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Computing characteristic functions of quantum work in phase space
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In phase space, we analytically obtain the characteristic functions (CFs) of a forced harmonic oscillator
[Talkner et al., Phys. Rev. E 75, 050102(R) (2007)], a time-dependent mass and frequency harmonic oscillator
[Deffner and Lutz, Phys. Rev. E 77, 021128 (2008)], and coupled harmonic oscillators under driving forces in
a simple and unified way. For general quantum systems, a numerical method that approximates the CFs to h̄2

order is proposed. We exemplify the method with a time-dependent frequency harmonic oscillator and a family
of quantum systems with time-dependent even power-law potentials.
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I. INTRODUCTION

Since the late 1990s, the statistics of thermodynamic quan-
tities in nonequilibrium quantum processes have attracted
considerable interest. The major motivation of this was to
extend the famous Jarzynski equality [1] and Crooks equality
[2] from the classical regime to the quantum regime. In con-
trast to the classical thermodynamic quantities, their quantum
definitions are highly challenging. For instance, although the
quantum work based on the two energy measurement scheme
(TEM) [3–8] satisfies the Jarzynski equality and was experi-
mentally verified [9,10], there is still much debate about this
definition, as it destroys the possible initial quantum coher-
ence. Several alternatives to the TEM work were proposed in
the literature [11]; see the comprehensive review by Bäumer
et al. [12].

The advantages of the TEM work extend beyond satisfying
the Jarzynski equality. Very recently, several studies indicated
that it also follows the quantum-classical correspondence
principle [13–17]. Moreover, using the phase-space notion
[18], the characteristic function (CF) (or Fourier transforma-
tion) of the distribution of the quantum work was proved to
be expanded in a power series in Planck’s constant h̄: The
zeroth order is the CF of the classical work, and only even
orders have nonzero contributions to the series. Because the
moments of the TEM work are equal to the derivatives of the
CF with respect to the Fourier parameter at the zero point,
these two properties are inherited in the moments. These
results could have been expected according to the important
work performed by E. P. Wigner [18] in 1932, in which his
results implied that the free energy of a quantum thermal
equilibrium ensemble has the same h̄-expansion properties
[19], while, according to the second law of thermodynamics,
the mean work done on a system must be equal to or larger
than the free energy change of the system.

The present paper has two aims. The first is to show
the advantages of phase space in computing the exact CFs
of several special quantum systems composed of harmonic
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oscillators. Although such systems are very simple, they
are good examples of exactly solved models [20,21]. A re-
cent single-ion experiment verifying the quantum Jarzynski
equality is modeled as a time-dependent quantum harmonic
oscillator [10]. The second aim is to present an approximation
method to numerically compute the CFs of general closed
quantum systems. In our previous study [17], the classical
path integral formulas of the CFs approximated to h̄2 were ob-
tained. Although these expressions have attractive forms, their
numerical realizations are not the most convenient. The rest of
this paper is organized as follows. In Sec. II, we briefly review
the phase-space formulas of the CFs for the TEM work. In
Sec. III, we use these formulas to obtain several exact CFs of
driven quantum harmonic oscillator systems. In Sec. IV, for
general quantum systems, an approximation method based on
numerically solving partial differential equations (PDEs) in
phase space is proposed. Several driven quantum models are
used to exemplify the method. Section V concludes the paper.

II. CFS IN PHASE SPACE

We assume that the Hamiltonian of a closed quantum
system is Ĥ (t ). Throughout this paper, we use symbols
with and without hats to denote quantum operators and c
numbers, respectively, unless otherwise stated. Given that
the instantaneous energy eigenvectors and eigenvalues of the
Hamiltonian are

Ĥ (t )|εn(t )〉 = εn(t )|εn(t )〉, (1)

the TEM quantum work is defined as the difference between
the measured instantaneous energy eigenvalues at the end and
at the beginning, that is, Wnm = εn(t ) − εm(0) [3,4]. By re-
peating the measurement scheme many times, the probability
distribution of the work can be constructed as

P(W ) =
∑
n,m

δ(W − Wnm)P(n, t |m, 0)Pm(0), (2)

where the quantum transition probability is

P(n, t |m, 0) = |〈εn(t )|U (t )|εm(0)〉|2, (3)
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U (t ) is the time evolution operator of the system, and Pm(0)
is the probability of finding the system eigenvector |εm(0)〉 at
time 0. Because we initially set the quantum system in the
thermal state

ρ̂0 = e−βĤ (0)

Tr[e−βĤ (0)]
= 1

Z0
e−βĤ (0), (4)

where Z0 is the partition function at time 0 and β is
the inverse temperature, we have Pm(0) = exp[−βεm(0)]/Z0.
Rather than focusing on the distribution (2), we devote our
attention to the CF of the quantum work [5]. A simple
argument shows that the CF can be expressed as a trace over
the operators [17],

�(η) = Tr[eiηĤ (t )U (t )e−iηĤ (0)ρ̂0U
†(t )]

= Tr[eiηĤ (t )�̂(t )]. (5)

Importantly, the operator �̂ in the above second equation
satisfies the von Neumann equation,

∂t �̂(t ) = 1

ih̄
[Ĥ (t ), �̂(t )], (6)

and its initial condition is

�̂0 = 1

Z0
e−(iη+β )Ĥ (0), (7)

or a complex extension of the thermal state (4). If we solve
Eq. (6) and obtain Eq. (5), then the distribution of the quantum
work can be calculated by performing an inverse Fourier
transformation over �(η).

Let us consider an n-dimensional quantum system with the
Hamiltonian

Ĥ (t ) =
n∑

i=1

p̂i
2

2mi
+ U (x̂, t ), (8)

where mi is the mass of the ith quantum particle; U is
the time-dependent potential; x̂T = (x̂1, . . . , x̂n) and p̂T =
( p̂1, . . . , p̂n) are the position and momentum operator vectors,
respectively; and the superscript T denotes the transpose. We
can re-express Eqs. (5) and (6) in phase space. Given the Weyl
symbol [�̂(t )]w = P(z, t ), where we use the subscript w to
denote the Weyl symbol of a quantum operator throughout
this paper, the von Neumann equation (6) in phase space is
[18,22–24]

∂t P(z, t ) = −2

h̄
H (z, t ) sin

(
h̄


2

)
P(z, t ), (9)

where zT = (xT , pT ) is the phase point, H (z, t ) is the
c-number Hamiltonian of Eq. (8), 
 is the negative Poisson
bracket, i.e.,

←−
∂p

−→
∂x − ←−

∂x
−→
∂p =

n∑
i=1

←−
∂ pi

−→
∂ xi − ←−

∂ xi

−→
∂ pi , (10)

and the arrows indicate the directions in which the derivatives
act [25]. Correspondingly, the initial condition is given by

P(z, 0) = 1

(2π h̄)n
[�̂0]w(z). (11)

After solving PDE (9), we compute the CF of the quantum
work by an integral,

�(η) =
∫ +∞

−∞
dz[eiηĤ (t )]w(z)P(z, t ). (12)

Here we make two comments. First, if the initial state
of a quantum system is not thermal but commutative with
the initial Hamiltonian Ĥ (0), then Eqs. (5)–(12) are still
applicable except that the right-hand side of Eq. (7) is changed
to exp[−iηĤ (0)]ρ̂0. We will show such a case in Sec. III D.
Second, based on Eqs. (9) and (12), the proof of the Jarzynski
equality is straightforward: Let η = iβ; the solution of Eq. (9)
is P(z, t ) = 1/(2π h̄)nZ0, and then

�(iβ ) = 〈e−βW 〉 = Zt

Z0
, (13)

where Zt is the instantaneous partition function of the quan-
tum system at time t , i.e.,

Zt = 1

(2π h̄)n

∫ +∞

−∞
dz[eiηĤ (t )]w. (14)

III. EXACT CFS OF DRIVEN QUANTUM
HARMONIC OSCILLATORS

Due to the difficulties in obtaining the Weyl symbol of the
exponential Hamiltonian operator in Eq. (12) and solving the
complicated PDE (9), we do not think that computing the CFs
of the quantum work would be easier in phase space than in
other quantum representations. However, for the quantum sys-
tems composed of harmonic oscillators, phase space indeed
exhibits some advantages due to the absence of these two
difficulties. Expanding Eq. (9) in powers of h̄, when the power
of the harmonic potentials equals two, Eq. (9) immediately
reduces to the familiar Liouville equation for the classical
harmonic oscillators [18]. Hence, Eq. (12) is simplified to

�(η) = 1

(2π h̄)nZ0

×
∫ +∞

−∞
dz0[eiηĤ (t )]w(zt )[e

−(iη+β )Ĥ (0)]w(z0), (15)

where zt therein is the dynamic solution of the special clas-
sical system at time t , and the system starts from the initial
phase point z0. To arrive at Eq. (15), we have applied the
Liouville theorem and initial condition (7). It is important to
emphasize that the components of zt are time-dependent linear
combinations of the components of z0 since the dynamics of
the classical harmonic oscillators are linear. Moreover, the key
Weyl symbol of the exponential Hamiltonian of the harmonic
oscillator was already known in very early work [22,25]. For
instance, given a simple harmonic oscillator in one dimension,

Ĥs = p̂2

2m
+ mω2

2
x̂2, (16)

where m is the mass of the particle and ω is the angular
frequency,

[eiηĤs ]w(z) = sech

(
iηh̄ω

2

)
exp

[
2

h̄ω
tanh

(
iηh̄ω

2

)
H (z)

]
.

(17)

062119-2



COMPUTING CHARACTERISTIC FUNCTIONS OF QUANTUM … PHYSICAL REVIEW E 100, 062119 (2019)

We use the symbol z rather than the bold z to denote the phase
point of special one-dimensional systems. In the remainder of
this section, we apply Eqs. (15) and (17) to compute the CFs
of three quantum systems composed of harmonic oscillators.

A. Oscillator driven by a time-dependent force

The first system is a one-dimensional quantum harmonic
oscillator driven by a time-dependent force, for which the
Hamiltonian is given by [26]

ĤF (t ) = p̂2

2m
+ mω2x̂2

2
− F (t )x̂, (18)

where F (t ) is the external driving force and is set to zero at
time 0. We obtain the Weyl symbol of the exponential Eq. (18)
by slightly modifying Eq. (17) to

[eiηĤF (t )]w(z) = exp

[−iηF 2(t )

2mω2

]
sech

(
iηh̄ω

2

)

× exp

[
2

h̄ω
tanh

(
iηh̄ω

2

)
H ′

F (z, t )

]
, (19)

where

H ′
F (z, t ) = p2

2m
+ 1

2
mω2

[
x − F (t )

mω2

]2

, (20)

or the Hamiltonian of the classical oscillator with an in-
stantaneous equilibrium position F (t )/mω2. Substituting this
equation and the dynamic solution of the classical oscillator,
Eqs. (A3) and (A4), into Eq. (15) and noting that

Z0 = 1

2
sinh−1

(
β h̄ω

2

)
, (21)

we obtain the exact CF of the quantum system by performing
a simple Gaussian integration,

�(η) = exp

[
− iηF 2(t )

2mω2

]

× exp

[
2W (t )/h̄ω

coth(ih̄ωη/2) − coth(ih̄ωη/2 + h̄ωβ/2)

]
,

(22)

where

W (t ) = 1

2mω2

∣∣∣∣
∫ t

0
dsḞ (s)eiωs

∣∣∣∣
2

, (23)

and the dot denotes a derivative with respect to time. Note
that the function W (t ) is the classical work done on classical
system H ′

F (z) if the oscillator is initially at rest. For further
details, see Appendix A. The simplification of Eq. (22) is the
same as that obtained by Talkner et al. [26]; see Eq. (A7).
They applied the first equation of (5) and solved the diagonal
matrix element of the exponential Hamiltonian operator in the
Heisenberg picture. Equation (22) clearly illustrates that the
quantum work of system (18) is always equal to a sum of
multiples of h̄ω and −F 2(t )/2mω2: The former is seen by ex-
panding the second exponential function into a Laurent series
of exp(iηh̄ω), and the latter comes from the inverse Fourier
transformation of the first exponential function. Talkner et al.
solved the corresponding quantum work distribution by per-
forming an inverse Fourier transformation over the CF (22).

B. Oscillator with time-dependent mass and frequency

Deffner and Lutz [27] studied the quantum work distri-
bution of a harmonic oscillator with time-varying frequency.
Here we extend their model to the case with both time-
dependent mass and frequency. The Hamiltonian is

ĤP(t ) = p̂2

2mt
+ 1

2
mtω

2
t x̂2, (24)

where the subscript t denotes the time dependence of the
parameters. Although we generally do not know the exact
dynamics of the classical oscillator with time-dependent mass
and frequency, since the system is still linear, its formal
solution is given by

xt = X (t )x0 + Y (t )p0, (25)

pt = Q(t )x0 + R(t )p0, (26)

where (X (t ), Q(t )) and (Y (t ), R(t )) are the formal solutions
of the classical system satisfying the specific initial phase
points (1,0) and (0,1), respectively. Substituting these and the
Weyl symbol (17) [28] into Eq. (15) and again performing a
Gaussian integration, we obtain

�(η) =
√

2(1 − e−β h̄ω0 )eiηh̄(ωt −ω0 )/2

[(t )(1 − e2iηh̄ωt )(1 − e−2(iη+β )h̄ω0 ) + (1 + e2iηh̄ωt )(1 + e−2(iη+β )h̄ω0 ) − 4eiηh̄ωt e−(iη+β )h̄ω0 ]1/2
, (27)

where

(t ) = 1

2

[
m0ω0

HP(Y (t ), R(t ))

ωt
+ 1

m0ω0

HP(X (t ), Q(t ))

ωt

]
.

(28)

See Appendix A for more details.
Equation (27) is long. To check its correctness, we test

whether it satisfies the Jarzynski equality (13) given η = iβ

therein and find that

�(iβ ) = sinh (β h̄ω0/2)

sinh (β h̄ωt/2)
. (29)

Because the instantaneous partition functions of quantum
system (24) are Zt = 1/2 sinh(β h̄ωt/2), the right-hand side
of Eq. (29) is indeed the ratio of Zt over Z0. We also note
that different realizations of mt and ωt only influence CF
(27) through the function (t ). This function, in particular,
measures the degree of adiabaticity: If the mass and frequency
are changed infinitely slowly, then the two ratios of the
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Hamiltonian to the frequency in Eq. (28) are the adiabatic
invariants [29] and then (t ) = 1. These two observations
were made by Deffner and Lutz [27] when they considered
a quantum harmonic oscillator with a constant mass and time-
dependent frequency.

C. Coupled oscillators under driving forces

The last system consists of multiharmonic oscillators. The
simplest model is a driving force system composed of two
identical but distinguishable harmonic oscillators. Its Hamil-
tonian is given by

Ĥ (t ) = p̂2
1

2m
+ mω2x̂2

1

2
− F (t )x̂1

+ 1

2
k(x̂1 − x̂2)2 + p̂2

2

2m
+ mω2x̂2

2

2
. (30)

Here we assume that only one of the oscillators is driven
by a time-dependent force, F (t ). At time 0, F (0) is also
set to zero, and these two coupled oscillators are at thermal
equilibrium with a heat bath with an inverse temperature β.
According to the well-known strategy for managing coupled
oscillators [30], we attempt to simultaneously diagonalize
both the kinetic and potential energy terms of Eq. (30) by
applying a canonical transformation:

x̂ = AQ̂, p̂ = MAP̂, (31)

where the mass matrix and transformation matrix are

M =
[

m 0
0 m

]
, A = 1√

2m

[
1 1

−1 1

]
, (32)

and the new phase coordinates are Q̂T = (Q̂1, Q̂2) and P̂T =
(P̂1, P̂2). Under the transformation, Eq. (30) is equal to∑2

i=1 Ĥi(t ), or the sum of the Hamiltonian of modes 1 and
2, where

Ĥi(t ) = P̂2
i

2
+ ω2

i Q̂2
i

2
− F (t )√

2m
Q̂i, (33)

and the normal frequencies are ω2
1 = ω2 + 2k/m and ω2

2 =
ω2. Because the Weyl symbol of exponential Eq. (30) is
equal to the product of two independent Weyl symbols of the
exponential Hamiltonian Ĥi(t ) and the classical dynamics of
the two coupled oscillators are reduced to the dynamics of
two independent modes, CF (15) of the two coupled quantum
oscillators is given by

�(η) =
2∏

i=1

1

2π h̄Zi0

∫ +∞

−∞
dZi0[eiηĤi (t )]w(Zit )

× [e−(iη+β )Ĥi (0)]w(Zi0) =
2∏

i=1

�i(η), (34)

where ZT
i = (Qi, Pi ) is the phase point of the independent

oscillator and �i(η) is the CF (22) of the quantized modes
with the specified Hamiltonian (33). To arrive at the above
result, we have used the fact that under the transforma-
tion zT → ZT = (Q1, Q2, P1, P2), the Jacobian determinant
|dz0/dZ0| equals 1. Of course, we can also easily prove
Eq. (34) according to the original definition of the CF, Eq. (5),

by applying the same canonical transformation (31). Be-
cause the inverse Fourier transform of Eq. (34) is a convo-
lution of two quantum work probability distributions of the
respective CFs, this result implies that the quantum work
done on the coupled oscillators is equal to a sum of two
components acting on the two independent modes. To be
more specific, for a general case where the ratio ω1/ω2 is
irrational, the distribution of the quantum work for the coupled
oscillators is

P(W ) =
∑

q

δ(W − Wq)
2∏

i=1

Pqi , (35)

where the quantum work

Wq =
2∑

i=1

Wqi =
2∑

i=1

{
qih̄ωi − 1

2ω2
i

[
F (t )√

2m

]2
}

, (36)

q = (q1, q2), and qi (i = 1, 2) are arbitrary integers. In
Eq. (35), Pqi is the probability of the quantum work Wqi acting
on the mode i [26]:

Pqi = exp

[
− Wi

h̄ωi
coth

(
h̄ωiβ

2

)]

× exp

(
h̄ωiβqi

2

)
Iqi

[ Wi/h̄ωi

sinh(h̄ωiβ/2)

]
, (37)

where Iqi (x) is the modified Bessel function of the fist kind of
order qi and Wi is the classical work (23) of force F (t )/

√
2m

acting on the same mode.
The Hamiltonian of the two coupled identical harmonic

oscillators is a special case. Its extension to the general
situation with arbitrary masses and coupling constants is
straightforward, e.g.,

Ĥ (t ) = 1
2 p̂T M−1p̂ − FT (t )x̂ + 1

2 x̂T Kx̂, (38)

where M and K are the symmetric mass matrix and coupling
constant matrix, respectively, and FT (t ) = (F1(t ), . . . , Fn(t ))
are the possible time-dependent forces exerted on each oscil-
lator. This extension shall be significant, e.g., in the study of
quantum Brownian motion [31,32]. The mechanical theorem
ensures the existence of an orthogonal transformation matrix
A for which

AT MA = I,

AT KA = � = diag(ω1, . . . , ωn), (39)

where I is the n-dimensional identity matrix and ωi (i =
1, · · · , n) are the normal frequencies [30]. The transformation
decouples the general Hamiltonian (38) into a sum of inde-
pendent modes with Ĥi analogous to Eq. (33) except for the
simple replacement

F (t )√
2m

→ Fi(t ) =
n∑

j=1

Fj (t )(A) ji. (40)

Applying the same argument, we find that the CF of the
multicoupled quantum harmonic oscillators is equal to a
multiplication of n CFs of the independent quantized modes:
The masses of these modes are the same and equal to 1,
their frequencies are the normal frequencies ωi, and they are
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subjected to the driving forces Fi(t ). Equation (35) has a
similar extension.

D. CF with a microcanonical initial state

All initial states of the previous three models are thermal
states. Here we compute the CF of the quantum harmonic
oscillator (18) with the microcanonical initial state |εm(0)〉 in
phase space [26]. As we mentioned in Sec. II, Eq. (15) is now
modified to

�m(η) = 1

2π h̄

∫ +∞

−∞
dz0[eiηĤF (t )]w(zt )

× [e−iηĤF (0)|εm(0)〉〈εm(0)|]w(z0). (41)

For the specific quantum oscillator, the Weyl symbol of its
instantaneous eigenvector |εm(t )〉 is known to be [22]

[|εm(t )〉〈εm(t )]w(z)

= 2(−1)m exp

[
− 2

h̄ω
H ′

F (z, t )

]
Lm

[
4

h̄ω
H ′

F (z, t )

]
, (42)

where Lm denotes the mth Laguerre polynomial. Substituting
Eqs. (19) and (42) into Eq. (41) and using the generating
function of the Laguerre polynomial, we obtain [26]

�m(η) = exp

[
− iηF (t )2

2mω2

]
exp

[W (t )

h̄ω
(eiηh̄ω − 1)

]

Lm

[
4W (t )

h̄ω
sin2

(
ηh̄ω

2

)]
. (43)

Appendix A provides some details.
Based on Eq. (43), Talkner et al. obtained the corre-

sponding probability distribution of the quantum work by
performing an inverse Fourier transformation. However, for
this relatively simple quantum system, its work distribution
with the microcanonical initial state |εm(0)〉,

P(W |m, 0) =
∑

n

δ(W − Wnm)P(n, t |m, 0), (44)

can be obtained by directly computing its quantum transition
probability [20,33]. Here we are not ready to repeat previous
derivations but point out an unnoticed fact that can be clearly
observed in phase space. To simplify notations, we use the nat-
ural units in the following, h̄ = ω = m = 1. In phase space,
the quantum transition probability (3) of the one-dimensional
quantum harmonic oscillators is

P(n, t |m, 0)

= 1

2π h̄

∫ +∞

−∞
dzt [|εn(t )〉〈εn(t )]w(zt )[|εm(0)〉〈εm(0)]w(z0).

(45)

The reason is analogous to that we considered in obtaining
Eq. (15). We rewrite Eq. (42) as

[|εn(t )〉〈εn(t )]w(zt )

= 2(−1)n exp{−2Hs[zt − zn(t )]}Ln{4Hs[zt − zn(t )]} (46)

by using the c-number version of the simple Hamiltonian
(16), where zn(t ) = ( f (t ), 0) is the equilibrium phase point of
H ′

F (z, t ), f (t ) is the dimensionless form of force F (t ), and the

FIG. 1. The solid red and black circles represent the two rotation-
invariant Weyl symbols, Eqs. (46) and (47), in phase space. The
quantum transition probability (45) is equal to their overlap integral.
The dashed circle denotes the Weyl symbol of the initial eigenvector
|εm(0)〉. It evolves to the black one at time t .

eigenvalue εn(t ) is (n + 1/2) − f (t )2/2 in the natural units.
Before performing an integration, we note that Eq. (46) is
rotationally symmetric about zn(t ). Because of the dynamic
solution Eq. (A6), the other Weyl symbol is

[|εm(0)〉〈εm(0)]w[z0(zt )]

= 2(−1)m exp{−2Hs[zt − D(t )]}Ln{4Hs[zt − D(t )]}, (47)

where D(t ) = (l (t ), l̇ (t )) and the function l (t ) is defined in
Eq. (A5). The explanation of Eq. (47) is that, according to
the Liouville equation of the force-driven harmonic oscillator,
the evolution of the initial Weyl symbol, [|εm(0)〉〈εm(0)]w(z),
which is initially rotationally symmetric about the origin, is
simply rotated and translated to the new phase point D(t ).
Figure 1 schematically depicts these two Weyl symbols in
phase space. Because the integral in (45) is independent of the
coordinate system, we can choose a new coordinate system
(x′, p′) with a new origin O′ = zn(t ). This reminds us that
the integral in (45) is identical to the transition probability
between two eigenvectors of two identical simple harmonic
oscillators displaced by a distance

|D(t ) − zn(t )| =
√

l̇ (t )2 + [l (t ) − f (t )]2 =
√

2W (t ), (48)

that is,

P(n, t |m, 0) =
∣∣∣∣
∫ +∞

−∞
dxφn(x)φm[x −

√
2W (t )]

∣∣∣∣
2

, (49)

where φn,m(x) = 〈x|εn,m〉 is the eigenvector |εn,m〉 of the sim-
ple quantum harmonic oscillator (16) in position representa-
tion. The term on the right-hand side of Eq. (49) is called the
Franck-Condon factor in molecular spectra [34] and is equal
to [35,36].

1

n!m!
W (t )m+ne−W (t ){s!W (t )−sL(|n−m|)

s [W (t )]}2, (50)

where s = min(n, m) and L(|n−m|)
s denotes the generalized

Laguerre polynomial. The significance of the connection
between the quantum transition probability and the Franck-
Condon factor is that the latter has an insightful interpretation
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of “interference in phase space” [24,37]. Therefore, it pro-
vides an alternative route to understand the quantum features
of quantum work distributions [13].

IV. AN h̄2-ORDER NUMERICAL METHOD

If a quantum system has a potential with powers equal
to or greater than three, then we do not have an exact Weyl
symbol of the exponential Hamiltonian. Moreover, Eq. (9) is
no longer the classical Liouville equation. Hence, we must
resort to approximation methods. In our previous work [17],
we proved that CF (12) can be expanded in a Planck constant
series:

�(η) = �(0)(η) −
∞∑

n=1

h̄2n�(2n)(η), (51)

where �(0)(η) is the CF of the classical work of the clas-
sical system. In addition, we also obtained the path-integral
representation of the lowest quantum correction, �(2)(η). In
this section, we attempt to compute the CF approximated to
h̄2 by solving PDEs rather than the dynamic trajectories of
the classical system. The latter is required in the path-integral
representation of the CF. For simplicity, we focus on the single
particle system in a one-dimensional situation [38]. Therefore,
we expand Eq. (9) and the Weyl symbol of the exponential
Hamiltonian up to h̄2 [18]:

∂t P(z, t ) = −H (z, t )
P(z, t ) − h̄2 1
24∂3

x U∂3
pP(z, t ) + · · ·

(52)

and

[e−iηĤ (t )]w = e−iηH (z,t )[1 − h̄2 f (iη, z, t ) + · · · ], (53)

where

f (iη, z, t ) = (iη)2

8m

[
∂2

x U − iη

3
(∂xU )2 − iη

3m
p2∂2

x U

]
. (54)

Expanding

P(z, t ) = P(0)(z, t ) − h̄2P(2)(z, t ) + · · · (55)

as well, substituting it into Eq. (52), and collecting all of the
terms with the same order of Planck’s constant, we obtain

∂t P
(0)(z, t ) = −H (z, t )
P(0)(z, t ), (56)

∂t P
(2)(z, t ) = −H (z, t )
P(2)(z, t )

+ 1
24∂3

x U (z, t )∂3
pP(0)(z, t ), (57)

and their initial conditions are given by

P(0)
0 (z) = Peq(iη + β, z, 0), (58)

P(2)
0 (z) = Peq(iη + β, z, 0)δ f (iη + β, z, 0), (59)

where Peq(iη + β, z, 0) is a complex extension of the classical
thermal equilibrium state

Peq(β, z, 0) = e−βH (z,0)∫ +∞
−∞ dze−βH (z,0)

, (60)

δ f (iη+β, z, 0)= f (iη+β, z, 0)−〈 f (β, 0)〉eq, and 〈 f (β, 0)〉eq

is the average of f (β, z, 0) with respect to the distribution
function (60). Solving Eqs. (56) and (57), we obtain the
approximated or truncated CF (51)

�(η) ≈ �(0)(η) − h̄2�(2)(η), (61)

with

�(0)(η) =
∫ +∞

−∞
dzeiηH (z,t )P(0)(z, t ), (62)

�(2)(η) =
∫ +∞

−∞
dzeiηH (z,t )[ f (−iη, z, t )P(0)(z, t ) + P(2)(z, t )].

(63)

The first integral on the right-hand side of �(2)(η) represents
the lowest quantum correction due to the second energy
measurement at the end, while the second integral is the
sum of the lowest quantum corrections due to the initial
quantum state and quantum dynamics. Of course, these in-
terpretations are the same as those regarding the classical
path-integral representations. Before we exemplify the ap-
proximation method by using concrete quantum models, we
want to make two comments on its restrictions. First, the
expansion (51) is essentially an asymptotic series, and it may
become nonconvergent for very low temperatures [18,25,39]
and/or large η. This point can be seen from the h̄ expansion,
Eq. (53) [note the powers of iη in Eq. (54)]. Second, to obtain
the form (9) of the von Neumann equation in phase space,
we presuppose that the potential U (x̂, t ) is spatially smooth
enough to have a Taylor expansion [18]. Therefore, for the
general potentials with multiple extreme points or potentials
whose shapes change dramatically, we do not expect our
method to predict satisfactory results.

The first example is the quantum harmonic oscillator,
Eq. (24). We set the parameters to be the same as those used by
Deffner and Lutz: The mass is a constant, and the frequency
varies with time as ω2

τ = ω2
0 + (ω2

t − ω2
0 )τ/t (0 � τ � t),

where t is the duration of the nonequilibrium process. The
advantage of this set of parameter values is that Eqs. (25)
and (26) have exact expressions using the Airy functions [27].
Figure 2(a) shows the exact CF (27) and the approximated
one obtained by numerically solving Eqs. (56) and (57). We
note that these two PDEs reduce to two independent classical
Liouville equations because ∂3

x U = 0 here. We observe that
the agreement between these two methods is satisfactory, par-
ticularly near η = 0. The potential of the harmonic oscillator
is quadratic and special. To show the generality of our method,
we test it on other driven quantum models with anharmonic
potentials. Hence, we choose a family of Hamiltonians with
time-dependent even power-law potentials [40],

Ĥ (t ) = p̂2

2m
+ 1

2

1

f (t )2

[
x̂

f (t )

]2q

, (64)
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FIG. 2. (a) Quantum harmonic oscillator with time-dependent frequency: Black and red solid lines are the real and imaginary parts,
respectively, of the exact CF computed by Eq. (27). The black empty squares and red empty circles are the real and imaginary parts of
the CFs, respectively, calculated by our method approximated to h̄2. The parameters used in the model are ω0 = 1, ω1 = 2, m = t = 1, and
β = 2. (b). The driven quantum models with even power potentials: The data starting from the coordinates (0,1) and (0,0) are the real and
imaginary parts of the CFs, respectively. The solid curves are the CFs computed by a formally exact method [41,42], and the symbols are the
CFs obtained by our approximation method. The black, red, green, and blue data correspond to the driven quantum model with q = 1, 2, 3,

and 4, respectively. The parameters used in these models are m = t = 1 and β = 2. Note that we have set h̄ = 1 in all computations. As
comparisons, the classical CFs, �(0)(η), for the oscillator with time-dependent frequency and the driven classical model with q = 4 are also
computed by using the first equation in Eq. (62) and are shown by the dashed lines in these two panels. We can see that the contributions of
the quantum corrections are significant.

where q = 1, 2, 3, 4 and f (t ) = 1 + t . Obviously, q indicates
the degree to which a potential deviates from the quadratic
potential. The CFs of these systems (64) can be solved
by a formally exact method [41,42]. Figure 2(b) shows a
comparison of the data obtained by the exact method and
our approximation method. We can see that these data are
consistent, even in the case of q = 4, where the spatial change
of the potential is sharp.

It is important to note that the obvious deviations of these
approximated CFs from the exact results at larger η do not
reduce the significance of our method. The reason for this
is that we are truly concerned about the statistics of the
quantum work, e.g., the mean and variance. These statistical
quantities are determined by taking the nth derivatives of the
CF with respect to iη and η = 0. In addition, the reader is
reminded that the slopes of the imaginary parts of the CFs in
Figs. 2(a) and 2(b) have opposite signs: that is, the mean work
done on these two types of systems is positive and negative,
respectively. This is expected because the changes in these
types of trapping potentials have opposite trends.

V. CONCLUSION

In this paper, we obtain several exact CFs of the TEM
quantum work of driven systems that consist of quantum
harmonic oscillators. Compared to the previous methods that
solve the evolution of these quantum systems, our formulas in
phase space show unification, and the computations are also
simple. The reinvestigation of the quantum harmonic oscil-
lator driven by a time-dependent force reveals a previously

unnoticed connection between the quantum work distributions
and Franck-Condon factor. For the general quantum systems,
obtaining their CFs analytically in phase space seems to be
extremely difficult, if not impossible. Therefore, we present
a numerical method approximated to h̄2 order for their CFs
and demonstrate its precision using several driven quantum
models. Although this approximation method is restricted
to situations with smooth driven potentials, small Fourier
parameters, and high and moderately low temperatures, we
still think that it is valuable. To our knowledge, there are no
general strategies to compute the CF of the quantum work
for a general quantum system except for direct computation
using the definition. Moreover, the mentioned restrictions
are usually what quantum thermodynamics researchers are
interested in. There are two possible extensions of this study.
One is to quantitatively understand the quantum features of
quantum work distributions from the perspective of inter-
ference in phase space. The other is determining how to
take quantum Bose or Fermi statistics into account when we
study the quantum work statistics of many particle systems
in phase space. We hope to report these results in the near
future.
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APPENDIX A: SOME USEFUL FORMULAS IN SEC. III

Substituting the Weyl symbol of the exponential Eq. (19)
into the CF (15), we have

�(η) = 1

π h̄
sech

[
(iη + β )h̄ω

2

]
sech

(
ih̄ηω

2

)
sinh

(
h̄ωβ

2

)

× exp

[−iηF 2(t )

2mω2

] ∫ +∞

−∞
dz0

× exp

{
2

h̄ω
tanh

(
iηh̄ω

2

)
H ′

F (zt , t )

− 2

h̄ω
tanh

[
(β + iη)h̄ω

2

]
H ′

F (z0, 0)

}
. (A1)

The dynamic solution zT
t = (xt , pt ) of the classical harmonic

oscillator with the Hamiltonian

HF (z, t ) = p2

2m
+ mω2x2

2
− F (t )x (A2)

is simply

xt = cos(ωt )x0 + sin(ωt )

mω
p0 + l (t ), (A3)

pt = −mω sin(ωt )x0 + cos(ωt )p0 + ml̇ (t ), (A4)

where zT
0 = (x0, p0) is the initial phase point and the function

l (t ) is

1

mω

∫ t

0
F (s) sin[ω(t − s)]ds. (A5)

Equations (A3) and (A4) can be rewritten into a compact form
by using vector and matrix notations:

zt = R(t )z0 + D(t ). (A6)

DT (t ) = (l, ml̇ ) denotes the phase point of the classical os-
cillator moving under the time-dependent force F (t ), which
is initially at rest. Substituting the solution into H ′

F (zt , t ) in
Eq. (A1), expanding all functions H ′

F in terms of x0 and p0 and
rearranging, we find that the integral is Gaussian with respect
to the two variables x0 and p0. Then we arrive at Eq. (22).
If we further expand the hyperbolic functions therein into
exponential functions, then we obtain an expression found by
Talkner et al. [26]:

exp

[
− iηF 2(t )

2mω2
+ W (t )

h̄ω
(eiηh̄ω − 1) − 4

W (t )

h̄ω

sin2(h̄ωη/2)

(eβ h̄ω − 1)

]
.

(A7)

The reason that we call W (t ) the work done on Hamiltonian
system H ′

F (z, t ) initially at rest is that

H ′
F (zt , t ) − H ′

F (z0, 0) = a(t )x0 + b(t )p0 + W (t ), (A8)

where a(t ) and b(t ) are some functions of time t , and

W (t ) = 1

2mω2
{[mω2l (t ) − F (t )]2 + [mωl̇ (t )]2}. (A9)

The equivalence between the above equation and Eq. (23)
can be verified directly. Considering that these results are
elementary and have been presented in the previous literature
[17,20,33], we do not provide further details.

The above procedure is also applicable to the quantum
harmonic oscillator with time-dependent mass and frequency,
Eq. (24). Here we must apply the Weyl symbol Eq. (17)
[43] and the formal dynamic solutions (25) and (26). To
obtain Eq. (27), we have expanded all possible hyperbolic
functions into exponential functions and used the Wronskian
determinant

X (t )R(t ) − Y (t )Q(t ) = 1. (A10)

We can verify Eq. (A10) by noting that (X (t ), Q(t )) and
(Y (t ), R(t )) are the dynamic solutions of the classical system
satisfying the specific initial phase points (1,0) and (0,1),
respectively.

Substituting Eqs. (19) and (42) into Eq. (41), we obtain

�m(η) = (−1)n

π h̄
exp

[
− iηF (t )2

2mω2

]
sech

(
iηh̄ω

2

)

× exp

[
−iη

(
n + 1

2

)
h̄ω

]

×
∫ +∞

−∞
dz0 exp

[
2

h̄ω
tanh

(
iηh̄ω

2

)
H ′

F (zt , t )

]

× exp

[
−2H ′

F (z0, 0)

h̄ω

]
Ln

[
4H ′

F (z0, 0)

h̄ω

]
. (A11)

Using the generating function of the Laguerre polynomial,

∞∑
n=0

αnLn(x) = 1

1 − α
e−αx/(1−α), (A12)

we can construct a generating function about �m(η) and
obtain
∞∑

n=0

αn�n(η) = exp

[
− iηF (t )2

2mω2

]
exp

[W (t )

h̄ω
(eiηh̄ω − 1)

]

× 1

1 − α
exp

[
− α

1 − α

4W (t )

h̄ω
sin2

(
ηh̄ω

2

)]
.

(A13)

This derivation is highly analogous to that of Eq. (22). When
we compare Eqs. (A12) with (A13), we immediately obtain
Eq. (43). According to the definition of CF, Eq. (5), there is
a simple relation between the CFs of quantum systems with
thermal initial state and with microcanonical initial state:

�(η) =
∑

m

Pm(0)�m(η), (A14)

where Pm(0) = exp[−βεm(0)]/Z0. Hence, the latter is more
fundamental than the former.

APPENDIX B: WEYL SYMBOL OF THE
EXPONENTIAL HAMILTONIAN (30)

We did not find reports in the literature on the derivation of
the Weyl symbol of the exponential Hamiltonian of coupled
harmonic oscillators. Let the operator �̂(η) ≡ exp[iηĤ (t )]
and its Weyl symbol be �(z, η). The operator satisfies a
Schrödinger-like equation [44]:

i∂η�̂(η) = −Ĥ (t )�̂(η), (B1)
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and the initial condition is �̂(η = 0) = Î , where Î is the
identity operator. In phase space, the above equation is written
as [22,25,39]

i∂η�(z, η) = −H (z, t ) cos

(
ih̄

2



)
�(z, η). (B2)

It is well known that under the canonical transformation, the
Poisson bracket is invariant, that is, 
 = ∑2

i=1 
i, where


i = ←−
∂ Pi

−→
∂ Qi − ←−

∂ Qi

−→
∂ Pi . (B3)

Hence, after the transformation, Eq. (B2) becomes

i∂η�(Z, η) = −
[

2∑
i=1

Hi(Zi, t )

]
cos

(
ih̄

2



)
�(Z, η)

= −
[

2∑
i=1

Hi(Zi, t ) cos

(
ih̄

2

i

)]
�(Z, η). (B4)

The reason for the second equation is that unless the phase
coordinates are the same, the action of Poisson bracket 
i on
Hamiltonian Hj ( j �= i) is always zero. Then, we can readily

verify that the solution of Eq. (B4) is

�(z, η) =
2∏

i=1

�(Zi, η), (B5)

where �(Zi, η) is Eq. (19) for the specified Hamiltonian
operator (33). In addition, the partition function can also be
calculated by the canonical transformation

Z0 = 1

(2π h̄)2

∫ +∞

−∞
dz�(z, iβ )

=
2∏

i=1

1

2π h̄

∫ +∞

−∞
dZi�(Zi, iβ ) =

2∏
i=1

Zi, (B6)

where Zi is the partition function of the quantum Hamiltonian
operator (33). In the second equation, we have used the
fact that under the canonical transformation, the Jacobian
determinant |dz/dZ| equals 1. Clearly, Eqs. (B1)–(B6) are
still valid for the multiharmonic oscillator case described by
Eq. (38). The only necessary change is the replacement of 2 in
these equations by the degrees of freedom of these oscillators.
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