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We present a systematic analysis of diffusion-controlled interaction and collapse of two identical spatially
separated d-dimensional A-particle islands in the B-particle sea at propagation of the sharp reaction front A +
B → 0 at equal species diffusivities. We show that at a sufficiently large initial distance between the centers
of islands 2� compared to their characteristic initial size and a relatively large initial ratio of island to sea
concentrations, the evolution dynamics of the island-sea-island system is determined unambiguously by the
dimensionless parameter � = N0/N�, where N0 is the initial particle number in the island and N� is the initial
number of sea particles in the volume � = (2�)d . It is established that (a) there is a d-dependent critical value ��

above which island coalescence occurs; (b) regardless of d the centers of each of the islands move toward each
other along a universal trajectory merging in a united center at the d-dependent critical value �s � ��; (c) in
one-dimensional systems �� = �s, therefore, at � < �� each of the islands dies individually, whereas at � >

�� coalescence is completed by collapse of a single-centered island in the system center; (d) in two- and three-
dimensional systems in the range �� < � < �s coalescence is accompanied by subsequent fragmentation of a
two-centered island and is completed by individual collapse of each of the islands. We discuss a detailed picture
of coalescence, fragmentation, and collapse of islands focusing on evolution of their shape and on behavior of
the relative width of the reaction front at the final collapse stage and in the vicinity of starting coalescence and
fragmentation points. We demonstrate that in a wide range of parameters, the front remains sharp up to a narrow
vicinity of the coalescence, fragmentation, and collapse points.
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I. INTRODUCTION

The fundamental reaction-diffusion system A + B → 0,
where unlike species A and B diffuse and irreversibly annihi-
late in the bulk of a d-dimensional medium, has attracted great
interest in recent decades owing to the remarkable property
of effective dynamical repulsion of unlike species [1–6]. In
unbounded systems with initially statistically homogeneous
particle distribution, this property brings about spontaneous
growth of A and B particles domains (Ovchinnikov-Zeldovich
segregation) and, as a consequence, anomalous reaction decel-
eration. In systems with initially spatially separated reactants
this property results in the formation and self-similar propa-
gation of a localized reaction front which, depending on the
interpretation of A and B (chemical reagents, quasiparticles,
topological defects, etc.), plays a key role in a broad spectrum
of problems in physics, chemistry, biology, and materials
science [7–15].

The simplest model of a planar reaction front, introduced
by Galfi and Racz (GR) [16] is the quasi-one-dimensional
model for two initially separated reactants which are uni-
formly distributed on the left side (x < 0) and on the right side
(x > 0) of the initial boundary. Taking the reaction rate in the
mean-field form R(x, t ) = ka(x, t )b(x, t ) (k being the reaction
constant), GR discovered that in the long time limit kt � 1 the
reaction profile R(x, t ) acquires the universal scaling form

R = R f R
(

x − x f

w

)
,

where x f , R f , and w are, respectively, position, height, and
width of the reaction front and the front width anomalously
slowly grows with time by the law

w ∝ (t/k2)1/6,

so that on the diffusion length scale ∝t1/2 the relative width of
the front asymptotically contracts unlimitedly ∝(kt )−1/3 → 0
as kt → ∞. Subsequently, it was shown [17–21] that the
mean-field approximation is valid at d > dc = 2, whereas
in one-dimensional systems fluctuations play the dominant
role. Nevertheless, the self-similar front motion takes place
at all dimensions so that at any d on the diffusion length
scale the relative front width contracts asymptotically. Based
on this fact, a general concept of the front dynamics for
nonzero diffusivities, the quasistatic approximation (QSA),
was developed [17,18,21,22]. The key property of the QSA is
that the front width w(J ) depends on t only through the time-
dependent boundary current JA = |JB| = J , the calculation of
which is reduced to solving the external diffusion problem
with the moving absorbing boundary (Stefan problem)

R = Jδ(x − x f ).

On the basis of the QSA a general description of spatiotem-
poral behavior of the system A + B → 0 has been obtained
for arbitrary nonzero diffusivities [23] which was then gen-
eralized to the cases of anomalous diffusion [24,25], dif-
fusion in disordered systems [26,27], diffusion in systems
with inhomogeneous initial conditions [28], and to several
more complex reactions. Following this approach, in most
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subsequent works the use of the QSA was traditionally re-
stricted by the quasi-one-dimensional sea-sea problem with A
and B domains having an unlimited extension, i.e., with an un-
limited number of A and B particles, where asymptotically the
stage of monotonous quasistatic front propagation is always
reached.

Recently, a new line in the study of the A + B → 0 front
dynamics has attracted significant attention under the assump-
tion that the particle number of one or both species is finite
(island-sea and island-island systems) and, therefore, in the
final state one or both islands disappear completely [29–37].
It has been demonstrated that in the sharp-front regime these
systems exhibit rich scaling behavior, and though in these
systems the QSA is always asymptotically violated, at large
initial particle numbers and a high reaction constant the vast
majority of particles die in the sharp-front regime over a
wide parameter range. Here, we will focus mainly on the
island-sea system, introduced originally in Ref. [29] for quasi-
one-dimensional geometry (flat front) and generalized for d
dimensions (ring-shaped or spherical fronts) in the recent
Ref. [37]. This system is a basic model for a wide range
of phenomena and is realized in numerous applications from
Liesegang patterns formation [38–41] to electron-hole lumi-
nescence in quantum wells [7–9] depending on the conditions
of initial island formation.

Two related island-sea problems were considered at equal
species diffusivities in Ref. [37]: (i) the evolution and collapse
of an initially uniform d-dimensional spherical A-particle
island “submerged” into the uniform d-dimensional B-particle
sea and (ii) the formation of a d-dimensional spherical A-
particle island from a localized A-particle source acting a
finite time in the d-dimensional initially uniform B-particle
sea and subsequent evolution and collapse of the island after
source switching off in the long-living island regime when
the island collapse time tc exceeds significantly the duration
of source action. It has been established that at sufficiently
large starting number of A particles N0 (where N0 is the
initial number of A particles in the initially uniform island or
the number of injected A particles at the moment of source
switching off) and a sufficiently large reaction constant k the
death of majority of island particles N (t ), regardless of the
initial particle distribution, proceeds in the universal scaling
regime

N = N0G(t/tc),

where tc ∝ N 2/d
0 is the lifetime of the island in the sharp-front

limit and on the final stage of collapse

N /N0 ∝ T (d+2)/d → 0

as T = (tc − t )/tc → 0. It has been shown that at a relatively
large starting ratio of island to sea concentrations, regardless
of the starting particle number and the system dimension,
while dying, the island first expands to a certain maximal
amplitude and then begins to contract by the universal law

ζ f = r f /rM
f =

√
eτ | ln τ |,

where τ = t/tc and rM
f ∝ N 1/d

0 is the island maximal expan-
sion radius at the front turning point

tM = tc/e.

According to Ref. [37], regardless of the system dimension the
evolution of the boundary current density J that determines
the quasistatic front width w(J ) is described by the universal
law

J = J/JM =
√

| ln τ |
eτ

,

from which it follows that in the mean-field regime the relative
front width η = w/r f changes by the law

η = ηM/(eτ ln2 τ )1/3,

where at the front turning point ηM ∝ 1/N 2/3d
0 k1/3 and, there-

fore, on the final stage of collapse

η ∼
(TQ

T

)2/3

,

where TQ ∝ 1/N 1/d
0

√
k → 0 as N0, k → ∞. In Ref. [37], an

exhaustive analysis of the reaction front relative width evolu-
tion for the fluctuation, the logarithmically modified, and the
mean-field regimes was presented, and it was demonstrated
that in a wide range of parameters at a large enough number
of injected or initially uniformly distributed particles the front
remains sharp up to a narrow vicinity of the island collapse
point, and therefore the whole picture of the evolution and
collapse of the island is completely self-consistent.

According to Ref. [37], with an increase of the initial par-
ticle number in the island, the amplitude of island expansion
at the front turning point increases unlimitedly and, therefore,
in the presence of neighboring islands in the sea [41,42] the
scenario described above for the autonomous evolution of the
island is realized only as long as the amplitude of the island
expansion remains much less than the distance between the
centers of neighboring islands. If in the sea there are one or
several neighboring islands and this condition is violated, i.e.,
the amplitude of the island’s expansion becomes comparable
with the distance between the centers of the neighboring
islands, it is obvious that the dynamics of island evolution
must radically change.

In this article, we pose and systematically investigate the
problem of diffusion-controlled interaction of two identical
d-dimensional A-particle islands separated by a sufficiently
large initial distance in the d-dimensional B-particle sea. This
model is the simplest basic model of the island-sea-island
system which allows revealing the key features of the evolu-
tion dynamics under the assumption of sharp-front formation
at equal species diffusivities. Moreover, because of mirror
symmetry, this model simultaneously describes the evolution
of the d-dimensional A-particle island in a semi-infinite B-
particle sea with a reflecting (d − 1)-dimensional “wall.” We
discover that if the initial distance between the centers of the
islands 2� is large enough compared to their characteristic
initial size and the initial ratio of island to sea concentrations
is relatively large, the evolution dynamics of the island-sea-
island system demonstrates remarkable universality and is
determined unambiguously by the dimensionless parameter

� = N0/N�,

where N0 is the initial particle number in the island and N�

is the initial number of sea particles in the volume � = (2�)d .
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We show that at �2/d � 1 each of the islands evolves and dies
autonomously not feeling the presence of a neighboring island
and demonstrate that there is a d-dependent critical value
�� below which each of the islands dies individually and
above which island coalescence occurs. We also reveal that
there is the second d-dependent critical value �s � �� above
which coalescence is completed by collapse of the formed
single-centered island in the system center and we discover
the remarkable fact that at d � 2 in the range �� < � <

�s coalescence is accompanied by subsequent fragmentation
of the two-centered island and is completed by individual
collapse of each of the islands. We discuss a detailed picture of
coalescence, fragmentation, and collapse of the islands, reveal
the remarkable properties of universality and self-similarity
of the evolution of islands, give a comprehensive picture of
the relative front width evolution, and demonstrate that in a
wide range of parameters the reaction front remains sharp up
to a narrow vicinity of the coalescence, fragmentation, and
collapse points.

II. EVOLUTION OF TWO IDENTICAL SPATIALLY
SEPARATED d-DIMENSIONAL A-PARTICLE ISLANDS IN

THE d-DIMENSIONAL B-PARTICLE SEA

A. Model

We consider a model in which two identical A-particle is-
lands, which for simplicity have the shape of a d-dimensional
hypercube with the side 2h and the centers of which are
located on the x axis at the points x = ±�, are surrounded by a
uniform unlimited B-particle sea with the initial concentration
b0. We shall assume that initially in each of the islands A
particles are distributed uniformly with the concentration a0.
We shall also assume that initially the islands have the same
spatial orientation and that the coordinate axes with the origin
at the point x = 0 on the x axis are normal to hypercube
“faces” so that full symmetry takes place:

x ↔ −x, y ↔ −y, z ↔ −z.

Particles A and B diffuse with the diffusion constants DA,B,
and when meeting they annihilate with some nonzero proba-
bility A + B → 0. In the continuum version, this process can
be described by the reaction-diffusion equations

∂a/∂t = DA∇2a − R, ∂b/∂t = DB∇2b − R, (1)

where a(r, t ) and b(r, t ) are the mean local concentrations
of A and B and R(r, t ) is the macroscopic reaction rate. We
shall assume, as usual, that species diffusivities are equal
DA = DB = D. This important condition, due to local con-
servation of difference concentration a − b, leads to a radical
simplification that permits to obtain an analytical solution
for arbitrary front trajectory (at different species diffusivities
DA �= DB an analytical solution of the Stefan problem is
possible only for stationary or a monotonically moving front
[34]). Then, by measuring the length, time, and concentration
in units of h, h2/D, and b0, respectively, and defining the
ratio a0/b0 = c and the ratio L = �/h � 1, we come from
Eq. (1) to the simple diffusion equation for the difference
concentration s(r, t ) = a(r, t ) − b(r, t ),

∂s/∂t = ∇2s, (2)

at the initial conditions

s0(|x| ∈ (L − 1, L + 1)) = c, (3)

and s0 = −1 (sea) outside the islands in the 1D case,

s0(|x| ∈ (L − 1, L + 1), y ∈ (−1,+1)) = c, (4)

and s0 = −1 (sea) outside the islands in the 2D case,

s0(|x| ∈ (L − 1, L + 1), y, z ∈ (−1,+1)) = c, (5)

and s0 = −1 (sea) outside the islands in the 3D case, with the
boundary conditions

s(|r| → ∞, t ) = −1 (6)

and the symmetry conditions

∂xs |x=0= ∂ys |y=0= ∂zs |z=0= 0.

B. Universal long-time asymptotics in the sharp-front limit

Exact solution of the problem, Eqs. (2)–(6), has the form

s(x, t ) + 1 = (c + 1)

2
(L+ + L−) (7)

in the one-dimensional (1D) case,

s(r, t ) + 1 = (c + 1)

2
(L+ + L−)Q(y, t ) (8)

in the two-dimensional (2D) case, and

s(r, t ) + 1 = (c + 1)

2
(L+ + L−)Q(y, t )Q(z, t ) (9)

in the three-dimensional (3D) case, where

L+(x, t ) = erf

(
L + 1 + x

2
√

t

)
− erf

(
L − 1 + x

2
√

t

)
, (10)

L−(x, t ) = erf

(
L + 1 − x

2
√

t

)
− erf

(
L − 1 − x

2
√

t

)
, (11)

and

Q(v, t ) = 1

2

[
erf

(
1 + v

2
√

t

)
+ erf

(
1 − v

2
√

t

)]
. (12)

As well as in Refs. [29,37], we shall assume that the ratio of
island to sea concentrations is large enough, c � 1 (concen-
trated island). Below, it will be shown that in the limit of large
c � 1 the “lifetime” of the islands tc � 1, so the majority of
the A particles die at times t � 1, when the diffusive length
exceeds appreciably the initial island size. The evolution of
the islands in such a large-t regime is of principal interest
for us here since, as will be demonstrated below, in the limit
of large t � 1, L � 1, and c � 1 regardless of the initial
shape, orientation, and sizes of the islands the asymptotics of
island evolution takes a universal form which at a given initial
sea density is determined unambiguously only by the initial
number of particles in the islands (the instantaneous source
regime) and the initial distance between their centers.

Assuming that the diffusion length
√

t � 1 and expanding
the functions L+(x, t ), L−(x, t ), and Q(v, t ) in powers of
1/

√
t we find

L+(x, t ) = 2e−(L+x)2/4t

√
πt

(1 + q+), (13)
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L−(x, t ) = 2e−(L−x)2/4t

√
πt

(1 + q−), (14)

Q(v, t ) = e−v2/4t

√
πt

(
1 − (1 − v2/2t )

12t
+ · · ·

)
, (15)

where

q± = 1

12t

[
(L ± x)2

2t
− 1

]
+ · · · ,

and the terms of a higher order of smallness in powers of 1/t ,
(L ± x)2/t2, and v2/t2, respectively, are omitted (following
the leading term in q± has the form

1

160t2

[
1 − (L ± x)2

t
+ (L ± x)4

12t2

])
.

According to the QSA in the diffusion-controlled limit at large
k → ∞ at times t ∝ k−1 → 0, there forms a sharp reaction
front w/|r f | → 0 so that in neglect of the reaction front width
the solution s(r, t ) defines the the law of its propagation

s(r f , t ) = 0

and the evolution of particle distributions a(r, t ) = s(r, t ) > 0
within the island and b(r, t ) = |s(r, t ) < 0| beyond it. Con-
sidering the domain x >= 0 in view of x ↔ −x symmetry
and assuming that |x − L| � t, L, from Eqs. (13) and (14)
we conclude that at 1 � t � L2, when the diffusion length is
much less than the initial distance between the island centers,
the ratio L+/L− is exponentially small (L+/L− ∼ te−Lx/t/L
at 1 � t � L and ∼e−xL/t at L � t � L2) Therefore, ne-
glecting the contribution of L+ and assuming that the radius
of a d-dimensional sphere with the center at the point of initial
island center ρ � t , we find from Eqs. (7)–(9)

s(ρ, t ) + 1 = (c + 1)e−ρ2/4t

(πt )d/2
(1 − ξd ),

where

ξd = (d − ρ2/2t )

12t
+ · · · .

Neglecting further the term ξd � 1, we conclude that in
agreement with Ref. [37] regardless of the initial island shape
(hypercube or hypersphere) at 1 � t � L2 each of the islands
takes the shape of a d-dimensional sphere with the front radius
ρ f (t ) which changes by the law

ρ f (t ) =
√

2dt ln(tc/t ), (16)

from which it follows that at any d in the limit of large c � 1
the island first expands reaching some maximal radius ρM

f ,
and then it contracts disappearing in the collapse point

tc = (c + 1)2/d

π
= (γ N0)2/d

4π
, (17)

where γ = (c + 1)/c ≈ 1, N0 is the initial particle number in
the island in units of hd b0, and at the front turning point tM =
tc/e

ρM
f =

√
2dtM = (γ N0)1/d

√
d/2πe. (18)

At large tc the requirement χ
f

d � 1 along with the require-
ment t � 1 obviously reduces to the more rigid requirement
t � ln(tc/t ). On the other hand, the requirement of “au-
tonomous” death of each of the islands tc � L2 reduces to the
requirement

�2/d � 1, � = (c + 1)/Ld . (19)

III. EVOLUTION OF THE ISLAND-SEA-ISLAND SYSTEM
IN THE INSTANTANEOUS SOURCE REGIME

According to Eqs. (13)–(16), at large L � 1 in the domain
t � Max[1, ln(tc/t )] evolution of the island bounded by the
front becomes independent on its initial size, therefore, the
initial distance between the island centers 2� becomes the only
length scale determining the evolution. Then, by measuring
the length and time in units of � and �2/D, i.e., going to the
dimensionless variables T = t/L2, X = x/L,Y = y/L, Z =
z/L, and neglecting the transient terms q±, (v/t )2 � 1 in
Eqs. (13)–(15), we find from Eqs. (7)–(9) and (13)–(15)

s + 1 = 2�

(πT )d/2
exp

(
−1 + X 2 + �2

4T

)
cosh

(
X

2T

)
, (20)

where �2 = Y 2 or �2 = Y 2 + Z2 at d = 2, 3, respectively.
Taking s f = 0 we derive from Eq. (20) the law of the reaction
front motion

exp

(
−1 + X 2

f + �2
f

4T

)
cosh

(
Xf

2T

)
= (πT )d/2

2�
(21)

and we conclude that in the instantaneous source regime evo-
lution dynamics of the island-sea-island system is determined
unambiguously by the value of the parameter � which in view
of the requirement c � 1(γ ≈ 1) is the ratio of the initial
particle number in the island N0 to the initial number of sea
particles N� in the volume � = (2�)d :

� = N0/N�.

From Eq. (20) it follows that at any d the points where
the concentration of A particles reaches its maximum, which
according to Refs. [31,33] we will call the island centers, are
located on the X axis. Calculating the trajectories of motion
of the centers X�(T ) from the condition ∂s/∂X = 0, we obtain
from Eq. (20)

tanh

(
X�

2T

)
= X�, (22)

from which at small T � 1 we find

|X�| = 1 − 2e−|X�|/T + · · · , |X�|/T � 1

whereas at small |X�|/T � 1 we have

|X�| =
√

6(Ts − T ) + · · · , |X�|/T � 1

where Ts = 1/2. We conclude thus that with increasing T ,
regardless of the dimension of the system and the value of
the parameter �, the centers of both islands move toward
each other along the universal trajectory (22) from X� =
±1 to |X�| → 0, merging at Ts = 1/2 into the single center
X� = 0 in the system center r = 0. It is clear, however, that
mutual convergence of the island centers caused by effective
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diffusion-controlled “attraction” of the islands continues only
until the collapse moment Tc(�) of each of the islands which
depends on the quantity �. It is also clear that after expansion
and subsequent contraction of the islands, collapse of each of
them is completed at the point of the corresponding center

Xc = X�(Tc),

the coordinates of which are fixed by the system of equations
which follows from Eqs. (21) and (22):

tanh

(
Xc

2Tc

)
= Xc, (23)

exp

(
−1 + X 2

c

4Tc

)
cosh

(
Xc

2Tc

)
= (πTc)d/2

2�
. (24)

According to Eq. (21), at T � Ts on the X axis each of the
islands is bounded by two leading front points (by two fronts
in the 1D case) |X −

f | < |X�| and |X +
f | > |X�| which determine

the width of the island

|X −
f | < |Xisl| < |X +

f |
and, therefore, the time moment of the island collapse is
determined by the condition

|X −
f (Tc)| = |X +

f (Tc)| = |X�(Tc)|.
With growing � the distance to the system center |X −

f | at the
front turning point obviously reduces until at some critical
value �� both of the leading front points ±X −

f merge in the
system center |X −

f | = 0 and, thus, at � > �� coalescence of
the islands occurs with the formation of a united island with
the half-width |X +

f |. According to Eq. (20), in the system
center we find

s(0, T ) + 1 = 2�

(πT )d/2
exp

(
− 1

4T

)
(25)

from which it follows immediately that s(0, T ) reaches the
maximum sM (0) = MaxT [s(0, T )] at the time moment

TM = 1/2d

from which we find

sM (0) = 2�

(
2d

πe

)d/2

− 1.

Assuming further that sM (0) = 0 we obtain finally the critical
point of coalescence threshold

�� = 1

2

(
πe

2d

)d/2

=
⎧⎨
⎩

1.033 18 . . . , d = 1
1.067 47 . . . , d = 2
0.849 00 . . . , d = 3.

(26)

Substituting now T = Ts into Eq. (25) and assuming that
s(0, Ts) = 0, we find the critical point of threshold of island
centers merging

�s =
√

e

2

(
π

2

)d/2

=
⎧⎨
⎩

��, d = 1
1.294 90 . . . , d = 2
1.622 92 . . . , d = 3.

(27)

above which the formed single-centered island dies in the
system center. Indeed, according to Eq. (20), in the system

center we have

∂2s/∂X 2 |r=0= − �e−1/4T

T (πT )d/2
(1 − Ts/T )

from which, according to Eq. (22), it follows that at the critical
point Ts = 1

2 the transition local minimum of s→ global
maximum of s occurs:

s(0, T < Ts) = MinX (s) → s(0, T > Ts) = MaxX (s).

From Eqs. (25)–(27) we conclude that regularities of the
island-sea-island system evolution differ qualitatively at d =
1 and d > 1. In 1D systems �� = �s, that is why in the
domain � < �� each of the islands dies individually not
touching the partner, whereas above the threshold � > ��

the single-centered island formed during coalescence dies in
the system center. At d > 1 in the range �� < � < �s a
united (dumbbell-like) two-centered island is formed which
again splits into two separated islands (fragmentation) at
some moment Tf r (�) with subsequent death in corresponding
centers ±X�(Tc). It is easy to understand the reasons for ab-
sence of the intermediate coalescence-fragmentation domain
in 1D systems. Indeed, in 2D and 3D systems the sea always
remains topologically continuous (pathwise connected), that
is why after formation of an isthmus between the islands
(coalescence) the current of sea particles normal to the X
axis strives to destroy the isthmus (A + B → 0) and reach
this (fragmentation) in the range �� < � < �s as the island
is depleted. In a qualitative contrast to that, in 1D systems
the sea consists of two areas separated by the islands: a
finite “internal” sea area enclosed between the fronts ±X −

f

(0 � |Xisea| < |X −
f |) and an unbounded “external” sea |X +

f | <

|Xsea| < ∞. Thus, after disappearance of the internal sea area
(coalescence) collapse of the formed island in the system
center is the only remaining outcome of the reaction in 1D
systems.

From Eq. (25) it follows that above the coalescence thresh-
old � > �� the condition s(0, T ) = 0 leads to occurrence of
two roots T (−)

0 < TM and T (+)
0 > TM . The first of these roots,

T (−)
0 , determines the starting time of island coalescence

T (−)
0 = Tcl (�)

and unlimitedly (logarithmically slowly) decreases with an
increase in �:

Tcl ∝ 1/4 ln �, ln � � 1.

The meaning of the second of these roots, T (+)
0 , depends

on system dimension and value of �. In 1D systems T (+)
0

determines the collapse point of the formed single-centered
island

T (+)
0 = Tc(�).

At d > 1 in the range TM < T (+)
0 < Ts (�� < � < �s) the

second root gives the fragmentation point of the two-centered
island

T (+)
0 = Tf r (�),

whereas at T (+)
0 > Ts it determines the collapse time of

the single-centered island which increases unlimitedly with
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growing �:

Tc ∝ (2�)2/d/π, �2/d � 1.

It is important to note that in the limit of large �2/d � 1 at
T � Max[ln(Tc/T ), 1] the term cosh(Xf /2T ) ≈ 1 in Eq. (21)
can be neglected, therefore, in the course of evolution the
island takes the shape of a d-dimensional sphere, the radius of
which [just as in the autonomous evolution domain �2/d � 1
(Eq. (16)] changes by the law

|X +
f | =

√
X 2

f + �2
f ≈

√
2dT ln(Tc/T ), (28)

where

Tc = (2�)2/d

π
(1 − cd/�

2/d + · · · ) ≈ (2�)2/d/π

(with cd = π/2(d+2)/d d) instead of Tc = (�2/d )/π in the
domain of autonomous evolution. This result is a trivial
consequence of the fact that in the limit of large T , when
diffusion length becomes much larger than the initial distance
between the islands, the evolution of the island formed during
coalescence should obey asymptotically the law of evolution
from an instantaneous source with the twice initial number
of particles 2N0. According to Eq. (20), in 2D and 3D
systems the half-width (radius) of the isthmus between the
islands in the section X = 0 grows during coalescence by the
law

|�0 f | =
√

4T ln[2�/(πT )d/2] − 1

reaching the maximum∣∣�M
0 f

∣∣ =
√

(�/��)2/d − 1

at the time moment

T �

M = (�/��)2/d/2d

from which in the upper limit of the fragmentation domain
� = �s we obtain

T �

M (�s)/Ts = e(1−d )/d =
{

0.606 53 . . . , d = 2
0.513 41 . . . , d = 3

and

∣∣�M
0 f (�s)

∣∣ =
√

de(1−d )/d − 1 =
{

0.461 58 . . . , d = 2
0.735 01 . . . , d = 3.

Correspondingly, in the limit of large �2/d � 1 under ex-
pansion and subsequent contraction of the d-dimensional
sphere in accord with Eq. (28) we find T �

M (� → ∞)/Tc = 1/e
and |�M

0 f (� → ∞)| = (�/��)1/d at the front turning point.
Figure 1 demonstrates the dependencies Tc(�), Tcl (�), and
Tf r (�) calculated from Eqs. (23)–(25) for d = 1, 2, 3. These
dependencies reveal a comprehensive picture of location and
extension of the domains of autonomous death of the islands
(I), individual death of the islands below the coalescence
threshold (II), coalescence-fragmentation of the two-centered
island with subsequent individual death of each of the islands

FIG. 1. Dependencies Tc(�), Tcl (�), and Tf r (�) calculated
from Eqs. (23)–(25) for d = 1 (a), d = 2 (b), and d = 3 (c). The
areas of autonomous collapse, coalescence, and fragmentation are
colored. The critical points (��, TM ) and (�s, Ts ) are marked by
square and circle, respectively. The dashed lines show the asymp-
totics of the autonomous collapse [Eq. (16)].

(III), and coalescence-collapse of the single-centered island in
the system center (IV).

IV. EVOLUTION OF FRONT TRAJECTORIES

Figures 2–4 show the dependencies |X −
f (T )|, |X +

f (T )|,
and |X�(T )| calculated from Eqs. (7)–(12) (L = 102, v =
0) and Eqs. (21) and (22) (� = 0) for d = 1, 2, and 3,
respectively. These dependencies, in combination with the
behavior of the velocities along trajectories, demonstrate the
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key features of evolution of trajectories of fronts and of island
centers with growing parameter �.

A. 1D systems

From Fig. 2 it is seen that in 1D systems with increasing
� the mutual “self-accelerating” convergence of the island
centers is accompanied by the corresponding asymmetric
“deformation” of the front trajectories.

(a) The trajectory |X −
f (T )|. In the domain � < �−

a ≈
0.982�� the velocity of front motion |V −

f | = |dX −
f /dT | along

the trajectory |X −
f | decreases monotonically up to the front

turning point V −
f = 0 after the passage of which both of the

fronts |X ±
f | move toward each other accelerating up to the

point of island collapse |V ±
f (T → Tc)| → ∞. At �−

a < � <

�� on the trajectory |X −
f (T )| two inflection points, Min|V −

f |
and Max|V −

f |, arise between which the domain of front ac-
celeration appears and expands. As � approaches ��, the
amplitude of Max|V −

f | increases unlimitedly Max|V −
f |(� →

��) → ∞ decreasing abruptly to 0 at the front turning point
with subsequent rapid collapse of the island. The reason
for this behavior is obviously the competition between two
opposing trends: (i) the striving of each of the islands to
“destroy” the finite (internal) sea area as motion of the front
|X −

f | accelerates and (ii) the striving of the unlimited sea
area to “destroy” the island as motion of the front |X +

f |
accelerates. At the stage of accelerating motion of the front
|X −

f | the process (i) is dominant, whereas after passage of
the point Max|V −

f | the process (ii) wins the competition. It
is remarkable that precisely at the critical point �� both of
the islands and the internal sea area die simultaneously at
the time moment T = Ts: |X ±

f | → 0, |V ±
f | → ∞ as T → Ts.

In the domain of coalescence � > ��, the process (i) wins
the competition, that is why the front velocity grows un-
limitedly up to the coalescence point: |X −

f | → 0, |V −
f | → ∞

as T → Tcl .
(b) The trajectory |X +

f (T )|. In the domain of individual
island collapse � < ��, after passage of the front turn-
ing point V +

f = 0 the front velocity monotonically increases
unlimitedly everywhere up to the point of island collapse
Tc: |V +

f | → ∞ as T → Tc < Ts. At � > �� two inflection
points, Max|V +

f | and Min|V +
f |, arise on the trajectory |X +

f | be-
tween which the domain of front motion deceleration appears
and expands. With an increase in �, the amplitude of ratio
Max|V +

f |/Min|V +
f | decreases rapidly, so at large � � �� the

domain of front deceleration actually disappears. Since the
domain of front deceleration arises in the vicinity T ≈ Ts <

Tc, it is qualitatively clear that the reason for front motion
deceleration is a rapid increase in the concentration of island
particles in the system center against a background of merging
of the island centers in a united center at T = Ts = TM where
the concentration reaches the maximum. According to Fig. 2,
with increasing �, by the time moment T ≈ Ts the distance
from the front to the system center rapidly increases and, as
a consequence, the effect of passage through the maximum in
the system center on front motion decreases up to complete
disappearance at large �.

FIG. 2. 1D systems: (a) The trajectories |X +
f (T )| and |X −

f (T )|
calculated for � = 0.6, 0.8, 1, �� = 1.033 18, 1.05, and 1.1 ac-
cording to Eqs. (7)–(12) (L = 102, v = 0) (filled circles) and
Eq. (21) (� = 0) (thick lines). In accordance with Fig. 1(a) the
growth of � corresponds to the visually observed growth of
Tc. The area of individual collapse below the coalescence
threshold is colored. Semifilled circles show the trajectory of
the island center |X�(T )| [Eq. (22)]. The trajectories of au-
tonomous collapse calculated from Eq. (16) for � = 0.6, 0.8,
and 1 are shown by thin lines. (b) Time dependencies |V −

f (T )|
up to the turning point calculated from Eq. (21) for � =
1.01, 1.015, 1.02, 1.025, 1.03, 1.032, 1.0325, 1.033, and �� (from
bottom to top). The area with two inflection points is colored.
(c) Time dependencies |V +

f (T )| calculated from Eq. (21) for � =
1.02, 1.03, ��, 1.035, 1.04, 1.05, 1.07, 1.11, 1.14, and 1.2 (from top
to bottom). The circles mark the starting points of coalescence.
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FIG. 3. 2D systems: (a) The trajectories |X +
f (T )| and |X −

f (T )|
calculated for � = 0.6, 0.8, 1, �� = 1.067 47, 1.2. and 1.5 ac-
cording to Eqs. (7)–(12) (L = 102, v = 0) (filled circles) and
Eq. (21) (� = 0) (thick lines). In accordance with Fig. 1(b) the
growth of � corresponds to the visually observed growth of
Tc. The area of individual collapse below the coalescence
threshold is colored. Semifilled circles show the trajectory of
the island center |X�(T )| [Eq. (22)]. The trajectories of au-
tonomous collapse calculated from Eq. (16) for � = 0.6, 0.8,
and 1 are shown by thin lines. (b) Time dependencies |V −

f (T )|
up to the turning point calculated from Eq. (21) for � =
0.08, 0.09, 1, 1.04, 1.05, 1.06, 1.065, 1.067, 1.067 44, and �� (from
bottom to top). The area with two inflection points is colored.

B. 2D and 3D systems

From Fig. 3 it is seen that in the 2D case, as well as in
the 1D case, at � > �−

a ≈ 0.974�� two inflection points,
Min|V −

f | and Max|V −
f |, arise on the trajectory |X −

f (T )| be-
tween which the domain of front acceleration appears and
expands. In a qualitative contrast to 1D systems, however,
as � approaches ��, the amplitude of Max|V −

f | approaches
the finite value |V −

f �| which is reached precisely at the critical
point � = �� where |X −

f | → 0, |V −
f | → |V −

f �| as T → TM .
Moreover, at � = �� at the time moment T = TM “elastic”
reflection of the front from the system center occurs with a
sudden reversal of velocity sign:

±|V −
f |(T = TM − 0) → ∓|V −

f |(T = TM + 0).

In the coalescence-fragmentation domain �� < � < �s the
front |X −

f |, moving to the system center, disappears at

FIG. 4. 3D systems: The trajectories |X +
f (T )| and |X −

f (T )| calcu-
lated for � = 0.6, 0.8, �� = 0.849 00, 1, 1.2, 1.5, and 1.9 accord-
ing to Eqs. (7)–(12) (L = 102, v = 0) (filled circles) and Eq. (21)
(� = 0) (thick lines). In accordance with Fig. 1(c) the growth of
� corresponds to the visually observed growth of Tc. The area
of individual collapse below the coalescence threshold is colored.
Semifilled circles show the trajectory of the island center |X�(T )|
[Eq. (22)]. The trajectories of autonomous collapse calculated from
Eq. (16) for � = 0.6 and 0.8 are shown by thin lines.

the coalescence point (|X −
f | → 0, |V −

f | → ∞ as T → Tcl <

TM), and arises again at the fragmentation point (|X −
f | →

0, |V −
f | → ∞ as T → Tf r < Ts), moving to the island center,

with its subsequent collapse at the point Tc. In a qualita-
tive contrast to 1D systems, after passage of the turning
point |V +

f | = 0, the front |X +
f | moves with an unlimitedly

increasing velocity at any � up to the collapse point |X +
f | →

|Xc|, |V +
f | → ∞ as T → Tc. 3D systems demonstrate the

similar behavior (Fig. 4) with �−
a ≈ 0.957��.

C. Front trajectories in the vicinity of coalescence,
fragmentation, and collapse points X±

f → 0

From Eq. (21) we find that in the limit X ±
f → 0 (in view of

X ↔ −X symmetry we shall assume that X � 0)

Vf Xf = d (1 − TM/T + εM )

(Ts/T − 1 + εs)
, (29)

where

εM = X 2
f TM (1/T − 1)/T − s(0, T ) + · · · ,

εs = −X 2
f (1 − 1/T + 1/12T 2)/4T 2 + · · · ,

and εM,s → 0 as |T − T0|, Xf → 0 where T0(�) =
T (−)

0 (�) = Tcl or T0(�) = T (+)
0 (�) = Tf r, Tc. Assuming

further that T0 �= TM, Ts in the limit |T − T0| → 0, we obtain
from Eq. (29)

Xf =
√

2dD(T0 − T )

and

Vf = −sgn(D)

√
dD

2(T0 − T )
, (30)
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where

D = TM − T0

Ts − T0
.

From Eq. (30) it follows that at � > �� in 1D systems
(TM = Ts = 1

2 ) the fronts of collapse X +
f (T0 = Tc > TM ) and

coalescence X −
f (T0 = Tcl < TM ) reach the system center with

the same reduced velocity regardless of �:

V f = |Vf |
√

|T0 − T | = 1/
√

2.

In 2D and 3D systems, behavior of the fronts changes qual-
itatively. With an increase in �, the reduced velocities of
coalescence and fragmentation fronts increase from V f → 0
at � → �� + 0 to V f = 1/

√
2 at � � �� and to V f → ∞

at � → �s − 0, respectively. In its turn, with increasing �

the reduced velocity of collapse of the single-centered island
(� > �s) decreases from V f → ∞ at � → �s + 0 to the
constant V f = √

d/2 at � � �s. It is clear that “abnormal”
deceleration V f (T0 → TM ) → 0 and acceleration V f (T0 →
Ts) → ∞ of front motion in the vicinity of the critical points
�� and �s, respectively, relate to a radical change in the laws
of front motion at these points. The detailed analysis which
will be presented below shows that at the critical point � =
�� (T0 = TM) the fronts of coalescence (T → TM − 0) and
fragmentation (T → TM + 0) move by the law of “elastic”
front reflection

X −
f = ±(TM − T )

√
2d2/(d − 1). (31)

At the critical point of merging of the centers � = �s we find

X +
f = [12(d − 1)(Ts − T )]1/4. (32)

As we shall see below, the first of these results is a direct con-
sequence of rapid ∝(TM − T )2 disappearance of sea particles
in the system center and as a rapid increase in their concen-
tration after reflection of the front. The second of these results
[which is easily derived from (29)] is a direct consequence
of formation of a superellipse (2D) or superellipsoid (3D) at
the final stage of island collapse. To complete the picture, we
shall also indicate the law of front motion at the critical point
� = �� = �s for the 1D case:

X ±
f =

√
2(3 ±

√
6)(TM − T ). (33)

V. EVOLUTION OF ISLANDS IN THE VICINITY OF
COALESCENCE, FRAGMENTATION,

AND COLLAPSE POINTS

In the previous section we focused on front trajectories
along the X axis, X ±

f (�, T )|� f =0, which determine the evo-
lution of width of the islands and the key features of their
coalescence, fragmentation, and collapse. In 1D systems these
trajectories provide comprehensive information on evolution
of islands, whereas in 2D and 3D systems the description
of shape evolution of the islands � f (�, T ) = F[Xf (�, T )]
is necessary for a complete picture of their evolution. In
this section, our goal is a detailed analysis of the evolution
of shape of the islands in the vicinity of their coalescence,
fragmentation, and collapse points.

Assuming that |X |/T, X 2/T � 1 and �2/T � 1 we find
from Eq. (20)

s + 1 = 2�e−1/4T

(πT )d/2

(
1 − X 2

4T
P2 + X 4

T 2
P4 − �2

4T
+ · · ·

)
, (34)

where

P2(T ) = 1 − 1/2T

and

P4(T ) = (1 − 1/T + 1/12T 2)/32.

Let now as before s(0, T0) = 0 where, depending on the value
of �, the time moment T0 is the point of coalescence Tcl ,
fragmentation Tf r , or collapse of the single-centered island
Tc. Then, introducing the reduced time T = (T0 − T )/T0 in
the limit of small |T | � 1 we obtain from Eq. (34)

s = s(0, T ) − X 2

4T0
P0

2 + X 4

T 2
P4 − �2

4T
+ · · · , (35)

where

P0
2 = (1 − Ts/T0)(1 + s(0, T )) + T (1 − 1/T0) + · · · ,

s(0, T ) = T d (1 − TM/T0)/2 + mT 2 + · · · ,

and

m = (d + 2)

8
(d − 1/T0) + 1/32T 2

0 .

Assuming further that s f = 0 we derive from Eq. (35)

s(0, T ) = X 2
f

4T0
P0

2 − X 4
f

T 2
P4 + �2

f

4T
+ · · · . (36)

A. Self-similar evolution of islands at the final collapse stage at
� � �s

1. Self-similar collapse at the critical point �s = �� of 1D systems

At the critical point � = �s we have T0 = Ts = Tc = 1
2

from which it follows

P0
2 = −T + · · · ,

s(0, T ) = T (d − 1)/2 + (d2 − 3)T 2/8 + · · · ,

and we derive from Eq. (36)

s(0, T ) = −X 2
f T /2 + X 4

f /12 + ρ2
f /2 + . . . . (37)

In the 1D case, where �s = ��, Ts = TM , and � = 0, from
Eq. (37) we reproduce immediately the result of (33):

X ±
f =

√
(3 ±

√
6)T .

From Eq. (35) a remarkable fact follows that in 1D systems
at the final collapse stage the distribution of particles in the
island and internal area of the sea takes the universal scaling
form

s(X, T ) = T 2�(|X |/
√
T ). (38)
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FIG. 5. Collapse of the normalized distribution of particles
|s(|X |/√T )|/T 2 to the scaling function (38) at � = ��. Thin lines:
T = 0.04, 0.01; thick line: T → 0 [Eq. (20)]. The areas under
scaling function �(|X |/√T ) are colored.

As a consequence of this fact, we conclude that at the critical
point �s = �� at the final collapse stage the ratio of island
width X +

f − X −
f to the half-width of the internal sea area X −

f ,

gI/S = X +
f − X −

f

X −
f

=
√

3 + √
6

3 − √
6

− 1 = 2.146 26,

and the ratio of front to center widths |X ±
f − X�| [where,

according to Eq. (22), X� = √
3T ]

g± = X +
f − X�

X� − X −
f

=
√

3 + √
6 − √

3√
3 −

√
3 − √

6
= 0.608 39 . . .

remain constant up to the collapse point. According to
Eq. (38), in the scaling regime the number of island particles
should decrease by the law N ∝ T 5/2. The exact calculation
from Eq. (35) gives

N /N0 = m1T 5/2,

where m1 = 0.243 12 . . . . Calculating further the ratio of par-
ticle number on the half-width of the internal sea area to par-
ticle number in the island we obtain Nisea/N = 0.241 18 . . .

from which it follows that at the final collapse stage the ma-
jority of island particles, ≈ 3

4 , die in the “external” front X +
f ,

whereas only ≈ 1
4 of island particles die in the “internal” front

X −
f . From Fig. 5 it is seen that the calculated from Eq. (20)

normalized particle distribution s(X/
√
T )/T 2 converges to

scaling function (38) at T ≈< 0.04 from which we conclude
that ∼10−4 of the initial number of particles die in the scaling
regime (38).

2. Final stage of collapse at the critical point �s

of 2D and 3D systems

In a radical contrast to 1D systems, where at the critical
point of merging of the centers Ts = 1

2 both of the islands dis-
appear at the moment of island contact [X +

f (Ts) = X −
f (Ts) =

FIG. 6. Final stage of 2D island evolution at the critical point
� = �s: collapse of island shape to the superellipse in the scaling
coordinates Yf /T 1/2 vs Xf /T 1/4. Thin lines: T = 0.1, 0.01, and
0.001 [Eq. (21)]; thick line: Eq. (39). The area of superellipse is
colored.

0], in 2D and 3D systems long before island collapse a
united two-centered island is formed (Tcl < TM < Ts) which
disappears at the point of merging of the centers [X +

f (Ts) = 0].
From Eq. (37) it follows that at d > 1, at the final collapse
stage T � 1, the two-centered dumbbell-like island takes the
shape of a superellipse (2D) or superellipsoid (3D):(

Xf

X m
f

)4

+
(

� f

�m
f

)2

= 1, (39)

where, according to Eq. (32), the major semiaxis of the
superellipse (superellipsoid) contracts by the law

X m
f (T ) = X +

f (T ) = [6(d − 1)T ]1/4,

whereas its minor semiaxis contracts by the law

�m
f (T ) = [(d − 1)T ]1/2

and, therefore, the aspect ratio of the superellipse (superellip-
soid) contracts by the law

A = �m
f

X m
f

=
[

(d − 1)T
6

]1/4

→ 0

as T → 0. Thus, we conclude that in 2D and 3D systems
at the critical point �s the island asymptotically takes the
shape of a quasi-one-dimensional “string,” the length of which
contracts unlimitedly by the law ∝T 1/4 as T → 0. From
Eq. (35) it follows that at the final collapse stage distribution
of particles in the island takes the universal scaling form

s = T Fd

( |X |
T 1/4

,
|�|
T 1/2

)
, (40)

from which, taking into account Eq. (39), for the number of
particles in the island we obtain

N /2N0 = mdT (2d+3)/4,

where m2 = 0.150 91 . . . and m3 = 0.320 25 . . .. Figure 6
presents the calculated from Eq. (21) evolution of front at the
final stage of 2D island collapse in the scaling coordinates
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Yf /T 1/2 vs Xf /T 1/4. It is seen that the shape of the island
converges to superellipse (39) at T <∼ 10−3. The same pic-
ture is observed in the 3D case from which we conclude that
∼10−6 (2D) and ∼10−7 (3D) of the initial number of particles,
respectively, die in the scaling regime (40).

3. Final stage of collapse of single-centered island (� > �s)

In agreement with Eq. (30), from Eq. (36) at χ = Ts/Tc <

1 in the limit of small T → 0 we asymptotically find

X +
f =

√
(d − χ )T
χ (1 − χ )

(1 + μT + · · · ), (41)

where at 1 − χ � 1 coefficient |μ| ∝ (d − χ )/(1 − χ )2 from
which it follows that in 1D systems the crossover T 1/2 →
T 1/2 to asymptotics (41) is realized at T � (1 − χ ), whereas
in 2D and 3D systems the crossover T 1/4 → T 1/2 to asymp-
totics (41) is realized at T � (1 − χ )2. From Eq. (36) we
conclude thus that in 2D and 3D systems at the final collapse
stage T � (1 − χ )2, the single-centered island takes at any
� > �s the shape of an ellipse (2D) or ellipsoid of revolution
(3D): (

Xf

X m
f

)2

+
(

� f

�m
f

)2

= 1, (42)

where the major semiaxis of the ellipse (ellipsoid) contracts
by the law

X m
f = X +

f =
√

(d − χ )T
χ (1 − χ )

,

whereas its minor semiaxis contracts by the law

�m
f =

√
(d − χ )T /χ

so that asymptotically the island contracts self-similarly with
the constant aspect ratio

A = �m
f /X m

f =
√

1 − χ.

As expected, in the limit χ → 1 (� → �s), the island inherits
asymptotically the shape of a quasi-1D “string,” A(χ →
1) → 0, whereas according to Eq. (28) in the opposite limit
χ � 1 (�/�s � 1) the island contracts in the shape of a d-
dimensional sphere A(χ → 0) → 1. According to Eqs. (35)
and (42) for asymptotics of the particle number in the island
we find

N /2N0 = qd (�)T (d+2)/2, (43)

where

qd (�) = αd (d − χ )(d+2)/2

�χd/2
√

1 − χ

and α1 = 1/6, α2 = π/32, α3 = π/60. From Eq. (43) it fol-
lows that in the vicinity of the critical point 1 − χ � 1 by the
time of crossover to asymptotics (41) ∝ (1 − χ )(2d+3)/2 of the
initial number of particles remain in the d-dimensional island.
With growing �, the coefficient q1(�) increases rapidly, and
the coefficients q2,3(�) decrease rapidly reaching the values
of q1(∞) = √

2/π/3, q2(∞) = 1
2 , and q3(∞) = 3

√
6/π/5

known for a d-dimensional sphere [37].

B. Evolution of 2D and 3D islands in the vicinity of coalescence
and fragmentation points (� � ��)

1. Shape of islands at the starting points of coalescence Tcl and
fragmentation Tf r

Let now χs = Ts/T0 > 1 where T0 is the starting point of
coalescence (χs > d) or fragmentation (1 < χs < d) of the
islands s(0, T0) = 0. Then, according to Eq. (35), we find that
at the point T = T0(T = 0) of contact of the islands X −

f (T0) =
0 in the vicinity Xf � min(

√
χs − 1, T0) of the system center

the front of each of the islands takes the form of an angle (2D)
or cone of revolution (3D) with a vertex in the system center
r = 0 and the χs-dependent value of opening angle 2θ where

tan θ = |� f |/Xf =
√

χs − 1. (44)

From Eq. (44) it follows that in the coalescence domain
(Tcl < TM) the angle θcl (�) increases from θcl (��) = π/4
(2D) or tan−1

√
2 (3D) to θcl (∞) = π/2 with an increase in

�, whereas in the fragmentation domain (TM < Tf r < Ts) the
angle θ f r (�) decreases from θ f r (��) = θcl (��) to θ f r (� →
�s) → 0 with an increase in �. We conclude thus that, as
expected, (a) at any �� < � < �s the angle of coalescence is
always greater than that of fragmentation

θcl (�) > θ f r (�),

and (b) in the limit � → �s(χs → 1) at the moment of start
of fragmentation Tf r both of the islands “inherit” the shape
of a quasi-1D string |� f |/Xf → 0. According to Eq. (35), in
this limit the distribution of particles in each of the islands is
determined by the expression

s = (χs − 1)X 2/2 − X 4/12 − �2/2 + · · ·
from which at the point of fragmentation Tf r the island
width is

X +
f =

√
6(χs − 1),

the coordinate of the island center is X� = X +
f /

√
2, the con-

centration of A particles in the island center is s� = 3(χs −
1)2/4, the amplitude |� f �| in the island center is |� f �| =√

3/2(χs − 1) so that |� f �|/X +
f = √

χs − 1/2, and the frac-
tion of particles remaining in each of the islands is N /N0 ∝
(χs − 1)(2d+3)/2. As an illustration, Fig. 7 presents the sequen-
tial stages of coalescence, fragmentation, and collapse of 2D
islands for � = 1.2, which demonstrate the key features of the
evolution of their shape in the range �� < � < �s.

2. Elastic reflection of the front at the critical point � = ��

According to Eq. (35), at the critical point � = �� (T0 =
TM) we find s(0, |T |) = −dT 2/4 + · · · , P0

2 = (1 − d ) + · · · ,
and conclude that at |T |, Xf � 1 the front of each of the
islands takes the shape of a hyperbola (2D) or hyperboloid
of revolution (3D)(

Xf

X m
f

)2

−
(

� f

�m
f

)2

= 1, (45)

where real, X m
f = X −

f , and imaginary, �m
f , semiaxes of the

hyperbola (hyperboloid) first contract (T > 0), and then grow
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FIG. 7. Sequential stages of coalescence, fragmentation, and
collapse of 2D islands calculated from Eq. (21) at � = 1.2(Tc =
0.4368) for the time moments T = 0.005 (a), T = Tcl = 0.159 77
(b), T = T �

M = 0.281 04 (c), T = Tf r = 0.423 11 (d), and T = 0.434
(e). The areas of islands are colored.

(T < 0) by the law

X m
f = |T |/

√
2(d − 1), �m

f = |T |/
√

2

keeping T ↔ −T symmetry with a sudden reversal of the
velocity sign at the contact point of vertices of hyperbola (hy-
perboloid), T = 0, where, according to Eq. (44), branches of
hyperbola (hyperboloid) degenerate in coaxial angles (cones)
with θ (��) = tan−1

√
d − 1 which determine the asymptotes

of the hyperbola (hyperboloid) (|� f |/Xf )a = √
d − 1.

3. Evolution of islands in the vicinity of coalescence and
fragmentation points � > ��

Assuming |T | � min[(χs − 1)2, |χM − 1|, T0] where
χM = χs/d = TM/T0, from Eq. (36) we find that evolution of
island shape in the vicinity of coalescence and fragmentation
points is described by the expression(

Xf

X m
f

)2

−
(

� f

�m
f

)2

= sgn[(χM − 1)T ], (46)

where with an increase in T the semiaxes of the hyperbola
(hyperboloid of revolution) first contract (T > 0), and then
grow (T < 0) by the laws

X m
f =

√
d|(χM − 1)T |

χs(χs − 1)

and

�m
f =

√
d|(χM − 1)T |/χs

with the time-independent asymptotes

(|� f |/Xf )a =
√

χs − 1.

According to Eq. (46), in the coalescence domain (χM > 1)
vertices of the hyperbola (two-sheet or elliptic hyperboloid)
|X −

f | move toward each other (T > 0), accelerating, up to the
coalescence point T = 0, where the semiaxis X m

f becomes
imaginary and �m

f (T < 0) determines a decelerating increase
in width (radius) of the isthmus of the formed two-centered
island (one-sheet or hyperbolic hyperboloid). In the frag-
mentation domain (1/d < χM < 1), where the two-centered
island divides into two separated islands, this process occurs
in a reverse order: hyperbolic hyperboloid (T > 0) → elliptic
hyperboloid (T < 0). It is remarkable that in the limit of
a quasi-1D string χs − 1 � 1, Eq. (35) allows describing
explicitly a complete picture of fragmentation up to the point
of individual collapse of each of the islands. For d > 1 at
|T |, |X | � 1 from Eq. (36) we have

T (d − 1) = −X 2
f (χs − 1 + T ) + X 4

f /6 + �2
f + · · · , (47)

from which for the trajectories X ±
f (T ) of the front points

along the X axis (� f = 0) we find

(X ±
f )2 = 3(χs − 1 + T ) ±

√
9(χs − 1 + T )2 + 6T (d − 1)

and, as a consequence, from the condition X +
f (Tc) =

X −
f (Tc) = Xc for the point of the individual collapse we
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get

Tc = −βd (χs − 1)2[1 − O(χs − 1) + · · · ],

Xc =
√

3(χs − 1 + Tc),

where βd = 3/2(d − 1).
Determining further the distance of ± fronts to the collapse

point �± = X ±
f − Xc and assuming that |�±|/Xc � 1 we find

from Eq. (47)

�± = ±
√

6(d − 1)(T − Tc)

2Xc
(1 − �±/2Xc + · · ·),

from which it follows that

�+/|�−| = 1 − |�±|/Xc + · · · → 1

as |�±|/Xc ∝ √
T − Tc/X 2

c → 0. Introducing now the
difference coordinate � = X − Xc, from Eq. (47) we
obtain expansion in powers of � f in the form (d −
1)(T − Tc) = −2(T − Tc)� f Xc + (2/3)�2

f X 2
c + O(Xc�

3
f ,

�4
f ) + �2

f + · · · , from which it follows that at the final stage
of individual collapse |� f |/Xc � 1 each of the islands takes
the shape of an ellipse (2D) or ellipsoid of revolution (3D)
with the center at the collapse point Xc,(

� f

�m
f

)2

+
(

� f

�m
f

)2

= 1, (48)

the semiaxes of which contract by the laws

�m
f =

√
6(d − 1)(T − Tc)

2Xc
,

�m
f =

√
(T − Tc)(d − 1),

and, consequently, the ellipse (ellipsoid) contracts self-
similarly up to the collapse point with the time-independent
aspect ratio

A = �m
f /�m

f =
√

2/3Xc ∝
√

χs − 1,

so that A → 0 as χs → 1. According to Eq. (47), during
evolution from the fragmentation point T = 0 to the col-
lapse point T = Tc, the island center almost does not shift
[X�(0) − Xc]/Xc ∝ χs − 1 � 1, the concentration of A parti-
cles in the island center decreases by the law sc ∝ (T − Tc),
and the fraction of particles remaining in the island decreases
by the law N /N0 ∝ (T − Tc)(d+2)/2/

√
χs − 1. As an illustra-

tion, Fig. 8 shows the evolution of the shape of 2D islands
from the “hyperbolic” (|T | � |T c|) to the “elliptical” stage
(T − Tc � |Tc|) for χs − 1 = 0.01. Below, we shall demon-
strate that, as well as in the case of death of the single-centered
island (Tc > Ts), at the final stage of individual death (Tc < Ts)
each of the islands takes the shape of an ellipse (ellipsoid of
revolution) at any � < �s, degenerating into a d-dimensional
sphere in the limit of autonomous collapse �2/d � 1.

C. Final stage of the individual collapse of islands (� < �s)

Let now, as before, � = X − Xc, but T = (Tc − T )/Tc

where Tc is the time moment of the individual island collapse
(� < �s). Then, in the limit of small �2/Tc � 1, �2/Tc � 1,

FIG. 8. Evolution of 2D island from the fragmentation (T =
(Tf r − T )/Tf r = 0) to the collapse (T = Tc ) points calculated from
Eq. (47) in the quasi-1D string limit χs − 1 = 0.01 for the time
moments T = 0, −2 × 10−5, −10−4, and −1.41 × 10−4.

and T � 1 from Eq. (20) we obtain expansion in powers of
�, �, and T in the form

s − sc

1 + sc
= F (�) + E (�)[1 + F (�)], (49)

where concentration of A particles at the collapse point
�,� = 0 decreases by the law

sc = T (d − χc)/2 + mcT 2 + · · · ,

mc = (d + 2)

8
(d − 2χc) + χc(1 + 3X 2

c )

16Tc
,

and expansions of the functions F (�) and E (�) in powers of
� and �, respectively, have the form

F (�) = c1� + c2�
2 + c3�

3 + c4�
4 + · · ·

and

E (�) = −�2(1 + T − �2/8Tc + · · · )/4Tc + · · · ,

where the coefficients

c1 = χcXcT
2Tc

[1 + O(T ) + · · · ],

c2 = −1 − χc + ωT + · · ·
4Tc

,

ω = 1 + χc
(
X 2

c /Tc − 2
)
,

c3 = − χcXc

12T 2
c

[1 + O(T ) + · · · ],

c4 = 1 + χc
(
X 2

c /2Tc + 1/6Tc − 2
)

32T 2
c

[1 + O(T ) + · · · ],

and the notation is introduced

0 < χc =
(
1 − X 2

c

)
2Tc

< 1. (50)

From Eq. (49) we conclude that at any � < �s at the final
collapse stage T → 0 the distribution of particles in each of
the islands takes the universal scaling form

s = T Sd,�

( |�|
T 1/2

,
|�|
T 1/2

)
, (51)

from which, according to Eq. (49), it follows that in 1D
systems in the domain X >= 0 the fronts �± = X ±

f − Xc
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asymptotically converge symmetrically to the collapse point
�± = 0 by the law

�± = ±�m
f = ±

√
2TcT .

Correspondingly, in agreement with Eq. (48), in 2D and 3D
systems each of the islands takes asymptotically the shape of
an ellipse (2D) or ellipsoid of revolution (3D) the semiaxes of
which contract by the laws

�m
f =

√
2Tc(d − χc)T

(1 − χc)
, (52)

�m
f =

√
2Tc(d − χc)T , (53)

and, consequently, the ellipse (ellipsoid) contracts self-
similarly up to the collapse point with the time-independent
aspect ratio

A = �m
f /�m

f =
√

1 − χc.

According to Eq. (22), in the limit � → �s we find from
Eq. (50) 1 − χc = 2X 2

c /3 + · · · → 0 as Tc → Ts, whereas in
the opposite limit �/�s � 1(Tc � Ts) the value of χc rapidly
becomes exponentially small with a decrease in �: χc ∝
e−1/2Tc/Tc → 0 as Tc → 0. Thus, we conclude that in the
limit � → �s (χc → 1), as expected, the island “inherits”
the shape of a quasi-1D string A(χc → 1) → 0, whereas, in
agreement with Eq. (28), in the opposite limit of autonomous
death � � �s (χc � 1) the island contracts self-similarly in
the form of a d-dimensional sphere A(χc → 0) → 1.

In the general case for the trajectories of crossover to the
regime of self-similar collapse of ± fronts along the X (� f =
0) axis, we obtain from Eq. (49)

�± = ±�m
f (1 ∓ qT 1/2 + gT + · · · ), (54)

where

q = χcXc
√

2(d − χc)/Tc

6(1 − χc)3/2
(1 − �), � = 3(1 − χc)

(d − χc)

and

g = mc

d − χc
− ω

2(1 − χc)
+ (d − χc)

[
c4Tc

|c2|(1 − χc)
− 1/4

]
.

Determining the domain of self-similar island collapse by the
condition Max||�±|/�m

f − 1| < ε � 1 we find from Eq. (54)
that in the limit of small 1 − χc � 1, the boundary of this
domain is determined by the dominant term qT 1/2,

T± ∼ (ε/q)2 ∼ 6(1 − χc)2ε2

(d − χc)(1 − �)2
, (55)

whereas in the opposite limit χc ∼ exp(−1/2Tc)/Tc � 1 the
boundary of this domain [in agreement with the dynamics of
autonomous collapse of the d-dimensional sphere, Eq. (28)]
is determined by the dominant term gT ,

T± ∼ ε/|g| ∼ 4ε. (56)

In Fig. 9 are shown the dependencies T+(Tc) and T−(Tc) for
ε = 0.01 which demonstrate the key features of crossover to
the regime of self-similar collapse of ± fronts at d = 1, 2,
and 3. It is seen that in 1D and 3D systems the boundary
of the self-similar collapse regime Max||�±|/�m

f − 1| = ε is

FIG. 9. Dependencies T±(Tc ) calculated from Eq. (21) at ε =
0.01 for 1D (a), 2D (b), and 3D (c) systems. The areas of self-similar
collapse are colored.

determined by evolution of either the front �−(d = 1, q <

0) or the front �+(d = 3, q > 0), whereas in the 2D case
this boundary is determined by evolution of the front �−
in the range 0 < χc < 1/2(q < 0) and by evolution of the
front �+ in the range 1/2 < χc < 1(q > 0). We emphasize
that according to Eqs. (55) and (56) in the ranges Tc < 0.1
and Tc > 0.3–0.4, both of the fronts reach the boundary of
the self-similar collapse regime simultaneously. Moreover,
the detailed analysis shows that in 1D systems �+ > |�−|,
in 3D systems �+ < |�−|, and in 2D systems �+ > |�−|
in the range 0 < χc < 1

2 , whereas in the range 1
2 < χc < 1,
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where the individual collapse is preceded by coalescence
fragmentation �+ < |�−|. According to Eq. (49), in 2D and
3D systems the “trajectory” of crossover to the regime of self-
similar contraction of minor semiaxis of the ellipse (ellipsoid)
has the form

|� f (� = 0)| = �m
f (1 + φT + · · · ),

where φ = mc/(d − χc) − (d − χc)/8 − 1/2, from which it
follows that in fulfilling the requirement Max||�±|/�m

f −
1| < ε, the condition ||� f (� = 0)|/�m

f − 1| < ε is satisfied
automatically in the entire range 0 < � < �s.

It is easy to see that, as it should be, in the collapse area
of a single-centered island, � > �s, Eq. (54) is transformed
into Eq. (41), where Xc = 0, χ = χc = 1/2Tc, q = 0, μ =
g, X m

f = �m
f , and T (ε) ∼ ε/|μ| in the whole range Tc > Ts.

VI. EVOLUTION, DELOCALIZATION, AND
RELOCALIZATION OF THE REACTION FRONT

So far we have assumed that the reaction front is sharp
enough so that the front relative width remains negligibly
small and, as a consequence, the front moves quasistatically
up to a narrow vicinity of the island collapse point. In this
section, we shall reveal the conditions for this assumption
realization.

In Refs. [17,18,22,23] it has been established that at d >

dc = 2 in the dimensional variables the dependence of the
quasistatic front width w on the boundary current density J
is described by the mean-field law

wMF ∼ (D2/kJ )1/3, (57)

whereas in the 1D case in the diffusion-controlled limit the
quasistatic front width becomes k independent and it is deter-
mined by the fluctuation law

wF ∼
√

D/J

[at upper critical dimension dc = 2 in the mean-field law (57)
a logarithmic correction appears [20,37]].

As noted in the Introduction, in the case of autonomous
evolution of the d-dimensional spherical island, an exhaustive
analysis of the reaction front relative width evolution for the
fluctuation, the logarithmically modified, and the mean-field
regimes was presented [37]. It was demonstrated that in a wide
range of parameters at a large enough initial island particle
number the front remains sharp up to a narrow vicinity of
the island collapse point and, therefore, the whole picture of
island evolution is completely self-consisted. According to
Ref. [37] in the mean-field regime (i.e., for quasi-1D, quasi-
2D, and 3D systems) regardless of the system dimension and
the initial number of island particles, evolution of the relative
front width η = w/r f is described by a universal law within
which the characteristic time of front delocalization at the final
collapse stage is determined unambiguously by the relative
width of the front at its turning point TQ ∼ η

3/2
M .

From the analysis presented above, it is clear that in the
problem of evolution of the island-sea-island system behavior
of the front width becomes much more complicated except
for the limits of small and large �, where the majority of
particles die in the regime of evolution of the d-dimensional
sphere. Fortunately, the detailed description of behavior of the

front width w(r f ,�, T ) is not necessary. Indeed, just as in
the case of evolution of the d-dimensional sphere, we will be
primarily interested in revealing the parameter domain within
which the front delocalization occurs at the final (self-similar)
collapse stage where the front width grows unlimitedly as
T approaches the collapse point Tc. Our second main aim
will be to determine the parameter domain within which
front delocalization occurs in a narrow vicinity of the points
of coalescence Tcl and fragmentation Tf r where the front
width increases unlimitedly as the front approaches the system
center.

To avoid unnecessary complications, we will consider
evolution of the front in the mean-field regime for quasi-1D,
quasi-2D, and 3D systems. According to Eq. (57), in the units
that we have accepted, the mean-field front width reads as

w ∼ 1/(κJ )1/3, (58)

where the effective reaction constant κ = kb0�
2/D

and the boundary current density J = |∇s||rf =
[
√

(∂X s)2 + (∂�s)2]|rf .

A. Final stage of the individual collapse of islands (� < �s)

At � < �s from Eq. (49) we find that on the final (self-
similar) collapse stage the relative width of the reaction front
along the X axis increases by the law

ηm
� = w�/�m

f =
(
T Q

�

T

)2/3

, (59)

where the characteristic time of front delocalization is

T Q
� =

√
(1 − χc)

2κTc(d − χc)2
. (60)

In the quasi-2D and 3D systems, Eqs. (59) and (60) determine
the evolution of the relative front width along the major
semiaxis of the ellipse (ellipsoid), whereas the evolution of
the relative front width along the minor semiaxis of the ellipse
(ellipsoid) is determined by the law

ηm
� = w�/�

m
f =

(
T Q

�

T

)2/3

, (61)

where the characteristic time of front delocalization is

T Q
� = 1/

√
2κTc(d − χc)2. (62)

According to Eqs. (60) and (62), T Q
� /T Q

� = √
1 − χc < 1,

hence, since the front width varies monotonically along its
�m → �m contour, T Q

� and T Q
� determine, respectively, the

low and upper bounds of the characteristic time of front
delocalization.

In the limit of autonomous collapse of the d-dimensional
sphere χc � 1 (Tc � Ts) at

√
κTc � 1 we find

T Q
� ≈ T Q

� = 1/d (2κTc)1/2 (63)

from which, in combination with Eqs. (52) and (53), for the
characteristic radius of front delocalization it follows

�
Q
f ≈ �

Q
f =

(
2Tc

κ

)1/4

. (64)
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In the opposite limit 1 − χc � 1 [i.e., in the vicinity of the
threshold of single-centered island collapse (Ts − Tc)/Ts � 1]
we have T Q

� � T Q
� and, consequently, in a drastic contrast

to the quasi-1D case, at d > 1 the front delocalization occurs
along the minor semiaxis of the ellipse (ellipsoid), that is why
these systems should be considered separately.

1. Quasi-1D systems

Satisfying the condition of self-similar collapse T �
Q � 1 −

χc � 1 we find from Eq. (60) that this condition is complied
at

1 − χc � κ−1/3

from which, according to Eqs. (52) and (60), we derive

κ−1/2 � T Q
� ∼ 1√

κ (1 − χc)
� κ−1/3,

κ−1/4 � �Q
m ∼ 1

[κ (1 − χc)]1/4
� κ−1/6. (65)

In the opposite limit 1 − χc � T Q
X � 1, long before reaching

the regime of self-similar collapse (51), front delocalization
occurs in the self-similar regime (38) from which it follows
that

ηX = wX /Xf = T Q
X /T , (66)

where

T Q
X ∼ κ−1/3, X Q

f ∼ κ−1/6. (67)

2. Quasi-2D and 3D systems

According to Eqs. (60) and (62), at d > 1 in the vicinity of
the threshold of single-centered island collapse 1 − χc � 1,
the characteristic time of front delocalization is determined by
the value T Q

� � T Q
� , that is why the condition for crossover to

the self-similar collapse regime (51) is the requirement T Q
� �

(1 − χc)2 from which it follows

1 − χc � κ−1/4

and so we have

T Q
� ∼ 1/[κ (d − χc)2]1/2 ∼ κ−1/2,

κ−1/4 � �Q
m � κ−1/8, �Q

m ∼ κ−1/4 (68)

with the aspect ratio

κ−1/8 � AQ � 1.

In the opposite limit 1 − χc � κ−1/4, long before reaching the
regime of self-similar collapse, front delocalization occurs at
the stage of superellipse (superellipsoid) evolution 1 − χc �
T � 1 where, according to Eq. (40), the relative front width
along the major semiaxis of superellipse grows by the law

ηX = wX /X m
f =

(
T Q

X

T

)1/2

, (69)

where X m
f = [6T (d − χc)]1/4 and T Q

X ∼ κ−2/3. According to
Eq. (61), as well as in the case of � collapse, the relative front
width of superellipse (superellipsoid) along its minor semiaxis
grows by the law (61) and determines the characteristic time

of front delocalization T Q
� ∼ 1/κ1/2(d − χc) > T Q

X . Assum-
ing further that 1 − χc ∼ X 2

c � T Q
� ∼ κ−1/2 (including the

critical point Xc = 0,� = �s), we find

X Q
f ∼ κ−1/8, �

Q
f ∼ κ−1/4 (70)

with the aspect ratio

AQ ∼ κ−1/8

so that A → 0 as κ → ∞ [note that as it should be Xc �
(X Q

f )2 � X Q
f � 1].

B. Final stage of collapse of the single-centered island (� > �s)

According to Eq. (41) at � > �s � �� the island coa-
lescence is completed by the self-similar collapse of single-
centered island in the system center Xc = 0. Repeating the
calculations of the previous section, it is not difficult to
demonstrate that all the results obtained above for the indi-
vidual collapse of islands remain valid for the collapse of the
single-centered island, with the only difference being that at
� > �s�

m
f = X m

f and χc = χ = 1/2Tc.

C. Evolution of the reaction front in the vicinity of
coalescence point Tcl

In a drastic contrast to autonomous evolution of the d-
dimensional spherical island, where front delocalization oc-
curs only at the final collapse stage, at � > �� the relative
front width along the X axis starts increasing unlimitedly as
the leading point of the front X −

f approaches the system center
(where J → 0 and hence wX → ∞ as T → Tcl ) and, as a
consequence, the intermediate front delocalization arises.

Assuming that |T | = |Tcl − T |/Tcl � min[(χM − 1), Tcl ]
we find from Eq. (35)

ηm
X = wX /X m

f = (
T Q

X /T
)2/3

, (71)

where the characteristic time of front delocalization is

T Q
X =

√
(χs − 1)

2κTcl (χs − d )2
(72)

from which, according to Eq. (46), the characteristic “length”
of delocalization is

X Q
f ∼

(
2Tcl

κ (χs − 1)

)1/4

. (73)

Far from the critical point � � �� (χM = χs/d =
1/2dTcl � 1) from Eqs. (72) and (73) at any d it follows

T Q
X ∼ κ−1/2, X Q

f ∼ (
T 2

cl/κ
)1/4

(74)

from which satisfying condition T Q
X � Tcl � 1 we conclude

Tcl � κ−1/2, κ−1/2 � X Q
f � κ−1/4.

In the vicinity of the critical point � ∼ ��, behavior of the
relative front width at d = 1 and d > 1 differs qualitatively.

1. Quasi-1D systems

Assuming that χM − 1 = χs − 1 � 1 and satisfying the
condition of self-similar coalescence regime T Q

X � χM − 1,
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from Eq. (72) we find that this requirement is fulfilled at

χs − 1 � κ−1/3

from which, according to Eqs. (72) and (73), it follows

κ−1/2 � T Q
X � κ−1/3, κ−1/4 � X Q

f � κ−1/6.

In the opposite limit χM − 1 � T X
Q � 1, long before reach-

ing the self-similar coalescence regime (46) front delocaliza-
tion occurs in the self-similar regime (38) from which, as well
as in the case of collapse, Eqs. (66) and (67) follow.

2. Quasi-2D and 3D systems at T < Tcl

Satisfying the condition of the self-similar coalescence
regime T Q

X � χM − 1 � 1 in the vicinity of the critical point
χM − 1 � 1, from Eq. (72) we find that this requirement is
fulfilled at

χM − 1 � κ−1/4

from which, according to Eqs. (72) and (73), it follows

κ−1/2 � T Q
X � κ−1/4, X Q

f ∼ κ−1/4.

In the opposite limit χM − 1 � T X
Q � 1 (including the criti-

cal point χM = 1), according to Eq. (45), the front moves with
a constant velocity and we derive

ηm
X = wX /X m

f =
(
T Q

X

T

)4/3

, (75)

where the characteristic time of front delocalization is

T Q
X =

√
2

(
d − 1

κd

)1/4

∼ κ−1/4 (76)

and, hence, the characteristic length of delocalization is

X Q
f = [d (d − 1)κ]−1/4 ∼ κ−1/4. (77)

3. Quasi-2D and 3D systems at T > Tcl

According to Eq. (35), at T < 0 in the system center r = 0
an excess of A particles arises with an increase in which an
isthmus between the islands is formed limited by the sharp
reaction front. From Eqs. (35) and (46) it follows that under
the condition |T | � Tcl with growing |T | the relative front
width in the plane X = 0, where radius of the isthmus is
minimal, contracts by the law

η� = w�/�
m
f = (

T Q
� /|T |)2/3

, (78)

where the characteristic time of formation of a two-centered
island limited by the sharp front is

T Q
� =

√
χs

κ (χs − d )2
(79)

and the corresponding characteristic radius of the isthmus is

�
Q
f = (2Tcl/κ )1/4. (80)

In the limit of large χM � 1(Tcl � TM ) from Eq. (79) we
obtain T Q

� = √
2Tcl/κ from which satisfying the requirement

T Q
� � Tcl we find κ−1 � Tcl � TM and, therefore, we con-

clude

κ−1 � T Q
� � κ−1/2, κ−1/2 � �

Q
f � κ−1/4. (81)

In the opposite limit χM − 1 � 1, by satisfying the condition
of the self-similar coalescence regime T Q

� � χM − 1 from
Eq. (79) we find χM − 1 � κ−1/4 from which it follows that

κ−1/2 � T Q
� � κ−1/4, �

Q
f ∼ κ−1/4. (82)

According to Eq. (35), at χM − 1 � |T | � 1 in the system
center r = 0 an excess of sea particles arises and, conse-
quently, in the vicinity of coalescence threshold χM − 1 �
κ−1/4 no isthmus between the islands is formed. We conclude
thus that formation of a two-centered dumbbell-like island
limited by the sharp front occurs only in the domain χM −
1 � κ−1/4.

D. Evolution of the reaction front in the vicinity of
fragmentation point Tf r

1. Quasi-2D and 3D systems at T < Tf r

According to Eq. (35), in the domain T = (Tf r −
T )/Tf r � 1 − χM , as the excess of A particles in the system
center decreases, the half-width (radius) of the isthmus in
the X = 0 plane contracts by the law (46), from which it
follows that with growing T the relative front width increases
by the law (78) where the characteristic time of front de-
localization and the corresponding characteristic half-width
(radius) of the isthmus are determined by Eqs. (78) and
(80) with Tf r (1 < χs = Ts/Tf r < d ) instead of Tcl (d < χs =
Ts/Tcl < ∞). As expected, in the vicinity of fragmentation
threshold 1 − χM � 1 the front delocalization occurs only in
the domain 1 − χM � κ−1/4 where at the coalescence stage
the front localization occurs:

(w ↓)� f ←− 0 −→ −� f (w ↓), |T | ↑, (cl, loc)

(w ↑)� f −→ 0 ←− −� f (w ↑), T ↓, ( f r, deloc).

Not too close to the fragmentation threshold up to the thresh-
old of single-centered island χs ∼ 1 we find from Eqs. (79)
and (80)

T Q
� ∼ κ−1/2, �

Q
f ∼ κ−1/4. (83)

2. Quasi-2D and 3D systems at T > Tf r

Just as during coalescence the front delocalization occurs
in the vicinity of vertices of the hyperbola (hyperboloid) |X −

f |
moving toward each other,

(w ↑)X −
f −→ 0 ←− −X −

f (w ↑), T ↓, (cl, deloc)

at the final fragmentation stage the formation of the localized
front is completed in the vicinity of the vertices |X −

f | moving
away from each other,

(w ↓)X −
f ←− 0 −→ −X −

f (w ↓), |T | ↑, ( f r, loc).

According to Eq. (35), at |T | � min[(χs − 1)2, |χM −
1|, Tf r] with an increase in |T | the relative front width in the
vertices vicinity contracts by the law

ηm
X = wX /X m

f = (
T Q

X /|T |)2/3
, (84)

where the characteristic time of front localization is

T Q
X =

√
(χs − 1)

2κTf r (χs − d )2
(85)
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and the characteristic length of localization is

X Q
f ∼

(
2Tf r

κ (χs − 1)

)1/4

. (86)

According to Eqs. (85) and (86), the characteristic features
of the front localization are reduced to the following:

(i) From Eqs. (72) and (85) we conclude that, as expected,
in the vicinity of the coalescence-fragmentation threshold 1 −
χM � 1 a remarkable symmetry takes place

ηX (cl, T ) ↔ ηX ( f r,−T )

and, as a consequence, in the domain κ−1/4 � 1 − χM � 1
the characteristic time of front localization T Q

X ( f r) � κ−1/4,
whereas in the domain of elastic front reflection 1 − χM �
κ−1/4 we return to Eqs. (76) and (77).

(ii) Much more nontrivial is the front localization in the
limit of a quasi-1D string χs − 1 � 1. Assuming that T Q

X �
|Tc| ∼ (χs − 1)2 we derive from Eq. (85) that the front local-
ization is completed long before the collapse of the island
in the domain χs − 1 � κ−1/3 where κ−2/3 � T Q

X � |Tc|
and X Q

f � κ−1/6 � Xc ∼ √
χs − 1. It is clear, however, that

fragmentation is completed by the formation of separated
daughter islands with the sharp front only under the condition
that by the moment T Q

X of front localization along the X
axis the relative front width ηc

� along the � axis, outgoing
from the island center, remains small enough. From Eqs. (35)
and (47) we obtain easily that at T Q

X /|Tc| � 1, fragmentation
is completed by the formation of separated islands with the
sharp front under fulfilling the more rigid condition χs − 1 �
κ−1/4 (note that this condition correlates with the condition
of self-similar � collapse 1 − χc � κ−1/4). We conclude thus
that in the vicinity of the critical point χs − 1 � κ−1/4 the
fragmentation of the quasi-1D string is completed by loss of
individuality (mixing with the sea) of the daughter islands
long before occurrence of the self-similar collapse stage.

(iii) In the domain of intermediate �� < � < �s not too
close to the threshold points �� and �s we find from Eqs. (85)
and (86)

T Q
X ∼ κ−1/2, X Q

f ∼ κ−1/4. (87)

The presented analysis of the key features of evolution of
the reaction front shows that the revealed picture of island
coalescence, fragmentation, and collapse is completely self-
consistent only in the limit when the effective reaction con-
stant κ = kb0�

2/D is large enough. In the next section, our
aim will be to demonstrate that in the diffusion-controlled
annihilation regime, the value of κ is large indeed in a wide
range of parameters.

VII. EVOLUTION OF THE FRONT IN THE
DIFFUSION-CONTROLLED ANNIHILATION REGIME

Extracting the parameter � in κ explicitly, we obtain

κ = ka0�
2

cD
= ka0�

2

�DLd
= ka0hd�2−d

�D

from which, substituting here the constant of diffusion-
controlled annihilation in the 3D medium k = ςDra where ra

is the annihilation radius and ς = 8π , we find

κ = K/�, K = ςraa0hd�2−d . (88)

From Eq. (88) it follows that (i) at fixed values of �, a0,
and L = �/h a simultaneous increase in the initial size of
the island and the initial distance between the islands results
in a rapid growth of K ∝ �2; (ii) at fixed values of �, a0,
and h (i.e., at fixed initial particle number in the island) with
growing � the value of K increases in quasi-1D systems, does
not change in quasi-2D systems, and decreases in 3D systems
as a consequence of a decrease in the initial sea density
∝1/�d :

K ∼
⎧⎨
⎩

const�, d = 1
const, d = 2
const/�, d = 3.

Taking for illustration the realistic values ra ∼ 10−8 cm, a0 ∼
1023 cm−3, h = 0.1 cm, and � = 10 cm we find from Eq. (88)
K ∼ 1016 for d = 1, K ∼ 1014 for d = 2, and K ∼ 1012 for
d = 3. Below, we will use these values of K to estimate the
typical domains of front delocalization.

A. Collapse

1. Autonomous and single-centered collapse of spherical islands

According to Eq. (28), in the limit of small 1/L2 �
�2/d � 1 evolution of each of the islands occurs in the
autonomous regime in the shape of a d-dimensional sphere
with the centers at the points Xc ∼ ±1, whereas in the limit
of large �2/d � 1 evolution of the formed by coalescence
single-centered island occurs in the shape of a d-dimensional
sphere with the center at the point Xc = 0. It is remarkable that
in both limits evolution of the radius of the island ρ f (T ) and
particle distribution in it is described by the universal scaling
laws (16) and (28) [37] with the �-dependent time of island
collapse Tc ∼ �2/d . Substituting Tc into Eqs. (63) and (64), for
the characteristic time TQ and radius ρ

Q
f of front delocalization

at the final collapse stage we obtain

TQ ∼ (K�(2−d )/d )−1/2, ρ
Q
f ∼ (�(d+2)/d/K)1/4

from which taking into account the accepted parameters it
follows

TQ ∼
⎧⎨
⎩

10−8/�1/2, d = 1
10−7, d = 2
10−6�1/6, d = 3

(89)

and

ρ
Q
f ∼

⎧⎨
⎩

10−4�3/4, d = 1
10−7/2�1/2, d = 2
10−3�5/12, d = 3.

(90)

Since, with the parameters fixed by us, an increase in � ∝
const/b0 corresponds to a decrease in the initial sea density
b0, from Eq. (89) it follows that with a decrease in the initial
sea density the characteristic time of front delocalization TQ

decreases at d = 1, does not change at d = 2, and increases
slowly at d = 3 remaining small in a wide range of �. We
conclude thus that in a wide range of small and large � the
front remains sharp up to a narrow vicinity of the collapse
point. According to Eq. (90), at any d the characteristic
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delocalization radius ρ
Q
f increases with growing �, remaining

relatively small in a wide range of �. More revealing is the
ratio �Q = ρ

Q
f /ρM

f of the delocalization radius to the radius

of maximal island expansion ρM
f ∼ �1/d at the front turning

point

�Q ∼ √
TQ ∼

⎧⎨
⎩

10−4/�1/4, d = 1
10−7/2, d = 2
10−3�1/12, d = 3.

Here, it should be emphasized a remarkable fact that at d = 2
this ratio, as well as TQ and the relative front width at the
turning point ηM

ρ ∼ T 2/3
Q [37], does not depend on the initial

sea density.

2. Collapse of islands in the vicinity of the critical point � ∼ �s

In the quasi-1D case with an accuracy to an order of mag-
nitude in the range 10−5 � 1 − χc � 1 we have TQ � 10−5

and �
Q
f , X Q

f � 10−3, whereas at the critical point vicinity

1 − χc � 10−5 we find TQ ∼ 10−5 and X Q
f ∼ 10−3.

In quasi-2D systems at 1 − χc � 1 we have TQ ∼
10−7, �

Q
f ∼ 10−4 where in the domain 1 − χc � 10−7 of the

self-similar “superelliptical” collapse the aspect ratio by the
moment of front delocalization is AQ ∼ 10−2, whereas in
the domain 10−4 � 1 − χc � 1 of the self-similar “ellip-
tical” collapse the aspect ratio is AQ ∼ √

1 − χc � 10−2.
In 3D systems, respectively, at 1 − χc � 1 we find TQ ∼
10−6, �

Q
f ∼ 10−3 where in the domain 1 − χc � 10−6 of

the self-similar “superellipsoidal” collapse the aspect ratio is
AQ ∼ 10−3/2, whereas in the domain 10−3 � 1 − χc � 1 of
the self-similar “ellipsoidal” collapse the aspect ratio is AQ �
10−3/2. Thus, we conclude that although in the quasi-1D case
in the vicinity of the critical point the quantity TQ passes
through a relatively sharp local maximum, at all d the front
remains sharp up to a narrow vicinity of the collapse point.

B. Coalescence

1. Coalescence far away from the threshold � � ��

Far away from the coalescence threshold � � 1(Tcl ∼
1/ ln � � 1) according to Eqs. (74) we find that in
the range K ∼ 1016–1012(d = 1, 2, 3) at 1 � √

� ln � �
108–106 the characteristic time of front delocalization is
T Q

X ∼ (10−8–10−6)
√

� and the characteristic length of front
delocalization X Q

f ∼ (10−4–10−3)(�/ ln2 �)1/4. As men-
tioned, in a qualitative contrast to the quasi-1D case, where the
internal sea area disappears after the delocalization of the front
X −

f , in quasi-2D and 3D systems the coalescence is completed
by formation of a dumbbell-like island limited by the localized
front with a minimal isthmus radius �

Q
f in the system center

Xf = 0. According to Eqs. (79) and (80), the characteristic
time of front localization T Q

� and the isthmus radius �
Q
f are

determined by the expressions

�
Q
f ∼

√
T Q

� ∼ (10−4–10−3)(�/ ln �)1/4.

Since in the limit of too large � → ∞ (Tcl/Tc → 0) the ma-
jority of particles die during evolution of the formed spherical

island, we conclude that in a wide range of � � 1 the front
remains sharp up to a narrow vicinity of the coalescence point.

2. Coalescence in the vicinity of the threshold � ∼ ��

In the quasi-1D case, in the vicinity of the coalescence
threshold 10−5 � χM − 1 � 1 we find

T Q
X � 10−5, X Q

f � 10−3,

whereas in the domain χM − 1 � 10−5 we obtain T Q
X ∼

10−5, X Q
f ∼ 10−3. In quasi-2D and 3D systems at T < Tcl in

the range 10−4–10−3(d = 2, 3) � χM − 1 � 1 we find

T Q
X � X Q

f ∼ 10−4–10−3,

whereas in the domain χM − 1 � 10−4–10−3 we obtain
T Q

X ∼ X Q
f ∼ 10−4–10−3. Correspondingly, at the final stage

of coalescence at 10−4–10−3 � χM − 1 � 1 we have

T Q
� � �

Q
f ∼ 10−4–10−3,

whereas in a narrow vicinity of the threshold χM − 1 �
10−4–10−3, instead of formation of an isthmus, the elastic
reflection of the “relocalized” front is realized at the fragmen-
tation stage T Q

X (fr) ∼ T Q
X (cl).

C. Fragmentation

Due to narrowness of the fragmentation range, in the
entire fragmentation domain κ ∼ K, that is why, according
to Eqs. (83) and (87), not too close to the threshold points
T Q

� ∼ T Q
X ∼ 10−7–10−6 and �

Q
f ∼ X Q

f ∼ 10−4–10−3. Corre-
spondingly, in a narrow vicinity of the coalescence threshold
1 − χM � 10−4–10−3, elastic reflection of the front occurs
without coalescence, whereas in a narrow vicinity of the
threshold of centers merging χs − 1 � 10−4–10−3 (the limit
of the quasi-1D string) the fragmentation is completed by
disruption of the islands.

Summarizing, we conclude that during diffusion-
controlled evolution of the islands, the reaction front
remains sharp up to a narrow vicinity of the coalescence,
fragmentation, and collapse points and, consequently, the
whole picture of island evolution is self-consistent in a wide
range of parameters. According to Eq. (88), with an increase
in the initial particle number in the island and a corresponding
increase in the initial distance between the islands, this
statement only gets stronger. Moreover, due to a weak power
dependence of TQ on K, this statement remains valid at a
significant decrease in the reaction constant.

VIII. CONCLUSION

In this paper, we have presented a systematic analytical
study of diffusion-controlled evolution, coalescence, fragmen-
tation, and collapse of two identical spatially separated d-
dimensional A-particle islands in the B-particle sea at propa-
gation of the sharp reaction front A + B → 0. The obtained
self-consistent picture of evolution of the islands and front
trajectories is based on three central assumptions: (i) on the
condition of local conservation of the difference concentration
s(r, t ) which follows from the “standard” requirement of
equality of unlike particles diffusivities; (ii) on the assumption
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that the relative front width can be neglected during islands’
evolution which follows from the remarkable property of
effective dynamical “repulsion” of unlike species; and (iii) on
the quasistatic approximation (QSA) which allowed obtaining
a self-consistent picture of front width evolution and revealing
a domain of its applicability parameters. The main results can
be formulated as follows:

(1) It has been established that if the initial distance be-
tween the centers of the islands 2� and the initial ratio of
island to sea concentrations c = a0/b0 are relatively large,
the evolution of the island-sea-island system is determined
unambiguously by the dimensionless parameter

� = N0/N�,

where N0 is the initial particle number in the island and N� is
the initial number of sea particles in the volume � = (2�)d .

(2) It has been shown that there is a threshold value

��(d ) = (πe/2d )d/2/2,

below which the islands die individually and above which
island coalescence occurs.

(3) It has been established that regardless of d the centers
of each of the islands move toward each other along the
universal trajectory, merging in a united center at the critical
value

�s(d ) = (
√

e/2)(π/2)d/2.

In 1D systems �s = ��, that is why at � < �s each of the
islands dies individually, whereas at � > �s coalescence is
completed by the collapse of the single-centered island in
the system center. In 2D and 3D systems in the range �� <

� < �s the coalescence is accompanied by the subsequent
fragmentation (division) of the two-centered island and is
completed by the individual collapse of each of the islands.

(4) It has been demonstrated that in the limit of small
�2/d � 1 the evolution of each of the island partners occurs
autonomously in the shape of a d-dimensional sphere with the
unshifted center. In the limit of large �2/d � 1 the evolution
of the island formed by coalescence occurs in the shape of
a d-dimensional sphere with the center in the system center.
In both of the limits the expansion-contraction-collapse of the
island is described by the universal scaling law.

(5) It has been established that at any d and � the evolu-
tion of the island in the vicinity of the collapse point acquires
a self-similar character. It has been shown that in 1D systems
at � �= �s “radii” of the islands �± contract “synchronously”
to the collapse point Xc(�), whereas at the very critical point
�s = �� both of the islands die simultaneously with the
“internal” sea area. In 2D and 3D systems at � �= �s, the
island collapse occurs in the shape of an ellipse (ellipsoid of
revolution) with the constant aspect ratio A(�) which con-
tracts unlimitedly as � approaches the critical point �s both
from above and below (the limit of the “quasi-1D string”).
At the very critical point of centers merging �s the island
collapse occurs in the shape of a superellipse (superellipsoid
of revolution) with the aspect ratio A(T ) which contracts
unlimitedly with time while approaching the collapse point Tc.

(6) The laws of islands’ evolution in the vicinity of
the starting points of coalescence Tcl (�) and fragmentation

Tf r (�) have been revealed. It has been demonstrated that in
2D and 3D systems the front takes the shape of a hyperbola
(hyperboloid of revolution) in the vicinity of the system
center. At T < Tcl the vertices of the hyperbola (hyperboloid)
move toward each other forming at T > Tcl a two-centered
island with an increasing isthmus radius in the system center.
In the vicinity of the fragmentation point, this process occurs
in a reverse order. It has been shown that at the threshold
point �� the elastic reflection of the front occurs in the system
center with an abrupt reversal of its velocity sign, and a
compact description of the island fragmentation-collapse in
the limit of the “quasi-1D string” � → �s has been found.

(7) Within the QSA, the self-consistent power laws of evo-
lution of the relative front width in the vicinity of coalescence,
fragmentation, and collapse points have been revealed for
quasi-1D, quasi-2D, and 3D systems. The characteristic times
of front delocalization and relocalization have been obtained
depending on the defining parameters of the problem. It
has been shown that in the diffusion-controlled annihilation
regime, the front remains sharp up to a narrow vicinity of
coalescence, fragmentation, and collapse points and, conse-
quently, the whole picture is self-consistent in a wide range of
parameters.

As we have mentioned, because of mirror symmetry,
this model simultaneously describes the evolution of the d-
dimensional A-particle island in a semi-infinite B-particle sea
with a reflecting (d − 1)-dimensional “wall”. It should be
emphasized, however, that as well as in Ref. [37], here the
evolution of islands has been considered at equal species
diffusivities. Although we believe that the regularities discov-
ered reflect the key features of islands’ evolution, the study
of the much more complicated problem for unequal species
diffusivities remains a challenging problem for the future.
Moreover, we hope that the future extensive numerical calcu-
lations together with the corresponding experimental data will
enable revealing a comprehensive picture of evolution of the
front during its delocalization and allow us to reveal the limits
of applicability of the macroscopic diffusion description in the
vicinity of the collapse point.

In conclusion, we note that the mechanisms and regulari-
ties of coalescence and collapse of two identical spatially sep-
arated objects (liquid drops, biological cells, two-dimensional
islands, black holes, neutron stars, etc.) in a foreign medium
draw increased interdisciplinary interest in a wide range of
applications from astrophysics, biophysics, and hydrodynam-
ics to condensed matter physics, chemical physics, and ma-
terials science [41–50]. Depending on the nature of objects
and mechanisms of direct or indirect interaction with the
medium, the scenarios of coalescence and collapse, in spite
of some common features, demonstrate a rich diversity. We
hope that the results obtained in this work represent one of the
most detailed scenarios of the coalescence, fragmentation, and
collapse development, the basic features of which may turn
out to be universal in a wide spectrum of reaction-diffusion
systems.
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