states also take place in a model for
the elongation of a single RNA molecule that has a free energy
with two minima [33,34].

C. Relation between precision and work

The amplitude of the oscillations decay exponentially since
tanh(βh0) � 1. This damping of the oscillations in the aver-
age spin orientation is related to noise. If we consider two
different stochastic trajectories, after some time they will have
different phases due to fluctuations. The number of coherent
oscillations that characterizes the precision of the oscillations
is defined as the ratio of the decay time and the period of
oscillation. If we rewrite Eq. (7) as

sn = cos(πn + π )e−n[− ln tanh(βh0 )]

≡ cos(2πn/nosc + π )e−n/ndec , (8)

we obtain the decay time ndec = {− ln[tanh(βh0)]}−1. The
number of coherent oscillations is then

N ≡ ndec

nosc
= {− ln[tanh(βh0)]}−1

2
. (9)

Even though the transition rates during a time interval
fulfill detailed balance, the feedback procedure drives the
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FIG. 2. Parametric plot of ln(N ) versus Wavg for the two-state
model. The inverse temperature is β = 1, and the external field is
varied from h0 = 0.1 to h0 = 5.

system out of equilibrium. The average work exerted on the
system per time interval is

Wavg = p(2h0) − (1 − p)(2h0) = 2h0 tanh(βh0). (10)

There are two contributions to the work per period. One
is the probability to finish a time interval with the spin
and the field pointing in the same direction p multiplied
by the energy difference between the two states 2h0. The
other is the probability to finish a time interval with the spin
and the field pointing in different directions 1 − p multiplied
by the energy difference between the two states 2h0. Unlike
the spin orientation, this average work does not oscillate. It is
stationary already after the first time interval.

The relation between precision, as characterized by N , and
energy consumption that is quantified by Wavg is analyzed
in Fig. 2, where we plot N as a function of Wavg. First, the
number of coherent oscillations increases with an increasing
energy consumption. Second, at equilibrium (h0 = 0) there
are no oscillations. The same property is true for oscillations
in autonomous systems such as biochemical oscillators, since
energy dissipation is a general necessary condition for the
onset of oscillations. Third, in the limit βh0 → ∞, both
the number of coherent oscillations N and the the work
exerted on the system W diverge. This property is in stark
contrast with coherent oscillations in autonomous systems.
For this case, even in a limit of divergent energy dissipation
the number of coherent oscillations is finite and essentially
bounded by the number of states [11]. This fundamental
difference between oscillations in feedback-driven systems
and autonomous systems is a main result. The possibility of
an indefinite number of coherent oscillations in a finite system
in the presence of thermal fluctuations is not exclusive to
feedback-driven systems. Subharmonic oscillations in period-
ically driven systems also show this property [24]. A relevant
difference between these two cases is that the minimal model
for a periodically driven system analyzed in Ref. [24] has
three states, whereas our minimal model has two states.
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D. Informational thermodynamic cost

A distinctive feature of a feedback-driven system is that
the thermodynamic cost is not only quantified by the the work
W but also by the mutual information term I , as we report in
Appendix A. For this model the information obtained by the
measurements is given by

I = −p ln p − (1 − p) ln(1 − p). (11)

Since there is no measurement error, this quantity is just the
Shannon entropy of a two-states system at the end of a time
interval, where p is the probability of the lower energy state.
This quantity is stationary given that p is the same at the end
of all time intervals. The informational thermodynamic cost I ,
as compared to the work Wavg, has a different relation with
the number of coherent oscillations. For βh0 → ∞, which
leads to indefinite oscillations, this cost is minimal, i.e., this
limit leads to p = 1, which leads to I = 0. For h0 = 0, for
which there are no oscillations, the mutual information is
maximal I = ln 2. As the number of coherent oscillations N
increases, by increasing the parameter h0, the informational
thermodynamic cost I decreases. This term plays a key role in
the entropy balance of more complex feedback-driven system
as we will show in the following section.

III. ISING MODEL WITH FEEDBACK

A. Model definition

We now consider a fully connected Ising model with N
spins and a total of 2N states. The energy of the system is

Eh
M = −JM2/(2N ) − hM, (12)

where the magnetization takes the values M = −N,−N +
2, . . . , N − 2, N , J is the coupling parameter, and h is the
external field. The state of the system is fully characterized by
the orientation of all the N spins. However, since the energy
of the mean-field model depends only on the magnetization
M, the dynamics during a time interval can be simplified to
a random walk on the M space with transition rates fulfilling
the detailed balance condition. In particular, we choose the
transition rates

w
hn
M→M+2 ≡ γ (N − M )eβ[J (m+N−1 )+hn]

2 cosh{β[J (m + N−1) + hn]} (13)

and

w
hn
M→M−2 ≡ γ (N + M )e−β[J (m−N−1 )+hn]

2 cosh{β[J (m − N−1) + hn]} , (14)

where the subscript n in hn represents the nth time interval
and γ is a parameter that sets the timescale of the transition
rates. The duration of the time interval is τ . We point out that
these transition rates depend on the measurement outcome
in the previous time interval, and, therefore, they depend on
the particular stochastic trajectory. Furthermore, the master
equation for the nth time interval reads

d

dt
Pn(M, t )

= w
hn
M−2→MPn(M − 2, t ) + w

hn
M+2→MPn(M + 2, t )

− (
w

hn
M→M−2 + w

hn
M→M+2

)
Pn(M, t ), (15)
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FIG. 3. Oscillations in the feedback-driven Ising model. Average
magnetization mn as a function of n. The parameters are set to
γ = 1, τ = 100, J = 1, β = 2, and α = 0.5. The period of oscil-
lations, which is the same for both system size for this value of α, is
nosc = 4.

where Pn(M, t ) is the probability to be in state M at time t
within the nth time interval.

The feedback scheme is as follows. At the end of a time
interval, the state of the system is measured with perfect
precision and the magnetic field h is changed according to

hn+1 = hn − αMn/N ≡ hn − αmn, (16)

where α is a constant and Mn is the magnetization at the
end of the nth time interval. There is a similarity between
this feedback scheme and the feedback scheme for the two-
state model. If the average magnetization is negative then
the minimum of the free energy is on the negative side. The
feedback is such that the minimum of the free energy is shifted
towards the positive side due to the change in the external
field. For the opposite case of a positive magnetization, the
feedback scheme changes the minimum towards the negative
side. Hence, it is expected that this feedback scheme generates
oscillatory behavior.

Numerical simulations of this model were performed as
follows. We use the Gillespie algorithm [35] to simulate a
continuous time random walk with the rates given by Eq. (13)
and Eq. (14) for a time interval τ . At the end of the time
interval the transition rates are updated by a change in the
magnetic field given by Eq. (16). The initial condition for our
simulations was h = 0 for the external field and M = N for
the magnetization.

B. Oscillations in the Ising model

This feedback-driven Ising model displays oscillations in
the magnetization mn for temperatures below the critical
temperature (Tc = J−1). As shown in Fig. 3, the number of
coherent oscillations depends on the system size and becomes
indefinite in the thermodynamic limit. This feature has been
demonstrated analytically for a model with continuous feed-
back [32].

The oscillatory behavior of the magnetization shown in
Fig. 3 is similar to subharmonic oscillations in periodically
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FIG. 4. Effect of the parameter α in the period of oscillation.
Average magnetization mn as a function of n. The parameters are
set to γ = 1, τ = 100, J = 1, β = 3, α = 0.05, and N = 256. The
period of oscillations is estimated to be nosc = 36.

driven systems with many degrees of freedom, such as time
crystals. An example related to our model is the periodically
driven Ising model analyzed in [36], which displays subhar-
monic oscillations with a period that is two times the natural
period of the drive. For the oscillations in our model with the
parameters used in Fig. 3, the period is four times the time
interval between two measurements.

The period of oscillations has a strong dependence on the
parameter α. In Fig. 4 we show that the period of oscillation
becomes much larger for α = 0.05, as compared to the oscil-
lations shown in Fig. 3 with α = 0.5. For this case of a smaller
α the period of oscillations is estimated to be nosc = 36.
Besides the parameter α, numerical simulations show that the
period depends also on the inverse temperature β.

C. Work and heat for the Ising model

Let us consider a stochastic trajectory of the fully con-
nected Ising model. We denote by Mn the magnetization at
the end of the nth time interval. From Eq. (A3) in Appendix A
the total work per spin exerted on the system for a stochastic
trajectory with ν time intervals is

W = 1

N

ν−1∑
n=1

(
Ehn+1

Mn
− Ehn

Mn

)
, (17)

where Ehn+1
Mn

is the energy of the system in the beginning of the

(n + 1)th time interval and Ehn
Mn

is the energy of the system
at the end of the nth time interval. We point out that we do
not carry out the explicit dependence of the work W on the
stochastic trajectory as we do in Appendix A. Furthermore,
the quantity W in Appendix A represents the total work,
whereas here it represents the work per spin, i.e., the work
divided by the number of spins N . This quantity is finite
in the thermodynamic limit N → ∞. For all thermodynamic
quantities of the Ising model, such as heat and entropy change,
we consider the thermodynamic quantity per spin, hence,
there is a factor N−1 in relation to the generic expressions
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FIG. 5. Oscillations in work and heat. Average work Wn and
average heat Qn as a function of n. The parameters are set to γ = 1,
τ = 100, J = 1, β = 3, α = 0.5, and N = 128. The amplitude of
oscillations for the work Wn, which cannot be seen in this resolution,
are much smaller than the amplitude of oscillations for the heat Qn.

given in Appendix A. From Eqs. (12) and (16), the work in
Eq. (17) becomes

W =
ν−1∑
n=1

(hn − hn+1)Mn/N =
ν−1∑
n=1

α(Mn)2/N2 ≡
ν−1∑
n=1

Wn.

(18)

The dissipated heat per spin is obtained from Eq. (A5) in
Appendix A, together with Eqs. (12) and (16),

Q =
ν∑

n=1

(
Ehn

Mn
− Ehn

Mn−1

)

=
ν∑

n=1

J
(
M2

n − M2
n−1

)
/(2N2) + hn(Mn − Mn−1)/N

≡
ν−1∑
n=1

Qn. (19)

The quantity Wn is the work exerted on the system at the
end of period n, and Qn is the heat dissipated during the nth
time interval. There is an abuse of notation to represent the
averages of Mn, Wn, and Qn, which are stochastic quantities.
In all figures and in all expressions below these symbols
represent averages over stochastic trajectories.

In Fig. 5 we plot heat Qn and work Wn as a function of n.
Both quantities oscillate with a period that is half of the period
of oscillations of the magnetization (which is nosc = 4 for this
case), since they are both quadratic functions of the variables
m and h. The amplitude of the oscillations for the work Wn

is much smaller than the amplitude of the oscillations in the
heat Qn.

D. Second law and information

We now analyze the second law for the Ising model
with feedback. The average entropy increase of the external
environment per spin for the nth time interval is given by
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FIG. 6. Second law for the feedback-driven Ising model. The
entropy change of the environment �Sn

env, which can be negative,
and the total entropy change �Sn

tot = �Sn
env + In as functions of n.

The parameters are set to γ = 1, τ = 100, J = 1, β = 2, α = 0.1,
and N = 512.

�Sn
env = βQn. As shown in Fig. 6, this oscillating quantity can

be negative at certain times n. Such negative dissipated heat
for a system in contact with a single heat bath would constitute
a “violation” of the standard statement of the second law
of thermodynamics for systems without feedback. However,
for feedback-driven systems there is also the informational
contribution contribution In. The total entropy change per
spin for the nth time interval is �Sn

tot = �Sn
env + In � 0; this

second law inequality is discussed in Appendix A. In Fig. 6
we show that while the entropy change of the environment for
a certain times n can be negative, when we also account for the
informational term the total entropy change �Sn

tot is positive,
as predicted by the second law for feedback-driven systems.

The mutual information In was calculated in the following
way. Since there are no measurement errors the mutual infor-
mation In is just the entropy of the system at the the end of
the nth time interval. If we denote a spin configuration with N
spins by s, then the mutual information per spin is

In = − 1

N

∑
s

Pn(s) ln[Pn(s)], (20)

where Pn(s) is the probability of the spin configuration s at the
end of the nth time interval. The sum in Eq. (20) is over the 2N

spin configurations. For the present mean-field model with the
Hamiltonian in (12) that depends only on the magnetization
M, we have

Pn(s) = P(s|M )Pn(M ), P(s|M ) = δ(
∑

i si, M )

CN,M
, (21)

where Pn(M ) is the probability of magnetization M at the end
of the nth time interval and P(s|M ) is the conditional probabil-
ity of the spin configuration given the magnetization M, which
is uniform over the spin configurations with magnetization M.
The number of spins configurations with magnetization M is

CN,M = N!

[(N − M )/2)!((N + M )/2]!
. (22)

From Eq. (20) and Eq. (21) we obtain

In = − 1

N

∑
M

Pn(M ) ln[Pn(M )] + 1

N

∑
M

Pn(M ) ln(CN,M ).

(23)
The sum in this equation is over the N + 1 possible val-
ues of the magnetization. The mutual information In can
then be evaluated from a numerical calculation of the
probability Pn(M ).

E. Scaling of the entropy production

The stationary average change of entropy production per
spin and per time interval is defined as

σ = β

ν
lim

ν→∞

ν∑
n=1

Qn. (24)

We have analyzed numerically the scaling behavior of this
quantity of the number of spins N . Above the critical temper-
ature σ tends to a constant value in the thermodynamic limit.
Below the critical point σ goes to zero in the thermodynamic
limit. At the critical point this quantity shows a scaling be-
havior that depends on the parameters α and τ . We define the
exponent θ as

σ ∼ N1−θ . (25)

In Fig. 7 we plot Nσ as a function of N for different values
of α at fixed τ . For smaller values of α we obtain an exponent
compatible with the mean-field value of a continuous transi-
tion θ = 0.5.

For larger values of α we obtain an exponent compatible
with θ = 1. Hence, the entropy production is finite in the
thermodynamic limit at the critical point, i.e., for larger values
of α there is a first-order phase transition. For intermediate
values of α we obtain an effective exponent between 0.5 and
1. However, this effective exponent increases with N . Hence,
for intermediate values of α there is a transient in N which
goes beyond the values of N used in our simulations. In
Appendix B we characterize analytically the scaling behavior
and the phase transition for small α and τ in the model with
continuous feedback.

IV. CONCLUSION

We have provided a systematic analysis of oscillations
in noisy feedback-driven systems. The two-state model in-
troduced here provides arguably the simplest example of
such oscillation. Exact calculations with this simple model
demonstrate fundamental differences between oscillations in
feedback-driven systems and the other two kinds of oscil-
lators. Importantly, even in a two-state system with thermal
fluctuations the oscillations can remain coherent for an ar-
bitrarily long time, in contrast to oscillations in autonomous
systems, which can remain coherent only for a finite time
that is determined by the number of states of the system
[11]. This property of indefinite oscillations in finite systems
is also present for subharmonic oscillations in periodically
driven systems [24]; however, the minimal model in this case
was found to have three states, whereas our minimal of a
feedback-driven oscillator has two states.
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FIG. 7. The entropy production rate σ as a function of the
number of spins N at the critical point β = 1 for different values
of α. For the upper panel that is associated with α = 0.001, the
exponent estimated with the full red line is compatible with θ = 0.5.
For the middle panel that is associated with α = 0.18, the exponent
estimated with the full red line is compatible with θ = 1. For the
lower panel that is associated with α = 0.032 the effective exponent
increases for increasing N . Parameters are set to γ = 1, τ = 100,
and J = 1.

The feedback-driven fully connected Ising model provides
an example of a system with several degrees of freedom that
has oscillations that become indefinite in the thermodynamic

limit, as previously demonstrated in Ref. [32] for a model with
continuous feedback. We have shown that the model analyzed
here with discrete feedback displays subharmonic oscillations
in the magnetization similar to the subharmonic oscillations
in time crystals.

The thermodynamic cost of oscillatory feedback-driven
systems has to be carefully analyzed. We have shown that the
oscillatory dissipated heat for the Ising model is negative at
certain times, even if the system is in contact with a single
heat bath. However, if the informational thermodynamic cost
related to measurements is also taken into account, the os-
cillatory total entropy change per time interval is positive at
all times, as predicted by the second law for feedback-driven
systems. Whereas negative dissipated heat in feedback-driven
systems is a well known fact, previous studies have not
considered the second law for feedback-driven systems with
oscillations to the best of our knowledge.

A similarity between oscillations in feedback-driven sys-
tems and in autonomous systems deserves to be mentioned.
In both cases, in the deterministic limit, we have instances
of self-oscillators [31] that cannot be differentiated at this
level of description. However, these feedback-driven oscilla-
tors and autonomous oscillators are two different classes of
oscillators at the stochastic level of description. In particular,
they have different limitations concerning the precision of
oscillations and the second law of thermodynamics implies
different inequalities, with an informational term showing up
for feedback-driven oscillators.

Concerning future work, it would be interesting to numeri-
cally analyze the critical behavior of a two-dimensional Ising
model with a feedback scheme similar to the one considered
here. In particular, a comparison of such model with time
crystals could lead to an understanding of differences and
similarities between oscillatory feedback-driven systems and
time crystals, concerning their critical behavior and thermody-
namics. From a broader perspective, a theoretical framework
for oscillations in stochastic systems and their relation to ther-
modynamics is emerging. The applications of this framework
to understand biological oscillators and to produce optimal
synthetic oscillators remain key open problems.

APPENDIX A: FEEDBACK-DRIVEN SYSTEMS

1. Definition

In this Appendix we define thermodynamic quantities,
such as heat, work, and entropy, and discuss the second
law for feedback-driven systems. A more general theory that
includes a fluctuation theorem for feedback-driven systems
can be found in Ref. [29]. Such systems are characterized by
Markovian dynamics during time intervals of duration τ and
by measurement and feedback at the end of each time interval.
Mathematically, feedback translates into transition rates for
the present time interval that depend on the measurement
outcome at the end of the previous time interval. Transition
rates are then random variables that depend on the particular
stochastic trajectory.

We consider a discrete set of states of the system x =
1, 2, . . . , �. A stochastic trajectory with total time ντ is
denoted by Xν , where τ is the duration of time interval. The
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state of the system and the measurement outcome at the end
of the nth time interval are denoted by xn and yn, respectively.
The stochastic trajectory Zντ can be written as

Zν = (
X λ1

τ , y1, X λ2
τ , y2, . . . , X λν−1

τ , yν−1, X λν

τ

)
. (A1)

The variable λn represents the protocol during the nth interval.
This protocol λn depends on the measurement outcome at
the end of the previous time interval yn−1. Here we restrict
ourselves to the case of time-independent protocols during
the time interval τ . The stochastic trajectory Zν is a sequence
of subtrajectories X λn

τ and measurement outcomes yn. Each
subtrajectory is Markovian and can be written as X λn

τ =
(xn

i , xn
1, . . . , xn

f ), where xn
f = xn+1

i = xn. For convenience we
write this subtrajectory as discrete in time. The number of
elements in the trajectory is the inverse of the time step
multiplied by τ . If we take this time step to go to zero, we
recover the continuous-time description.

The measurement outcome yn is obtained with a preas-
signed conditional probability P(yn|xn). Here we assume that
the measurement outcome is independent of the measurement
history and depends only on the state of the system xn. The
number of possible states for the measurement outcome can
be smaller than �, which is the number of states of the system.
For example, for the Ising model analyzed in Sec. III, the
number of states is � = 2N , whereas the magnetization that
is the outcome of the measurement has N + 1 possible states.

The transition rate at the nth time interval from state x to
state x′ is denoted by w

λn
xx′ . Here we assume that the transition

rates during a time interval are time-independent and fulfill
the detailed balance relation with some energy function Eλn

x :

w
λn
xx′

w
λn
x′x

= eβ(Eλn
x −Eλn

x′ ). (A2)

2. Work and heat

The stochastic work is defined as

W [Zν] =
ν−1∑
n=1

(
En+1

xn
− En

xn

)
. (A3)

The work exerted on the system is the sum of the changes
in energy at the end of a time interval due to the feedback
scheme. As an example, the change in the magnetic field due
to feedback for the models analyzed here leads to a change in
the energy of the system.

Each jump in the subtrajectory X n
ν changes the entropy

of the environment, which is connected with the dissipated
heat. In particular, the entropy change of the environment
for a jump that changes the state of the system from x to
x′ is �Senv = ln(wxx′/wx′x ). This formula can be seen as a
postulate of stochastic thermodynamics [8]. From Eq. (A2),
we obtain that the entropy change of the external environment
associated with the whole subtrajectory X n

ν as β(En
xn−1

− En
xn

).
The entropy change associated with the trajectory Zν is then

�Senv[Zν] =
ν∑

n=1

β
(
En

xn−1
− En

xn

)
. (A4)

The dissipated heat Q[Zν] = 1
β
�Senv[Zν] is then given by

Q[Zν] =
ν∑

n=1

(
En

xn−1
− En

xn

)
. (A5)

From Eqs. (A3) and (A5) we obtain the first law of thermody-
namics

�E [Zν] = W [Zν] − Q[Zν] = E ν
xν

− E1
x0
, (A6)

where �E [Zν] is the energy change associated with the tra-
jectory Zν .

3. Second law

The total entropy change in a feedback-driven system
is composed by the change of the entropy of the external
environment, change of the entropy of the system, and change
of entropy associated with the information obtained with the
measurements. We now consider average entropy changes,
instead of the stochastic quantities from the previous sub-
section. An average here means an average over all possible
stochastic trajectories. The average entropy change of the
external environment is denoted by �Senv.

Each measurement at the end of time interval reduces the
uncertainty about the state of the system. In the case of perfect
measurements that we consider in the models analyzed here,
the uncertainty about the state of the system is completely
eliminated. This reduction of uncertainty is accompanied by
a reduction of the entropy of the system. Such reduction
of entropy must be compensated by an increase of entropy
somewhere else. In other words, a controller that makes mea-
surements and applies feedback according to the measurement
outcomes implies an increase of entropy [28].

At the end of the nth time interval, and an instant be-
fore the measurement is taken, the average entropy of the
system is Hn(x) ≡ −∑

x Pn(x) ln Pn(x), where Pn(x) is the
probability to be in state x at the end of nth time interval.
After the measurement the entropy is reduced to Hn(x|y) =
−∑

x,y Pn(x, y) ln Pn(x|y). This entropy can be calculated
with the knowledge of Pn(x) and P(y|x), the preassigned
conditional probability of the measurement outcome that is
independent of n. The joint probability is given by Pn(x, y) =
Pn(x)P(y|x). From Bayes’ theorem the conditional probabil-
ity Pn(x|y) is Pn(x|y) = Pn(x)P(y|x)/Pn(y), where Pn(y) =∑

x Pn(x, y).
The total entropy increase to compensate for the entropy

reduction of the system after a measurement from Hn(x) to
Hn(x|y) is the mutual information

In ≡ Hn(x) − Hn(x|y). (A7)

This mutual information quantifies the minimal entropy in-
crease that a controller acting on the feedback-driven system
generates. Mutual information is a standard quantity in in-
formation theory, and it has the property In � 0 [37]. The
action of a controller cannot decrease the total entropy. For
the case of the models analyzed here with perfect measure-
ments Hn(x|y) = 0, leading to In = Hn(x). We point out that
for more general feedback-driven systems with a feedback
scheme that can depend on the measurement history, the
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informational observable that quantifies the entropy change
due to the action of the controller is the transfer entropy [29].

The informational change in entropy due to the action of a
controller is then

�Sinf =
ν−1∑
n=1

In. (A8)

Furthermore, the change in the entropy of the system is

�Ssys = H ν (x) − H0(x). (A9)

An important difference between �Ssys and the other two
entropy changes is that �Senv and �Sinf are both extensive
in the number of time intervals ν, whereas �Ssys does not
increase with an increase in ν.

Finally, the second law for feedback-driven systems reads

�Stot = �Senv + �Sinf + �Ssys � 0. (A10)

For this second law we have considered a total time interval
ντ . However, this second law is valid for any total time
interval. In particular let us take a total time interval that starts
after the measurement at the end of the (n − 1)th time interval
and finishes after the measurement at the end of the nth
time interval. Furthermore, we also assume perfect measure-
ments, which reduce the entropy of the system to 0. Hence,
�Ssys = 0. The second law for such total time interval then
reads

�Sn
tot = �Sn

env + In � 0, (A11)

where �Sn
env is the average entropy change of the environment

associated with the nth time interval. This inequality is the one
illustrated in Fig. 6.

APPENDIX B: MODEL WITH CONTINUOUS FEEDBACK

1. Langevin equation and thermodynamic observables

We now consider the Ising system with continuous feed-
back [32], i.e., a feedback scheme that is applied to the system
at every instant. The phenomenological Langevin equation for
this Ising model reads

dm = {−m + tanh[β(m + h)]}dt + bdw,

dh = −cmdt, (B1)

where the coupling parameter of the Ising model is set to
J = 1, the magnetization m is a continuous variable between
−1 and 1, w represents the Wiener process, and the noise
strength is

b =
√

2

βN
. (B2)

The feedback scheme represented by the second equation in
Eq. (B1) is equivalent to the feedback scheme represented by
Eq. (16) for the model with discrete feedback in the limit of τ

and α very small such that their ratio is finite and given by

c = α/τ. (B3)

In the thermodynamic limit, for which the noise term in
Eq. (B1) is negligible, the phase transition with spontaneous
symmetry breaking in the standard Ising model without
feedback is substituted by an Andronov-Hopf bifurcation in

this model with feedback, with the onset of oscillations below
the critical point [32]. The energy per spin of the Ising model
is u = − 1

2 m2 − hm, and the infinitesimal change in energy
then reads

du = −(m + h)dm − mdh − b2dt, (B4)

where we have used Itô’s differentiation rule. The
infinitesimal work per spin exerted on the system due to
the change in the external field h is

dW = −mdh = cm2dt . (B5)

This expression is equivalent to the expression in Eq. (18)
for the model with discrete feedback. From the first law, we
obtain the infinitesimal dissipated heat per spin as

dQ = dW − du. (B6)

These three differentials are stochastic quantities. The average
rate of entropy production is defined as

σ ≡ lim
T →∞

1

T

∫ T 〈
dQ

dt

〉
dt, (B7)

where the brackets denote an average over stochastic
trajectories. Note that limT →∞ 1

T

∫ T 〈 du
dt 〉 dt = 0 since the

energy difference u(T ) − u(0) is not extensive in T . Hence,
from the first law in Eq. (B6), we obtain

σ = lim
T →∞

1

T

∫ T 〈
dW

dt

〉
dt = lim

T →∞
1

T

∫ T

c〈m2〉 dt, (B8)

where the second equality follows from Eq. (B5).

2. Analytical calculations for the rate of entropy production

For this model, we derive with an analytical argument
the following scaling law for the average rate of entropy
production:

σ =

⎧⎪⎨
⎪⎩

O(1/N ) β < 1

O(1/
√

N ) β = 1

O(1) β > 1

. (B9)

This analytical calculation is in agreement with numerical
simulations shown in Fig. 8.

First, we consider the case β < 1. Upon linearizing
Eq. (B1) around the stationary point (m∗ = 0, h∗ = 0), we
obtain

dm = ((β − 1)m + βh)dt + bdw, (B10)

dh = −cmdt . (B11)

The stationary value for the square of the magnetization is
〈m2〉s = b2/2. Hence, from Eq. (B2) and from Eq. (B7), we
obtain that σ = cβ−1N−1.

Second, we consider the case β � 1. In the thermodynamic
limit the dynamics of the system can be mapped into the
equation for the Van der Pol oscillator [32]

m̈ + (β − 1 − m2)ṁ + √
cm = 0. (B12)

Performing an expansion in β − 1, the solution reads

m(t ) ∼ 2
√

β − 1 cos(
√

ct ) + O(β − 1),

h(t ) ∼ −2
√

c(β − 1) sin(
√

ct ) + O(β − 1). (B13)
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FIG. 8. Scaling of the average rate of entropy production σN
in the fully connected Ising model with feedback as a function of
the system size N for several temperatures above, at, and below the
critical point β = 2, 1.1, 1, 0.9, 0.5 (and c = 0.1), from numerical
simulations.

The system is performing harmonic oscillations with the
conserved quantity

E ≡ m2 + h2/c = 2(β − 1). (B14)

From expression (B7) we obtain that the average rate of
entropy production is σ = 2(β − 1).

Third, we consider the model at the critical point β = 1.
An expansion of tanh[β(m + h)] in Eq. (B1) leads to

dm = (h − m3/3)dt + bdw,

dh = −cmdt . (B15)

Upon considering the quantity E defined in Eq. (B14), to-
gether with Eq. (B15), we obtain the following stochastic
differential equation:

dE = (−2/3m4 + b2)dt + 2mdw. (B16)

Since E is bounded, the time derivative of its average be-
comes zero in the steady state, which implies the scaling
〈m4〉s = 3b2/2. This last equation implies the square root
scaling for the average entropy production per spin with the
system size N at the critical point.
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