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Universality of continuous phase transitions on random Voronoi graphs
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The Voronoi construction is ubiquitous across the natural sciences and engineering. In statistical mechanics,
however, only its dual, the Delaunay triangulation, has been considered in the investigation of critical
phenomena. In this paper we set to fill this gap by studying three prominent systems of classical statistical
mechanics, the equilibrium spin-1/2 Ising model, the nonequilibrium contact process, and the conserved
stochastic sandpile model on two-dimensional random Voronoi graphs. Particular motivation comes from the
fact that these graphs have vertices of constant coordination number, making it possible to isolate topological
effects of quenched disorder from node-intrinsic coordination number disorder. Using large-scale numerical
simulations and finite-size scaling techniques, we are able to demonstrate that all three systems belong to
their respective clean universality classes. Therefore, quenched disorder introduced by the randomness of the
lattice is irrelevant and does not influence the character of the phase transitions. We report the critical points to
considerable precision and, for the Ising model, also the first correction-to-scaling exponent.
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I. INTRODUCTION

Many location optimization problems can be approached
through area-of-influence considerations. A simple example
is that of several fire stations distributed over a large city.
Rather naturally, the area of responsibility attributed to a
particular fire station should include those buildings which lie
closer to it than to any other station. The resulting tessellation
of the city map defines the so-called Voronoi graph (VG).
In Fig. 1, the red dots would denote fire stations, with the
corresponding VG being depicted in green. Due to its con-
ceptual simplicity, Voronoi constructions can be found in a
large number of applications spanning all fields of physical
sciences, including climate modeling [1,2], crystal structure
[3], cosmology [4,5], microbiology [6], and growth processes
[7], as well as optimization problems [8], game theory [9–11],
artificial intelligence [12,13] and, recently, also in the field
of machine learning [14], among others. Moreover, numerous
generalizations have been defined, such as weighted graphs,
and Voronoi graphs on spherical and general curved surfaces
[15,16], as well as for fuzzy point sets [17] or metrics other
then Euclidean [18].

In this paper, the VG is used as a discrete spatial lattice
on top of which the physical system is evolved. During the
evolution the lattice remains static, i.e., we consider quenched
disorder [19]. As the graph is constructed from a randomly
distributed set of points it is said to present topological
randomness, as opposed to conventional disorder, as, e.g., in
the case of randomly diluted regular structures.

Quenched disorder in general constitutes a relevant per-
turbation on the phase transition, i.e., it may change the
universal properties of the model [20]. The first major result
on disorder relevance was brought forward by Harris in 1974
[21], who argued that disorder is relevant when dν < 2,
where d is the dimension of the system and ν denotes the
correlation length exponent. Using Harris’ criterion, numer-

ical results on two-dimensional diluted regular lattices can
be entirely explained, including the rise of nonconventional
activated scaling and strong Griffiths effects for the contact
process (CP) [22–24], as well as ambiguities related to strong
logarithmic corrections for the Ising model [25–34], which
represents the marginal case, as in two dimensions ν = 1.
Despite its success in describing the effects of uncorrelated
disorder, the Harris criterion fails to explain certain results
for the Ising model and CP on two-dimensional Delaunay
triangulations [35–42], where both systems retain their clean
universal properties. In order to explain these observations,
a generalization has been proposed by Barghathi and Vojta
[43] (based on earlier arguments of Luck [44]), which at-
tributes the nonrelevance to strong spatial anticorrelations in
the coordination numbers of the lattice nodes. Also for this
improved criterion, however, violations have been found [45].
Moreover, as the argument specifically relies on fluctuations
in the local coordination numbers, this criterion is silent about
random structures with constant coordination number, such as
the VG, where each site has exactly three neighbors (compare
Fig. 1).

Although the Harris criterion is commonly applied to both
equilibrium and nonequilibrium transitions, recent studies of
the Manna universality class [46] raised doubt about whether
the criterion is generally applicable in the latter case. Namely,
in a series of studies [47–49], Monte Carlo simulations
showed that both discrete and continuum realizations of the
Manna class display unchanged critical behavior when strong
disorder in the form of random impurities is introduced.
Since, due to a correlation length exponent of ν ≈ 0.8, Harris’
inequality predicts disorder to be relevant in this case, these
unexpected results remain to be explained.

In summary, finding a complete criterion for the influence
of (topological) disorder on continuous phase transitions still
remains an unsolved puzzle, to which the study of critical phe-
nomena on constant coordination lattices can provide valuable
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FIG. 1. Voronoi graph (green) with periodic boundaries, gener-
ated from a set of a Poissonian random points (red).

new pieces. One such puzzle piece is given in the current
work, where numerical simulations of the Ising model, the CP,
and the conserved stochastic sandpile model (CSSM) on two-
dimensional VGs show clean universal behavior, revealing
the perturbations by quenched topological randomness to be
irrelevant for these systems.

The paper is organized as follows. In Sec. II we review the
construction rules of the VG. In Secs. III, IV, and V we present
and analyze numerical simulations of the Ising model, the CP
and the CSSM, respectively. Finally, in Sec. VI we present our
concluding remarks.

II. VORONOI GRAPH

The Voronoi diagram is a partition of the plane into cells,
generated by a set of points P = {p1, p2, . . . , pN } such that
for each cell corresponding to the point pi, every point q
in that cell is closer to pi than to any other point p j , i.e.,
d (q, pi ) < d (q, p j ) ∀p j �= pi. It is the geometric dual of the
Delaunay triangulation, which can be constructed by connect-
ing points corresponding to adjacent Voronoi cells. The VG is
defined by taking as sites the corners of the cells and, as edges,
the boundaries between the cells. Therefore the new set of
points P′ = p′

1, p′
2, . . . , p′

2N is twice as large as the original
set that defined the cells. This can be easily seen from the
Euler characteristic of a finite graph, which is defined as χ =
N − E + F , where N , E , and F are the number of vertices,
edges, and faces. For the periodic boundary conditions used
here χ = 0 holds. In a Delaunay triangulation, E = 3N as the
average coordination number is exactly q = 6 and any edge
is shared by two triangles. Therefore we end up with F = 2N
faces in the triangulation and hence 2N points in the VG due
to the duality property. The location of the VG sites is given
by the center of the circumcircle of the corresponding triangle
in the Delaunay triangulation. A sample of a periodic VG is

shown in Fig. 1. It can be easily seen that all cells have convex
shape and that every site has exactly three neighbors. This lat-
ter feature, the absence of coordination number fluctuations,
constitutes a major motivation of this study. We build VGs
from Delaunay triangulations, and for constructing the initial
Delaunay triangulations we use the Computational Geometry
Algorithms Library (CGAL) library [50].

III. ISING MODEL

The classical Ising model [51] is defined by the
Hamiltonian

H = −
∑
〈i, j〉

Ji jsis j +
∑

i

hisi, si = ±1, (1)

where si are discrete spins on the lattice sites, Ji j denotes
the coupling between nearest neighbors 〈i, j〉, and hi is
the external field at site si. For equilibrium lattice models,
quenched disorder can be introduced in a variety of ways. For
fixed ferromagnetic coupling Ji j = J > 0 and random exter-
nal field, the system is called random field Ising model and
has been investigated thoroughly over the past decades [52]. In
contrast, for vanishing external field but randomly distributed
(anti)ferromagnetic bonds, the system shows the behavior of
a spin glass (Ref. [19] and references therein). In the present
study, quenched disorder is introduced as topological ran-
domness encoded in the implicit connectivity of the Voronoi
graph. We fix all couplings to unity at vanishing external
field. Sites are hence equally influenced by all of their near-
est neighbors, irrespective of spatial distances. This natural
choice should not imply any loss of generality since, as long
as the interactions remain effectively short ranged, it is known
that the properties of the phase transition are not affected.
In particular, this has been shown for coupling strengths
decaying exponentially with the distance in Refs. [38,53].

For the simulation of the Ising model at criticality state-
of-the-art importance-sampling Monte Carlo methods are em-
ployed, using cluster, as well as local, update algorithms.
In particular, we use the algorithm proposed by Wolff [54],
which significantly reduces the critical slowing down and
is furthermore straightforwardly applicable to disordered lat-
tices. Although the cluster updates preserve ergodicity, we add
local Metropolis updates [55] in order to make sure that the
short-wavelength modes are properly thermalized.

In the study of disordered systems, it is necessary to av-
erage physical observables over many different, independent
disorder realizations of the system, also called replicas. The
quenched averages over Nr replicas are performed at the level
of (extensive) observables, rather than at the level of the
partition function [19]. Denoting quenched averages as

[O]avg ≡ 1

Nr

Nr∑
i=1

Oi (2)

and thermal averages as 〈...〉, we define magnetization, energy,
and susceptibility as

M = [〈|m|〉]avg, (3a)

E = [〈e〉]avg, (3b)

χ = Nβ[〈m2〉 − 〈|m|〉2]avg, (3c)
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respectively, where m and e denote the magnetization and
energy per site of the individual spin configurations in thermo-
dynamic equilibrium. Furthermore, the two-point finite-size
correlation function is given by

ξ = 1

2 sin(kmin/2)

√
[〈|F2(0)|〉]avg

[〈|F2(kmin)|〉]avg
− 1. (4)

Here the Fourier transform of the magnetization is used,
which is defined by

F (k) =
∑

j

s j exp(ikx j ), (5)

where x j denotes the spatial coordinate of site j and kmin =
(2π/L, 0) represents the smallest nonzero wave vector in
the finite lattice. The time series of the quantities m, e, and
F2(kmin) is recorded during the Monte Carlo run, which
allows to compute all relevant observables subsequently. Fi-
nally, the fourth- and sixth-order magnetic cumulant, also
called Binder ratios [56], are given by

U4 =
[

1 − 〈m4〉
3〈m2〉2

]
avg

, U6 =
[ 〈m6〉
〈m2〉3

]
avg

. (6)

These quantities together with the correlation length in units
of the linear system size share the property of being invariant
under RG transformations, i.e., they tend toward well-defined
fixed point values as the system approaches the critical point.
As a first step in our analysis we determine these values for
R ∈ {ξ/L,U4,U6} as well as the eigenvalue ω of the first irrel-
evant RG operator, using the quotient method [57–59]. This
finite-size scaling (FSS) technique allows for great statistical
accuracy and does not require a precise knowledge of the
critical temperature. Specifically, the scaling functions R are
evaluated at crossing points of ξ/L curves, where they are
expected to scale as

R|Qξ =s = R∗ + aRL−ω, (7)

neglecting additional subleading correction terms. Here ω is
the leading correction-to-scaling exponent, R∗ denotes the
value of the RG-invariant scaling functions at the fixed point
and the amplitudes aR of the leading corrections depend on
the respective scaling functions R. Furthermore, in Eq. (7)
the quotients are defined as QO ≡ O(sL, T )/O(L, T ), which
means that the observable O—in our case ξ—is measured at
a temperature for which the correlation length in units of the
lattice size is the same for the pair (L, sL). We fix s = 2.

Using histogram reweighting techniques [60,61], the cross-
ing points of ξ/L are determined precisely. The reweighting
procedure is performed for every disorder replica individually
and the curves are averaged afterward. Up to 105 disorder
realizations are used for the smallest lattices and at least
4000 replicas for the largest ones. Every replica is initially
prepared in a cold spin configuration and is thermalized using
1000 elementary Monte Carlo steps (EMCS). We checked
for a proper thermalization by also performing simulations
starting from a hot configuration, which gives identical results
within numerical precision. In our update procedure, one
EMCS consists of a full Metropolis lattice sweep and several
single-cluster updates. Since the average cluster size 〈|C|〉

TABLE I. Results of the simultaneous fits according to Eq. (7).

Lmin (ξ/L)∗ U ∗
4 U ∗

6 ω χ 2/d.o.f.

16 0.9078(2) 0.61067(2) 1.4563(2) 1.36(2) 12.6
18 0.9070(2) 0.61066(2) 1.4564(2) 1.43(2) 7.2
20 0.9066(3) 0.61066(2) 1.4564(2) 1.47(3) 5.8
24 0.9062(3) 0.61065(2) 1.4564(2) 1.53(4) 5.0
32 0.9058(3) 0.61065(3) 1.4563(2) 1.59(7) 4.7
40 0.9060(5) 0.61067(4) 1.4561(3) 1.50(12) 4.1
48 0.9063(7) 0.61069(5) 1.4559(4) 1.37(18) 4.5

in a d-dimensional system at criticality scales as Ld−γ /ν ,
we increase the number of cluster updates with lattice size
according to L0.25, in order to keep the fraction of flipped
spins approximately independent of the lattice size [37]. A
detailed list of replica configurations and cluster steps can be
found in Table II. The simulations reported in this section took
about half a million CPU hours on an Intel Xeon E5-2697 v3
processor.

In order to obtain the fixed point phenomenological cou-
plings and the correction exponent, we perform simultaneous
fits of Eq. (7) for all three couplings {ξ/L,U4,U6} with joint
ω and for different Lmin, i.e., discarding the smallest lattices in
the fits. As the quotients QO are naturally correlated in pairs
(L, 2L), we implement a fitting procedure that optimizes a
generalized χ2, including the full self-covariance information,
as proposed in Ref. [62]. Uncertainties for the fit parameters
are obtained by bootstrap resampling methods [63,64]. The
results are presented in Table I. As Lmin is increased, the
fit results show slight systematic trends, caused by higher-
order corrections. Above Lmin ≈ 24 the values saturate and the
χ2/degrees of freedom (d.o.f.) of the fit does not improve fur-
ther. We therefore use, as our final estimates, the averages for
Lmin = 24, 32, 40 and adopt a rather conservative uncertainty
which includes the fluctuations among the single estimates as
well as their individual uncertainties. This yields, as our final
results,

ω = 1.54(16) (8)

and

(ξ/L)∗ = 0.9060(5), (9a)

U ∗
4 = 0.61066(3), (9b)

U ∗
6 = 1.4563(5). (9c)

Comparing our estimates for the critical couplings with
reference values of the Ising model on a regular square
lattice, which are known exactly, up to small uncertain-
ties from numerical integration, (ξ/L)∗ = 0.90505 · · · , U ∗

4 =
0.61069 · · · , U ∗

6 = 1.45565 · · · [65,66] we find that even
though these quantities are only considered universal in a
limited sense (they weakly depend on certain geometrical
characteristics of the system [67–69]) they compare remark-
ably well, giving a first indication that the Ising model on a
VG stays in the universality class of the clean model. Also our
result for the correction exponent is noticeably smaller than
the reference value on a square lattice, ω = 2 [70], though not
particularly small in absolute numbers, which explains why
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FIG. 2. Estimates for Tc from fits to Eq. (10). Some results are
slightly shifted along the x axis to make them visible. The horizontal
lines correspond to the final estimate Tc = 1.4720633(31).

corrections to scaling turn out to be relatively weak in the
scaling collapses described below.

Essential for computing scaling collapses is a precise
knowledge of the location of the critical point, which depends
on the details of the lattice structure and is therefore in general
not known in advance. In the framework of quotient-FSS
the critical temperature can be obtained using infinite-volume
extrapolations, as the crossing points are expected to scale as
[56]

T |Qξ =s = Tc + aL−ω−1/ν, (10)

where higher-order terms have been neglected as in Eq. (7),
and we adopt the clean exponent ν = 1. We perform four
series of fits, where in the first three the correction exponent
is fixed to our previous estimate (8), plus and minus its
uncertainty, i.e., ω = 1.38, 1.54, 1.70. In the last series of fits
ω is treated as a free parameter. The results are displayed in
Fig. 2 and listed in detail in the supplementary material [71],
including χ2/d.o.f. values. It can be seen that for Lmin � 40
all four fits are compatible within their error bars. As our final
estimate we take the average of the fixed-ω fits for Lmin = 64,
obtaining

Tc = 1.4720633(31). (11)

In the next step of the analysis we simulate the Ising model
on Voronoi graphs of size L = 24, 32, . . . , 384 for several
temperatures in the vicinity of the critical point, using at least
1000 disorder replicas for every lattice size and temperature.
Similarly to the precision simulations directly at criticality
reported above, we start from cold configurations and perform
2500 measurements after a thermalization time of 500 EMCS.
The number of cluster updates per EMCS is reduced by about
a factor of 5 with respect to the values reported in Table II.

Finite-size scaling theory predicts that magnetization, sus-
ceptibility, and Binder ratio scale according to

[〈m〉]avg = L−β/ν fm(x)(1 + · · · ), (12a)

χ = Lγ /ν fχ (x)(1 + · · · ), (12b)

U4 = fU4 (x)(1 + · · · ), (12c)

TABLE II. Number of disorder replicas and cluster updates per
EMCS for the Ising simulations at criticality. All systems were
simulated at T = 1.47205.

L Nr nWolff

16, 18, 20, 24 100 000 10
32, 36, 40, 48 100 000 12
64, 80, 96 100 000 15
128, 192, 256 35 000 17
384, 512 15 000 23
768 5000 27
1024 4000 29

where β, γ , and ν are critical exponents of the model and
the universal scaling functions f have the argument

x ≡ (T − Tc)L1/ν . (13)

These equations describe the scaling behavior to first order.
Corrections of higher order are expected to become irrelevant
for large system sizes. In Fig. 3 we show the scaling collapse
plots, fixing all critical exponents to their exactly known

FIG. 3. Scaling collapses according to Eq. (12). The insets show
the nonrescaled observables. The gray lines are only guides to the
eye.
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FIG. 4. Size of the active cluster for different probabilities p in
seed simulations of the CP close to the critical point, rescaled by
the expected universal scaling law, Na(t ) ∼ t θ . The inset shows the
survival probability of the process, rescaled according to P(t ) ∼ t−δ .
For the critical exponents, reference values from Ref. [74] are used.

values (ν = 1, β = 1/8, γ = 7/4) and Tc to the estimate (11).
As can be seen, flawless collapses for all three scaling func-
tions are obtained even for small lattices, which shows that
the Ising model on a two-dimensional (2D) random Voronoi
graphs belongs to the universality class of the clean 2D Ising
model.

IV. DIRECTED PERCOLATION

The most prominent family of nonequilibrium phase tran-
sitions arguably is the so-called directed percolation (DP)
universality class. According to the Janssen-Grassberger DP
conjecture, any system featuring a fluctuating phase and a
unique absorbing state with scalar order parameter, no addi-
tional symmetries and only local interactions falls into this
class [72,73]. On a lattice, the DP universality class is realized
by certain reaction-diffusion schemes, such as the CP. In this
model every site can be in either of two states, active or
inactive. In the epidemic language, often used in this context,
one refers to infected and recovered states. The system is
evolved as a Markov process, where in each time step, one
random active site is picked. With probability p it infects a
random neighbor, whereas with probability 1 − p the particle
spontaneously recovers and is removed from the active cluster.
Time is then incremented by 1/Na, where Na denotes the
size of the active cluster before the update. As soon as the
system enters the so-called absorbing state where every site is
inactive, the dynamics terminates.

In order to show that the CP on a random VG shows
clean universal behavior we conduct numerical simulations as
described in Ref. [45], in total amounting to approximately
300 000 CPU hours on an Intel Xeon E5-2697 v3 processor.
As a first step, from seed simulations we determine the critical
point, by rescaling the cluster size and survival probability
according to their expected power law behavior, Na(t ) ∼ t θ

and P(t ) ∼ t−δ , where θ and δ denote critical exponents.
In total, we use 105 independent disorder realizations of
linear size L = 2048 with periodic boundary conditions and
performed 104 seed runs on each of them. Using reference
values from Ref. [74], θ = 0.2293(4) and δ = 0.4523(10), we

FIG. 5. Scaling collapse plots for the CP. (a) Finite-size collapse
of simulations starting from a fully occupied lattice at the critical
point pc = 0.649788. (b) Data collapse in the off-critical region. The
critical exponent estimates are given in the respective panels and the
insets show the nonrescaled density as a function of time.

obtain the critical probability

pc = 0.649788(1) (14)

by determining the asymptotically constant curve, as shown
in Fig. 4. The uncertainty is determined from curves which
noticeably bend away from horizontal behavior. Note that
using larger lattices and longer simulation times would not
significantly increase the precision of this estimate, as the
analysis is limited by the uncertainties of the reference values.

Once the critical probability is known, we perform decay
simulations starting from a initially fully occupied lattice
for different system sizes precisely at criticality and monitor
the density ρ(t ) of active sites until the system reaches the
absorbing state. This allows us to obtain the exponents δ and
z via data collapses according to

ρ(L, t ) = t−δρ̃(t/Lz ), (15)

where ρ̃ denotes a universal scaling function. In a second set
of simulations we perform decay simulations for lattices of
fixed size L = 1024 in the vicinity of the critical point, which
gives us the exponents δ and ν‖ = zν by means of the relation

ρ(�, t ) = t−δρ̂(�t1/ν‖ ), (16)

where � = p − pc is the distance from criticality and ρ̂

a scaling function. Both scaling collapses, which turn out
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flawless, are shown in Fig. 5, where we used the reference
values, δ = 0.4523(10), z = 1.7674(6), and ν‖ = 1.292(4)
from Ref. [74]. In the top panel, all curves are averages
over 1400 disorder realizations with five runs per realization,
whereas in the bottom panel we used 250 disorder replicas
and five runs per realization. The insets show the respective
nonrescaled density as a function of time. This confirms
the critical exponent values used and provides compelling
evidence that the CP on the random VG belongs to the clean
DP universality class.

V. MANNA CLASS

A second nonequilibrium system we consider is the so-
called Manna sandpile model. Strongly related to the cele-
brated concept of self-organized criticality (SOC), which was
put forward by Bak, Tang, and Wiesenfeld (BTW) in 1987
[75,76], it can be found in a large variety of applications, such
as earthquakes, forest fires, neural networks, superconductors,
financial markets, and biological evolution (see Ref. [77] for
a comprehensive review). In the original formulation of the
BTW model, each site of a lattice harbors a number of par-
ticles, which can be interpreted as sand grains. By randomly
adding new grains to the lattice, piles build up on individual
sites and eventually topple. Specifically, as soon as a site
exceeds a given threshold height, it becomes unstable and one
grain is moved from it to each of its neighbors. If one of the
neighbors thereby exceeds its threshold, then it also topples
and distributes its grains. In this way a whole cascade of events
might be triggered, a so-called avalanche. Certain properties
of these avalanches, such as their size, area, and duration,
exhibit power-law distributions. In fact, as a consequence
of the slow driving mechanism (the external injection of
grains), the system reaches a critical configuration without
the need of fine-tuned external variables. For more details on
SOC phenomena, we refer the reader to the comprehensive
overview found in Ref. [78].

Based on the original BTW model, different variations
have been proposed [79–82] and extensively studied. It turns
out that modifying the toppling rules can change the univer-
sality class of the model [83]. In general, a distinction can
be made between Abelian vs non-Abelian [84], deterministic
vs stochastic, and directed vs undirected toppling rules [85].
A specific model which quickly became prominent, as an
analytic solution can be obtained under certain conditions,
was introduced by Manna in 1991. It presents a variation of
the original BTW model with stochastic toppling rules and
established the so-called Manna universality class. Due to
its particularly robust and reproducible critical behavior (see
Ref. [46] and references therein), this model has been studied
in great detail in numerical simulations [86].

It is known that nonequilibrium systems respond strongly
to boundary conditions [87–90]. Whereas in the original BTW
model the boundaries of the lattice are open, allowing particles
to leave the system, some variations present periodic boundary
conditions and no external injection of particles, hence con-
serving the total number of particles. In this work we study
the conserved version of the Manna model. In this model,
each site can contain an unlimited number of particles n =
0, 1, 2, . . .. As long as n is below a certain threshold Nc (we

TABLE III. Simulation parameters for CSSM. Nr denotes the
number of independent disorder realizations, M is the size of the
history, and pr is the associated update probability. During the first
108 time units a larger pr (by a factor of 10) is adopted in order to
efficiently erase initial states from the history.

L Nr M pr × 103

32 400 4000 0.55
64 400 4000 0.20
128 400 2000 0.069
256 400 800 0.024
512 400 400 0.009
1024 192 100 0.003
2048 64 50 0.001

take Nc = 2), a site is considered inactive, whereas it is active
if n � Nc. The dynamics consists of toppling events where
a random active site sends all of its particles to randomly
chosen neighboring sites. This so-called conserved stochastic
sandpile model (CSSM) no longer presents self-organized
critical behavior but rather a nonequilibrium phase transition
into infinitely many absorbing states (in the infinite-volume
limit), controlled by the density of particles p = Np/Ld , where
Np denotes the total number of particles in the system. In the
infinite-volume limit, if p > pc, then the systems maintains
a state of steady activity, whereas for p < pc an absorbing
configuration is reached eventually.

For lattice models in the Manna universality class [91] it
has been shown that the choice of initial conditions can have
crucial influence on the critical behavior. For instance, correct
exponents for the conserved lattice gas (CLG) models are
only obtained using so-called natural initial states rather than
random initial states (RIS) [92]. Furthermore, an argument
raised in Ref. [93], according to which the Manna critical
behavior would eventually cross over to DP universality for
large times, was substantially weakened by Lee [47,94] using
MC simulations of the disordered Manna model with carefully
prepared initial states. The debate could finally be settled, as
Dickman and da Cunha [95] showed that disorder fluctuations
generated by the CSSM dynamics itself would in fact alter a
DP transition, independent of the choice of initial conditions.

In this paper we perform so-called quasistationary (QS)
simulations [96,97] of the two-dimensional CSSM, which
should avoid ambiguities related to initial conditions alto-
gether. We start from a RIS, where Np = pL2 particles are
randomly distributed on the lattice sites. Note that in principle
p can only be tuned in steps of 1/L2. However, we are able to
realize intermediate values of p by employing a stochastic lin-
ear interpolation using the disorder replicas [98]. In each time
step an active site is chosen and sends each of its particles to
randomly chosen neighboring sites. The time is incremented
by 1/Na, where Na is the number of active sites prior to the
update, such as for the CP in Sec. IV. During the run, a
history, which is a list of M system configurations is saved
and periodically updated. Every time the process reaches an
absorbing state, it is reset to a random configuration from its
history. In order to ensure that the quasistationary state does
not suffer from vestiges of the initial configuration, we run the
evolution for a considerably long time of 6 × 108 units and
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take measurements after the first 5 × 108 time units. The mea-
sured quantities are the density of active sites ρ, and the life-
time of the QS state, τ . The latter is given by the average time
between two successive visits to absorbing configurations.

We employ large lattice sizes up to L = 2048 in order to
reduce corrections due to subleading finite-size terms. For
QS simulations of “bosonic” models, such as the CSSM,
this is computationally particularly demanding, since the full
configurations need to be stored, rather than only a list of
active sites which would be sufficient for the CP. Moreover,
the update probability pr (per unit time) of the saved con-
figurations represents an important tuning parameter of the
QS method. As a rule a thumb it should be set such that the
average residence time of a configuration in the list, M/pr , is
larger than τ but much smaller than total duration of the run
[99]. We list detailed simulation parameters in Table III.

A reliable method to obtain an accurate estimate of the
critical point is to consider the ratio

m = [〈ρ2〉/〈ρ〉2]avg, (17)

which is known to intersect at pc for different lattice sizes L.
In Fig. 6 the ratio is plotted for several probabilities close to
criticality. Using linear interpolation in order to estimate the
horizontal curve, we obtain

pc = 0.721893(2) (18)

for the critical point at an amplitude of mc = 1.35(1), which is
compatible with the value mc = 1.348(7), found on a regular
square lattice [42]. Once the critical point is determined, we
are able to compute exponents from fits to the QS density

ρQS ≡ [〈ρ〉]avg ∼ L−β/ν, (19)

FIG. 6. Critical CSSM on a VG. Curves represent fits of the
lifetime (circles), susceptibility (squares), and density of active sites
(stars). The inset shows the moment ratio against the inverse lattice
size for p = 0.721886, 0.721889, 0.721892, 0.721893, 0.721895
from top to bottom. The curve for p = 0.721893 (dashed) represents
our estimate of the critical point and is interpolated linearly from
its two adjacent curves. The data points connected by solid lines
represent actual measurements.

TABLE IV. Critical exponent estimates from numerical Monte
Carlo simulations of conserved lattice models belonging to the two-
dimensional Manna universality class. The results of Lee correspond
to the CSSM and the CLG. Apart from Oliveira [42], which per-
formed their simulations on a Delaunay triangulation, all simulations
used a square lattice. When no direct measurement of γ was available
we used the relation γ = dν − 2β [46].

β/ν γ /ν z

Dickman et al. [100] 0.774(3) 0.452(6) 1.572(7)
Lübeck et al. [101,102] 0.80(3) 0.459(25) 1.533(24)
da Cunha et al. [103] 0.78(1) 0.44(2) 1.510(6)
Lee [92] (CSSM) 0.785(9) 0.430(18) 1.54(2)
Lee [92] (CLG) 0.781(8) 0.438(16) 1.53(1)
Oliveira et al. [42] 0.78(1) 0.44(2) 1.54(2)
This work 0.773(8) 0.456(3) 1.558(23)

the average lifetime of the QS state,

τ ≡ [〈τ 〉]avg ∼ Lz, (20)

and the susceptibility,

χ ≡ Ld [〈ρ2〉 − 〈ρ〉2]avg ∼ Lγ /ν, (21)

directly at criticality. We perform fits for these three equations,
shown in Fig. 6, and present the corresponding results for
the critical exponents in Table IV. The uncertainties of the
estimates mostly stem from the uncertainty of the critical point
but also include the variation due to the exclusion of some
of the data points. The latter variation turns out to be very
small and, significantly, there is no systematic trend visible
when discarding points corresponding to ever smaller lattices
from the fits. Comparing our estimates with reference values
from several authors also listed in Table IV we find them to be
clearly compatible, hence strongly indicating that the CSSM
on the VG belongs to the clean Manna universality class.

VI. CONCLUSION

Critical phenomena on Voronoi graphs have, to the best
of our knowledge, not yet been investigated, with the fo-
cus being instead on its dual, the Delaunay triangulation.
In order to correct for this omission, we conducted large-
scale numerical simulations of the classical Ising model, the
contact process, and the conserved Manna sandpile model on
two-dimensional VGs constructed from randomly distributed
sites. We establish reference values for the critical points
of the three models and, for the Ising model, also obtain
the first correction-to-scaling exponent. Furthermore, using
finite-size scaling techniques we show that all systems display
clean universal exponents at criticality, i.e., we reveal that
the VG disorder is—in the sense of the RG—an irrelevant
perturbation to their phase transitions. Although we only
analyzed three particular models, this result has implications
for other classes of transitions as well. From the RG per-
spective, the correlation length exponent ν is directly related
to the relevance of quenched disorder [21,39,43,44,104,105].
Hence, the phase transition of, for instance, regular (isotropic)
percolation can be predicted to also remain unchanged on a
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Voronoi graph, since its exponent, ν = 4/3, is larger than for
the models considered in this article. Moreover, our results
are especially relevant for the search for a general disorder
relevance criterion. The Voronoi graph has constant coordina-
tion number, similar to the constant coordination (CC) lattice
we have recently introduced [106] and refined [107]. Studies
of both the Ising and DP phase transition on the CC lattice
[106,108] found disorder to be probably marginal in the Ising
case and clearly relevant for the DP universality class. The
contrast of this result with the irrelevance of the VG disorder
shows that the absence of coordination number fluctuations
is nonpredictive of disorder relevance. Thus, coordination
number fluctuations do not play a central role in determining
the influence of quenched topological disorder on continuous
phase transitions, and a different direction, such as consider-
ing a measure of connectivity [108], should be explored in the
search for a general relevance criterion.

Finally, we remark that the clean universal behavior of the
Manna model on Voronoi graphs found in our simulations

can not contribute to resolving the fate of its unexpectedly
stable behavior (with respect to the Harris criterion) that was
reported in Refs. [47–49] for uncorrelated disorder. Instead it
might be interesting to study the CSSM on other topologically
disordered lattices, such as the CC lattice mentioned above, in
order to obtain a clearer picture concerning the applicability
of existing disorder relevance criteria [21,43,44] to nonequi-
librium systems.
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