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Long-time position distribution of an active Brownian particle in two dimensions
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We study the late-time dynamics of a single active Brownian particle in two dimensions with speed v0 and
rotation diffusion constant DR. We show that at late times t � D−1

R , while the position probability distribution
P(x, y, t ) in the x-y plane approaches a Gaussian form near its peak describing the typical diffusive fluctuations, it
has non-Gaussian tails describing atypical rare fluctuations when

√
x2 + y2 ∼ v0t . In this regime, the distribution

admits a large deviation form, P(x, y, t ) ∼ exp {−t DR �[
√

x2 + y2/(v0t )]}, where we compute the rate function
�(z) analytically and also numerically using an importance sampling method. We show that the rate function
�(z), encoding the rare fluctuations, still carries the trace of activity even at late times. Another way of detecting
activity at late times is to subject the active particle to an external harmonic potential. In this case we show that
the stationary distribution Pstat(x, y) depends explicitly on the activity parameter D−1

R and undergoes a crossover,
as DR increases, from a ring shape in the strongly active limit (DR → 0) to a Gaussian shape in the strongly
passive limit (DR → ∞).

DOI: 10.1103/PhysRevE.100.062116

I. INTRODUCTION

Recent years have seen enormous activities, both theo-
retical and experimental, in the study of the dynamics of
self-propelled active particles. These self-propelled particles
generate dissipative directed motion by consuming energy di-
rectly from the environment [1–5] and appear in a wide variety
of biological and soft matter systems which include bacterial
motion [6,7], cellular tissue behavior [8], formation of fish
schools [9,10] as well as granular matter [11,12] and colloidal
surfers [13], among others. For interacting self-propelled par-
ticles, novel collective behaviors have been observed such
as flocking [14,15], clustering [13,16–18], phase separation
[19–21], and absence of well-defined pressure [22]. Interest-
ingly, even in the absence of interactions, the spatiotemporal
dynamics of a single self-propelled particle exhibits rich and
complex behavior. This has led to a flurry of recent activities
on the study of the stochastic processes describing the motion
of a single self-propelled particle [3,23–47].

Among various models of a single self-propelled particle,
perhaps one of the simplest is the so-called active Brownian
particle (ABP) in two dimensions (2D). An ABP is a single
overdamped particle which moves in the 2D x-y plane with
a constant speed v0. In addition to its Cartesian coordinates,
(x(t ), y(t )), the particle also carries an internal “spin” given
by the orientational angle φ(t ) of its velocity (see Fig. 1). This
internal degree of freedom φ(t ) generates the self-propulsion.
The three coordinates x(t ), y(t ), and φ(t ) evolve with time via
the coupled Langevin equations [3–5],

ẋ = v0 cos φ(t )

ẏ = v0 sin φ(t )

φ̇ =
√

2DRηφ (t ). (1)

Here ηφ (t ) is a Gaussian white noise with zero mean and
a correlator 〈ηφ (t )ηφ (t ′)〉 = δ(t − t ′). Thus, the orientational

angle φ(t ) undergoes rotational diffusion with a diffusion
constant DR. In principle one can also consider an additive
translational white noise with diffusion constant DT in both
x and y equations. However, it turns out that this additive
noise does not qualitatively change the physics of the problem.
Hence, for simplicity we drop it in the rest of the paper by
setting DT = 0.

The angle φ(t ) is just a standard one-dimensional
Brownian motion with autocorrelation 〈φ(t1)φ(t2)〉 =
2DR min{t1, t2}. Note that here the x and y coordinates are
coupled through the angle φ(t ) and hence are correlated.
This is the origin of “activity” in the model. This is
different from the standard “passive” Brownian particle
(PBP) where the two coordinates evolve independently
as ẋ = √

2Dηx(t ) and ẏ = √
2Dηy(t ), where ηx,y(t ) are

independent delta-correlated white noises with zero mean
and D is the standard diffusion constant. Indeed, Eq. (1)
can be expressed in the same form as that of a PBP by
writing ẋ = ξx(t ) and ẏ = ξy(t ), where the effective noises
are ξx(t ) = v0 cos φ(t ) and ξy(t ) = v0 sin φ(t ). Unlike the
white noises in the PBP that are independent of each other
and uncorrelated in time, the active noises ξx(t ) and ξy(t ) are
(a) correlated with each other and (b) correlated in time. For
example the autocorrelation function of ξx(t ) is given by [36]

〈ξx(t1)ξx(t2)〉 ≈ v2
0

2
exp [−DR|t1 − t2|], (2)

for large t1 and t2 with |t1 − t2| fixed and similarly for ξy(t ). It
follows from Eq. (2) that for times t � D−1

R , the autocorrela-
tor converges to

〈ξx(t1)ξx(t2)〉 → 2 Deff δ(t1 − t2) (3)

with an effective diffusion constant Deff = v2
0/(2DR). Hence,

for t � D−1
R , the ABP effectively reduces to a PBP. Thus D−1

R
plays the role of an “activity” parameter—as DR increases
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FIG. 1. An active Brownian particle at time t moving in the
x-y plane with velocity v0. The internal degree of freedom φ(t )
corresponds to the orientational angle of its velocity.

from zero, the process crosses over from a strongly active
regime (DR → 0) to a strongly passive one (DR → ∞).

One of the simplest and natural questions in the ABP
dynamics is as follows: How does the spatial distribution
P(x, y, t ) evolve with time? In the case of a PBP, start-
ing initially at the origin, this is simply a Gaussian at all
times t :

P(x, y, t ) = 1

4πDt
e−(x2+y2 )/4Dt . (4)

How does the presence of the internal degree of freedom
φ(t ) in Eq. (1) affect P(x, y, t )? In principle, P(x, y, t ) can be
obtained as the marginal distribution:

P(x, y, t ) =
∫ ∞

−∞
dφP (x, y, φ, t ), (5)

where P (x, y, φ, t ) is the probability density in the (x, y, φ)
space and satisfies the Fokker-Planck equation,

∂

∂t
P (x, y, φ, t ) = −v0

(
cos φ

∂P
∂x

+ sin φ
∂P
∂y

)
+ DR

∂2P
∂φ2

.

(6)

However, this Fokker-Planck equation turns out to be very
hard to solve explicitly. Thus, despite the simplicity of the
ABP dynamics, extracting the explicit form of P(x, y, t ) in real
space remains a challenging problem.

Recently, Kurzthaler et al. derived [37] an exact expression
for the Fourier transform 〈e−i�k·�r(t )〉, where �r(t ) = (x(t ), y(t )),
in terms of the eigenvalues and eigenfunctions of the Mathieu
equation (see Sec. II below for details). In their derivation,
〈. . .〉 includes an averaging over all possible initial orienta-
tions φ(0), chosen uniformly at random. Consequently, this
Fourier transform depends only on the magnitude k of the
wave vector �k. However, this expression, although exact at all
times, is still rather formal and inverting this Fourier transform
to extract and plot P(x, y, t ) in the real x-y plane is far from
obvious.

In a recent paper [36], using a backward Feynman-Kac
approach we were able to derive, for any fixed initial orien-
tation φ(0), exact and explicit expressions for the marginal
distributions P(x, t ), P(y, t ), and P(r2, t ) at short times t �
D−1

R . A fixed initial condition makes the x and y motion for
the ABP anisotropic, especially at early times t � D−1

R . This
is manifest in the marginal distributions P(x, t ) and P(y, t )
which are completely different from each other at early times

[36]. For example, for the initial condition φ(0) = 0, it was
shown that, for t � D−1

R , the marginal distribution P(y, t ) has
a simple Gaussian form,

P(y, t ) = 1√
2πσ 2

y

e−y2/(2σ 2
y ), with σ 2

y = 2v2
0DR

3
t3. (7)

In contrast, the marginal P(x, t ), for t � D−1
R , has a com-

pletely different expression given by the scaling form

P(x, t ) = 1

v0DRt2
fx

(
v0t − x

v0Drt2

)
, (8)

where the scaling function fx(z) is nontrivial and was com-
puted explicitly in Ref. [36]. Note that the standard deviation
of x grows as t2, while that of y grows as t3/2, leading to
anomalous superdiffusion for both coordinates at early times.
Both the anisotropy and the anomalous diffusion at early times
were proposed as strong signatures of “activity” of the ABP
dynamics [36].

The picture, however, is quite different at long times
t � D−1

R . At long times one expects that the system forgets
the initial condition—hence the anisotropy disappears, and,
moreover, by the central limit theorem, normal diffusion is
restored with an effective diffusion constant Deff = v2

0/(2DR)
[3,5,36]. This indicates that for t � D−1

R , the typical behavior
of P(x, y, t ) is described by the Gaussian form as in Eq. (4)
with an effective diffusion constant D = Deff = v2

0/(2DR).
The question remains whether it is possible to see any sig-
nature of the activity in this long-time regime, apart from just
a trivial renormalization of the diffusion constant.

The purpose of this paper is twofold. In the first part, we
show that the same backward Feynman-Kac approach that we
had used earlier in Ref. [36] to derive the early-time dynamics
(t � D−1

R ) can be extended to derive explicitly P(x, y, t ) at
late times t � D−1

R . We show that, while the distribution
near its peak is Gaussian describing the probability of typical
fluctuations as expected, it has nontrivial non-Gaussian tails
describing atypical rare fluctuations when r =

√
x2 + y2 ∼

v0t . On this scale, we show that P(x, y, t ) admits a large
deviation form,

P(x, y, t ) ∼ exp

[
−tDR �

(√
x2 + y2

v0t

)]
, (9)

where the rate function �(z) is supported over z ∈ [0, 1]. In
this paper we compute �(z) analytically. Computing �(z)
from numerical simulations is also challenging as it requires
measuring extremely small probabilities of rare fluctuations.
In this paper we estimate �(z) from numerical simulations
with extreme precision by adapting the importance sampling
method and find a perfect agreement with our analytical result
(see Fig. 3). Our main conclusion is that at late times, while
there is no trace of activity in the central Gaussian peak, the
tails of the distribution still carry signatures of activity that is
encoded in the rate function �(z).

We note that the marginal distribution P(x, t ) was studied
in Ref. [31] and a similar large deviation form as in Eq. (9)
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was found,

P(x, t ) ∼ exp

[
−t DR �x

(
x

v0t

)]
, (10)

where the rate function �x(z) is supported over z ∈ [−1, 1]
and is symmetric around z = 0. While this rate function
�x(z) was found to be related to the lowest eigenvalue of the
Mathieu equation via a Legendre transform, the asymptotic
behaviors of �x(z) were not extracted. Interestingly, the same
rate function �x(z) was also found in the current distribution
of an interacting active particle system [38], within an effec-
tive mean-field description, that just renormalizes the single-
particle velocity v0 which now depends on the density ρ—
still, the asymptotic properties of �x(z) were not analyzed.
In this paper, we show that, for z ∈ [0, 1], the rate function
�(z) in Eq. (9) describing the two-dimensional probability
distribution, indeed coincides with �x(z) in Eq. (10) and we
provide the asymptotic behavior of �(z) both as z → 0 and
z → 1.

In the second part of the paper we consider another way to
detect the signatures of activity at late times by subjecting the
ABP to an external harmonic potential of stiffness μ. Here the
system approaches a stationary state at long times Pstat(x, y) =
P(x, y, t → ∞). This stationary distribution changes its char-
acter as a function of the activity parameter D−1

R . In the
strongly active limit DR → 0, the stationary distribution is
highly non-Gaussian and has a ring shape of radius v0/μ. In
contrast, in the weakly active regime DR → ∞, the stationary
distribution has a Gaussian shape. We study, both numerically
and analytically, this crossover in the shape of Pstat(x, y) as a
function of the activity parameter D−1

R .
The rest of the paper is organized as follows. In Sec. II

we discuss an elegant geometrical interpretation of the ABP
dynamics in terms of a random algebraic curve in two dimen-
sions and provide a detailed summary of our main results. In
Sec. III we compute the rate function �(z), both analytically
and numerically. Section IV is devoted to the study of the
ABP in a harmonic trap. Finally we conclude in Sec. V.
Some details of the calculations are relegated to the four
Appendices.

II. THE MODEL AND THE SUMMARY OF THE RESULTS

The ABP model has already been defined in Eq. (1) in
the Introduction. We assume that the particle starts at the
origin x = y = 0, with a given initial orientation φ(0). We are
interested in calculating the distribution P(x, y, t ) at late times
t � D−1

R . Before summarizing our main results, it is useful to
first make a historical remark that will also provide an elegant
geometrical representation of the ABP.

It turns out that much before the ABP model appeared in
the literature of active self-propelled particles, Eq. (1) was
already introduced and studied in the mathematics literature
by Mumford in a completely different context [48]. Mumford
was interested in the properties of two-dimensional random
algebraic curves in the context of computer vision. Consider
a continuous curve {x(t ), y(t )} in 2D, where t denotes the arc
length along the curve (see Fig. 2 for a schematic representa-
tion). Thus t increases monotonically as one moves along the
curve. Let T̂ ≡ (cos[φ(t )], sin[φ(t )]) denote the unit tangent

T̂ ≡ (cos φ(t), sin φ(t))
t

φ(t)

x

y

FIG. 2. Geometric interpretation of the ABP as a two-
dimensional algebraic curve with random curvature [48].

vector to the curve at arc distance t , where φ(t ) represents
the angle between T̂ and the x axis. Hence the coordinates
(x(t ), y(t )) of the curve are expressed in terms of the angle
φ(t ) via

x(t ) =
∫ t

0
ds cos φ(s), y(t ) =

∫ t

0
ds sin φ(s). (11)

Let κ (t ) denote the local curvature at arc distance t . Conse-
quently, the local radius of curvature R(t ) = 1/κ (t ). Consider
an infinitesimal evolution of the curve from t to t + dt .
Clearly, R(t )dφ = dt and this gives κ (t ) = dφ

dt . Mumford
proposed a “random curvature model” for the algebraic curve
where κ (t ) is a delta-correlated white noise with zero mean.
As a result, φ(t ) in this random curvature model is just a
Brownian motion with arc length t playing the role of time.
Hence the random curve described by Eq. (11) is exactly
equivalent to an ABP in Eq. (1) with v0 = 1. Mumford was
precisely interested in calculating P(x, y, t ) and wrote down
the Fokker-Planck Eq. (6). However, he was not able to solve
it and remarked, “I have looked for an explicit formula for P
but in vain” [48].

As mentioned in the Introduction, recent progress was
made in Ref. [37], where the authors derived an exact ex-
pression for the Fourier transform f (k, t ) = 〈e−i�k·�r(t )〉, where
the average is also performed over all initial orientations
of the angle φ(0) chosen uniformly in the range [−π, π ].
Consequently, the Fourier transform depends only on the
magnitude k of the wave vector �k and the distribution in real
space is isotropic at all times t . Reference [37] derived f (k, t )
in the presence of an additional translational noise in Eq. (1).
On setting this additional noise to zero, their result reads

f (k, t ) =
∞∑

n=0

e−λ2nt

[ ∫ 2π

0

dϕ

2π
ce2n

(
ϕ

2
,

2ikv0

DR

)]2

, (12)

where ce2n(v, q) are solutions of the Mathieu equation, π

periodic and even in v, with eigenvalue a2n(q) (see Sec. III
for more details) and λ2n = a2n( 2ikv0

DR
) DR

4 . Although exact for

all t in the �k space, extracting the behavior of P(x, y, t ) in real
space is nontrivial and has not been done so far.

In this paper, using an alternative backward Feynman-Kac
formalism, we obtain an exact expression valid at all times
for the moment-generating function of P(x, y, t )—similarly to
f (k, t ) above but with imaginary k. However, our solution is
valid for arbitrary initial condition φ(0) [see Eq. (30)]. Next,
for large times (t � D−1

R ), we extract explicitly from this
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moment-generating function the behavior of P(x, y, t ) in real
space. In particular we show that at late times the probability
density admits a large deviation form as in Eq. (9) in the
Introduction, which describes the non-Gaussian tails of the
distribution in the real space. We show that the rate function
�(z) can be expressed as the Legendre transform of the lowest
eigenvalue a0 associated with the π -periodic even solution of
the Mathieu equation:

min
0�z�1

[
p

DR
z + �(z)

]
= 1

4
a0

(
2p

DR

)
. (13)

The rate function �(z) is supported over the interval z ∈
[0, 1]. Note that �(z) depends only on the scaled radius z =√

x2 + y2/(v0t ). This indicates that − ln P(x, y, t ) becomes
completely isotropic at late times and does not depend on
the initial orientation φ(0). Hence even the marginals, such

as P(x, t ), has the asymptotic form

P(x, t ) ∼ exp

[
−tDR �x

(
x

v0t

)]
, (14)

where �x(z) is supported over the interval z = x/(v0t ) ∈
[−1, 1] and is symmetric around z = 0. For positive z, using
the isotropy, we have �x(z) = �(z), where �(z) is given in
Eq. (13). Thus the rate function �(z) can also be extracted
from the late-time behavior of just the marginal P(x, t ), which
turns out to be somewhat easier to analyze. For the simplicity
of notation, henceforth we will drop the subscript x from
�x(z). As mentioned in the Introduction, this result in Eq. (14)
already appeared in Refs. [31,38], though the detailed analyt-
ical form of �(z) was not carried out. In this paper, we show
that the asymptotic behaviors of �(z) as z → 0 and z → 1
can be extracted from Eq. (13) using the known asymptotic
properties of a0(q) and we obtain

�(z) =
[ 1

2 z2 + 7
32 z4 + 209

1152 z6 + 53231
294912 z8 + · · · as z → 0

1
8(1−z) − 1

16 − (1−z)
64 − 3

256 (1 − z)2 − 51
4096 (1 − z)3 + · · · as z → 1

. (15)

A plot of �(z) is given in Fig. 3. In Sec. III we further
compute numerically the marginal P(x, t ) (see Fig. 4) using an
importance sampling method. From this marginal we extract
the rate function �(z) numerically, as shown in Fig. 5, finding
excellent agreement with our analytical prediction.

In the second part of the paper we study the position
distribution Pμ(x, y, t ) of the ABP trapped in a harmonic
potential of stiffness μ. In this case we derive an exact
recursion relation in Eq. (66), valid at all times t , for the
moments Mkl (t ) = 〈zk (t )z̄l (t )〉, where z(t ) = x(t ) + iy(t ). We
show that this recursion relation can be solved explicitly for all
t in the two opposite limits: (a) the strongly active limit, i.e.,
when DR → 0, and (b) the strongly passive limit, i.e., when

FIG. 3. The rate function �(z) supported over z ∈ [0, 1]. The
solid (orange) line corresponds to the exact expression given in
Eq. (13) evaluated using Mathematica. The dashed lines correspond
to the explicit asymptotic expansions in Eq. (15). The solid (violet)
line with the quadratic behavior z2/2 corresponds to passive Brown-
ian particle.

DR → ∞. From these exact moments we derive, in these two
limiting cases, the exact radial distribution at all times t ,

Prad(r, t ) =
∫ 2π

0
Pμ(r, θ, t ) dθ, (16)

where Pμ(r, θ, t ) is the position distribution in the polar coor-
dinates. We show that in the strongly active limit (DR → 0),
the stationary position distribution at long times approaches
a ring shape in the x-y plane of radius v0/μ (see the lower
panel in Fig. 6). In contrast, in the strongly passive regime
(DR → ∞), the stationary distribution is a Gaussian (see the
upper panel in Fig. 6),

Pstat(x, y) = μDR

πv2
0

exp

[
−μDR(x2 + y2)

v2
0

]
. (17)

For intermediate values of DR, we study the stationary dis-
tribution Pstat(x, y) numerically and find that as DR increases,
Pstat(x, y) crosses over from the ring shape to the Gaussian
shape as displayed in Fig. 7.

III. POSITION DISTRIBUTION AT LATE TIMES:
LARGE DEVIATION

In this section we study the behavior of the position
probability distribution P(x, y, t ) of an ABP at late times t �
D−1

R . We consider Eq. (1) and assume that the particle starts
at the origin x(0) = y(0) = 0. For a fixed initial orientation
φ(0) = u, the radial symmetry is broken and, consequently,
the coordinates

x(t ) = v0

∫ t

0
dτ cos φ(τ ) and y(t ) = v0

∫ t

0
dτ sin φ(τ )

(18)
will have different statistical behaviors, especially at early
times. At late times, for typical fluctuations, this anisotropy
is expected to disappear and one would recover the isotropic
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FIG. 4. Marginal distribution P(x, t ) for different (large) values of t = 20, 40, 80 obtained from numerical simulations using importance
sampling. (a) The dimensionless probability density σxP(x, t ) plotted as a function of the centered and rescaled position [x(t ) − 〈x(t )〉]/σx ,
where σx =

√
〈x2〉 − 〈x〉2 is the standard deviation. For comparison, we have shown the pure Gaussian distribution by the solid (red) line.

(b) σxP(x, t ) plotted as a function of |x(t ) − 〈x(t )〉| to emphasize the asymmetry between P(x, t ) and P(−x, t ). The solid and open symbols
correspond to the x(t ) > 〈x(t )〉 and x(t ) < 〈x(t )〉, respectively. The two branches become identical as t increases, indicating the symmetric
distribution in the t → ∞ limit.

Gaussian distribution as in Eq. (4) with the effective dif-
fusion constant Deff = v2

0/(2DR). Here we are interested in
the atypical large fluctuations in the tails of the distribution
P(x, y, t ), where

√
x2 + y2 ∼ v0 t . We show that these atypical

fluctuations also become isotropic, at least to leading order
at large t , and P(x, y, t ) is described by the large deviation
form as in Eq. (9) where the rate function depends only on
z =

√
x2 + y2/(v0t ).

A. Analytical computation of the large deviation function

To compute these atypical fluctuations of P(x, y, t ) it turns
out to be convenient to first study the marginal distribution,

Pu(x, t ) =
∫

dyP(x, y, t ), (19)

FIG. 5. The large deviation function �(z) vs z = [x(t ) −
〈x(t )〉]/(v0t ) for three different values of t, as obtained from numer-
ical simulations. The solid black line corresponds to the asymptotic
behavior near z → 0 in Eq. (15). The dashed black lines correspond
to asymptotic behavior near z → ±1 in Eq. (15).

where x(t ) = v0
∫ t

0 dτ cos φ(τ ) and φ(0) = u ∈ (−π, π ). For
convenience, we further rescale the x coordinate and define

w(t ) = x(t )

v0
=

∫ t

0
dτ cos φ(τ ). (20)

Therefore, Pu(x, t ) = (1/v0) Pu(w, t ). Thus w(t ) is just a
functional of a one-dimensional Brownian motion φ(t ) that

FIG. 6. Position probability distribution P(x, y, t ) for an ABP in
a 2D harmonic trap of strength μ at different time t . Upper and
lower panels correspond to the cases μ−1 > D−1

R and μ−1 < D−1
R ,

respectively. The presence of anisotropy at short times and the delo-
calized stationary state (for μ−1 < D−1

R ) are two specific signatures
of activity. The numerical data have been obtained for D−1

R = 102

and μ−1 = 103 (upper panel) and D−1
R = 103 and μ−1 = 102 (lower

panel).

062116-5



BASU, MAJUMDAR, ROSSO, AND SCHEHR PHYSICAL REVIEW E 100, 062116 (2019)

starts at φ(0) = u. The statistical properties of such Brown-
ian functionals can be very conveniently derived by using a
backward Feynman-Kac approach where one treats the initial
condition φ(0) = u as a variable—for several examples and
applications, see Ref. [49]. A key quantity for this method
turns out to be the moment-generating function

Qp(u, t ) = 〈
e−p

∫ t
0 dτ cos φ(τ )〉 =

∫ t

−t
dw e−pwPu(w, t ), (21)

where we note that the range of w is ∈ [−t, t]. For the
functional w(t ) = ∫ t

0 dτ cos φ(τ ), the backward Feynman-
Kac equation for the moment-generating function Qp(u, t )
then reads [49]

∂Qp

∂t
= DR

∂2Qp

∂u2
− p cos uQp, (22)

with the initial condition Qp(u, t = 0) = 1. Equation (22) is
just the Schrödinger equation in imaginary time for a particle
in a periodic potential cos u. We look for a solution of the form
e−λtψ (u). Then Eq. (22) becomes

DR
d2ψ

du2
+ (λ − p cos u)ψ (u) = 0, (23)

where the physical solution should be periodic with a period
2π [recall that u = φ(0) ∈ (−π, π )],

ψ (u) = ψ (u + 2π ). (24)

It turns out that the above equation can be recast as the
standard Mathieu equation [50] with a rescaling u = 2v,

ψ ′′(v) + (a − 2q cos 2v) ψ (v) = 0, (25)

where a = 4λ/DR and q = 2p/DR. Note that the periodicity
condition in Eq. (24) translates in the variable v to

ψ (v) = ψ (v + π ). (26)

For any fixed q, the Mathieu equation (25) admits four fam-
ilies of periodic solutions for a discrete set of values of the
parameter a called characteristic values or eigenvalues [50]:

(i) the elliptic cosine ce2n(v, q), π -periodic and even func-
tion in v with eigenvalues a = a2n(q);

(ii) the elliptic cosine ce2n+1(v, q), 2π -periodic and even
function in v with eigenvalues a = a2n+1(q);

(iii) the elliptic sine se2n(v, q), π -periodic and odd func-
tion in v with eigenvalues a = b2n(q);

(iv) the elliptic sine se2n+1(v, q), 2π -periodic and odd
function in v with eigenvalues a = b2n+1(q).

The condition in Eq. (26) allows only the π -periodic
solutions, ce2n(v, q) and se2n(v, q). The general solution of
Eq. (23), satisfying Eq. (24), can then be written as

Qp(u, t ) =
∞∑

n=0

A2nce2n

(
u

2
,

2p

DR

)
exp

[
− tDR

4
a2n

(
2p

DR

)]

+
∞∑

n=0

B2nse2n

(
u

2
,

2p

DR

)
exp

[
− tDR

4
b2n

(
2p

DR

)]
.

(27)

The coefficients A2n and B2n can be determined from the initial
condition. Setting t = 0 and using the orthogonality of the
elliptic cosine and sine functions one gets:

A2n ∝
∫ π

−π

Qp(u, 0)ce2n

(
u

2
,

2p

DR

)
du, (28)

B2n ∝
∫ π

−π

Qp(u, 0)se2n

(
u

2
,

2p

DR

)
du, (29)

where the proportionality factors are just the normalization
of ce2n and se2n, respectively. Using the initial condition
Qp(u, t = 0) = 1 and the parity of the functions ce2n and se2n,
we immediately see that B2n = 0 while A2n �= 0. Therefore we
finally get

Qp(u, t ) =
∞∑

n=0

A2nce2n

(
u

2
,

2p

DR

)
e− tDR

4 a2n( 2p
DR

)
. (30)

Clearly the dependence on the initial condition u appears only
in the eigenfunctions ce2n, but not in the eigenvalues a2n.

At late times t � D−1
R , one can make progress since the

solution in Eq. (30) is dominated by the smallest eigenvalue
a0(q) and we get

Qp(u, t ) ∼ exp

[
− tDR

4
a0

(
2p

DR

)]
. (31)

It is important to remark that in this limit the argument of
the exponential is independent of the initial condition u (only
the prefactor, which is subdominant in t , depends on u). The
behavior of a0(q) is known both for q → 0 and q → ∞ limits:

a0(q) =
{∑

n=1 α2n q2n for q → 0∑
n=0 βn q1− n

2 for q → ∞. (32)

Explicit values of α2n and βn are known [50] and are quoted in
the Appendix A. This allows us to extract both the cumulants
and the large deviation function of the x coordinate of the
particle position, as we now show.

Let us recall that Qp(u, t ) = 〈exp [−p x(t )/v0]〉 is the
moment-generating function of w = x/v0. More precisely,
expanding the ln Qp(u, t ) in powers of p gives

ln Qp(u, t ) =
∞∑

n=1

(−p)n

n!

〈xn〉c

vn
0

, (33)

where 〈xn〉c denotes the nth cumulant of x. To leading order in
large t , taking the logarithm of Qp(u, t ) in Eq. (31) gives

log Qp(u, t ) ≈ − tDR

4
a0

(
2p

DR

)
. (34)

Next we use the small p expansion of a0( 2p
DR

) in Eq. (32) and
match powers of p to extract the cumulants in Eq. (33). To
leading order in large t , this gives for the even cumulants

〈x2n〉c ≈ −α2n
(2n)!

4

(
2v0

DR

)2n

DR t, (35)

while the odd cumulants vanish to this leading order of t .
Note that at this leading order for large t , the cumulants
are already independent of the initial condition u. Using
the known explicit values of α2n [50], we get the first few
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cumulants explicitly to leading order for large t :

〈x2〉c ≈
(

v0

DR

)2

DR t

〈x4〉c ≈ −21

4

(
v0

DR

)4

DR t

〈x6〉c ≈ 145

(
v0

DR

)6

DR t

〈x8〉c ≈ −2404045

256

(
v0

DR

)8

DR t, (36)

in agreement with the results obtained in Refs. [31,38] using
the tilt-operator method due to Lebowitz and Spohn [51],
which, for Brownian motion, is equivalent to the forward
Feynman-Kac formalism. Note that the sign of the even cu-
mulants oscillate with increasing n. Since the odd cumulants
vanish in this long-time limit, they leave no trace of the
initial anisotropy for large t . However, the presence of nonzero
higher-order even cumulants already indicates that the tails of
the distribution are non-Gaussian.

To extract the large deviation behavior of the marginal
P(x, t ) from its moment-generating function in Eq. (31) we
proceed as follows. For fluctuations on a scale x ∼ v0 t , we
anticipate the large deviation form (to be verified a posteriori)

P(x, t ) ∼ exp

[
−t DR �

(
x

v0t

)]
, (37)

where �(z) is the rate function, supported over the in-
terval z ∈ (−1, 1). In terms of the rescaled variable z =
x/(v0t ) = w/t , the moment-generating function is Qp(u, t ) =
〈exp (−p x/v0)〉 = 〈exp (−pt z)〉. Substituting the anticipated
form Eq. (37) for P(x, t ) [or equivalently for P(z, t )] in
Eq. (21) gives

Qp(u, t ) ∼
∫ 1

−1
dz exp

{
− tDR

[
p

DR
z + �(z)

]}
. (38)

For large t , evaluating the integral by the saddle point method
we get

Qp(u, t ) ∼ exp

{
− t DR min

−1�z�1

[
p

DR
z + �(z)

]}
. (39)

Comparing Eq. (31) and Eq. (39), we get

min
−1�z�1

[
p

DR
z + �(z)

]
= 1

4
a0

(
2p

DR

)
. (40)

Inverting this Legendre transform, the rate function �(z) can
be finally expressed as

�(z) = max
p

[
1

4
a0

(
2p

DR

)
− zp

DR

]
. (41)

The eigenvalue a0(q = 2p/DR) is a symmetric function of
q. Hence it follows immediately from Eq. (41) that �(z) =
�(−z). While Eq. (41) has appeared before in the literature
[31,38], its behavior for z → 0 as well as z → ±1 was not
extracted. Here we use the asymptotic expansions of a0(q), for
both small and large q in Eq. (32), to determine the limiting
behaviors of �(z) as z → 0 and z → 1, respectively. The
details are provided in Appendix B and the explicit limiting

behaviors of �(z) are given in Eq. (15) of Sec. II. In Fig. 3,
we provide a plot of �(z) for z ∈ [0, 1] [note that �(z) =
�(−z)].

So far we have studied the marginal P(x, t ) and observed
that to leading order in large t , − ln P(x, t ) is independent of
the initial condition u. This means that one would observe
the same rate function �(z) for the marginal distribution
along any axis and not just for P(x, t ). As a consequence
− ln P(x, y, t ) would also be described by the same rate func-
tion �(z) with z =

√
x2 + y2/(v0t ) ∈ (0, 1). This gives the

large deviation form for P(x, y, t ) as announced in Eq. (9)
in the Introduction. The rate function �(z) associated with
P(x, y, t ) is thus the same as in Eq. (41) but with its argument
z ∈ (0, 1). Note that the large deviation form in Eq. (9) not
only contains the probability of extremely large fluctuations
of order r =

√
x2 + y2 ∼ v0t but also the typical fluctuations

where r ∼ √
t . To see this, we note that for r ∼ √

t , the scaled
variable z = r/(v0t ) ∼ O(1/

√
t ) and hence is very small for

large t . Using the quadratic form of �(z) ∼ z2/2 near z = 0
in the small z expansion in Eq. (15) and substituting this in
Eq. (9), one recovers the typical Gaussian fluctuations

P(x, y, t ) ∼ e−(x2+y2 )/4Defft (42)

with Deff = v2
0/(2DR).

We close this discussion with a final remark. We note
that the result for �(z) in Eq. (41) could also have been
derived directly from the result of Kurzthaler et al. in Eq. (12).
However, we presented here an alternative derivation based on
the backward Feynman-Kac approach for two reasons. First,
our result in Eq. (30) is valid for arbitrary initial condition
φ(0) and demonstrates, in particular, how the dependence on
the initial condition disappears at late times, leading to an
isotropic tail of the position distribution P(x, y, t ) in the x-y
plane in Eq. (9), with a rate function that only depends on
the rescaled radial distance z =

√
x2 + y2/(v0t ). Second, we

wanted to develop a single unifying method that is able to
provide explicitly P(x, y, t ) both at early times t � D−1

R [36]
as well as at late times t � D−1

R – our approach based on the
backward Feynman-Kac formalism does exactly that.

B. Numerical measurement of the large deviation function

The dynamics of the ABP is also simulated numerically
to measure the position probability distribution and the large
deviation functions. For measuring the moments and distribu-
tions in the typical regime one can use the standard Euler’s
method where the Langevin equations are discretized as

x(t + dt ) = x(t ) + v0 cos φ(t )dt

y(t + dt ) = y(t ) + v0 sin φ(t )dt

φ(t + dt ) = φ(t ) +
√

2DRdtηφ (t ), (43)

where ηφ (t ), for each t , is an independent random number
drawn from the zero mean unit variance Gaussian distribution.
We start from the fixed initial condition φ(0) = 0, set dt =
10−3 and 10−4, v0 = DR = 1 and measure only the marginal
distribution P(x, t ) for different values of t (for this we do not
need to monitor the y coordinate). Since φ(0) = 0, the average
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value of x is nonzero and is given by [36]

〈x(t )〉 = 〈cos φ(t )〉 = v0

DR
(1 − e−DRt ). (44)

Note that when we monitor P(x, t ) we actually plot it as a
function of x(t ) − 〈x(t )〉.

Using this standard Euler method of integrating the
Langevin equation, we can easily sample 108 realizations.
This limits the smallest probabilities which can be resolved
to be >10−8. To estimate P(x, t ) when its value is much
smaller, e.g., when P ∼ 10−25, we use the importance sam-
pling method. This approach has been successfully used to
extract the tails of distributions with extremely small prob-
abilities in a wide variety of problems [52–62]. The basic
idea behind the importance sampling method is to sample
trajectories (or configurations in general) ending at x(t ) with
an additional exponential tilt e−θx(t ), where θ is an adjustable
parameter. Positive values of θ will bias the trajectories with
very negative x(t ) � −t . Contrarily, negative θ samples tra-
jectories ending near the other limit, i.e., x(t ) � t .

Let P (ω) denote the probability of the trajectory ω =
{xs; 0 � s � t} of the ABP during the time interval [0, t]. The
expectation value of any observable O(ω) is given by

〈O(ω)〉P =
∫

DωP (ω) O(ω). (45)

The presence of the tilt introduces a bias in the trajectory
probabilities,

Q(ω) = P (ω)
e−θx(t )

Zθ

, (46)

where Zθ is the normalization constant which depends only
on θ and t . The expectation value 〈O(ω)〉P can be computed
from this tilted ensemble by reweighing the observable,

〈O(ω)〉P =
∫

DωÕ(ω)Q(ω), (47)

where

Õ(ω) = O(ω)P (ω)

Q(ω)
= eθx(t )Zθ O(ω). (48)

In practice, a trajectory is completely specified by a se-
quence of N = t/dt Gaussian random numbers ηi. In order
to generate trajectories from the biased ensemble we rely on
a Metropolis approach. Starting from an allowed trajectory
ω ending at x(t ) we generate a trial tilted trajectory ω̃ by
modifying a fraction r of the N random numbers ηi’s that
characterize the trajectory ω. The trial trajectory is accepted
with a probability PMet = min{1, e−θ[x̃(t )−x(t )]}, where x̃(t ) de-
notes the ending point of the trial trajectory. The value of
the parameter r is adjusted in order to have PMet ≈ 0.5 in
average.

To measure the distribution P(x, t ) for a wide range of
values of x, we change the value of the parameter θ. In the data
presented in Figs. 4 and 5 we have used θ = ±0.75, ±1.5,
±2.0, and ±2.5. The histogram obtained for each value of
θ is shifted by an unknown amount Zθ . To fix it, we use the
histogram obtained from the standard Euler simulation, which
is correctly normalized and accurate near the origin x = 0
and corresponds to θ = 0. For the smallest negative (positive)

value of θ, we match the histogram obtained from the biased
sampling with the right (left) part of the θ = 0 curve. We
continue the same matching procedure for the subsequent
values of θ to get the full curve P(x, t ).

The marginal distribution P(x, t ) thus obtained for differ-
ent values of t are plotted in Fig. 4(a). As is visible from
this plot, the importance sampling has allowed us to resolve
P(x, t ) near the boundaries x = ±1 to an accuracy smaller
than 10−25 for t = 20. Figure 4(b) shows P(x, t ) plotted as
a function of |x(t ) − 〈x(t )〉| which illustrates that the distribu-
tion becomes symmetric around the mean as t increases.

The large deviation function �(x/v0t ) is extracted
from the P(x, t ) obtained from numerical simulations
following

�(x/v0t ) = − 1

DRt
[log P(x, t ) − log P(0, t )]. (49)

This ensures that �(0) = 0. This is plotted in Fig. 5 for dif-
ferent (large) values of t . The symbols correspond to the data
obtained from numerical simulations and lines correspond
to the asymptotic expansions of the rate function �(z) in
Eq. (15). The agreement between the numerical data and the
analytical curves, near both z = 0 and z = ±1, improves as t
increases, validating our prediction.

The nontrivial behavior of the large deviation function is
one clear sign of “activeness” of ABP at late times. As already
mentioned, another, more direct, way to explore the “active”
regime is to put the ABP in an external potential. In the next
section we investigate the behavior of an ABP in a harmonic
potential.

IV. ABP IN A HARMONIC TRAP

In this section we consider the behavior of an ABP in
the presence of a confining harmonic potential U (x, y) =
μ(x2 + y2)/2. In this case, the Langevin equations governing
the dynamics of the particle become

ẋ = −μx + v0 cos φ(t )

ẏ = −μy + v0 sin φ(t )

φ̇ =
√

2DRηφ (t ). (50)

The ABP in a harmonic trap has been extensively studied
both theoretically and experimentally [24,28,32,42,43,47]. In
a recent experiment, Janus swimmers were confined in a two-
dimensional harmonic-like trap with the use of an acoustic
tweezer and the stationary density was measured by varying
the trap strength [32]. Strong signatures of activity were
observed even in the dilute limit, with a crossover from a
Gaussian-like stationary state, to a strongly active stationary
state, where the particles cluster at the outskirts of the trap.
The dilute limit corresponds to a collection of noninteracting
active Brownian particles (ABP) in a harmonic potential as in
Eq. (50). Numerical studies of this model have also observed
a similar crossover in the stationary state [24,28].

Dynamical behavior of an ABP differs crucially from that
of a PBP, also in the presence of a harmonic potential. For
a “passive” or ordinary Brownian particle, the presence of a
harmonic trap of strength μ sets a relaxational timescale μ−1.

At times t � μ−1, the particle diffuses isotropically and for
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t � μ−1, a Gaussian (Boltzmann) stationary distribution is
reached. As explained before, for an ABP, the coupling to the
rotational diffusion introduces an additional timescale D−1

R ,
where DR is the rotational diffusion constant.

While the activity induced crossover in the stationary po-
sition distribution of an ABP has been studied both experi-
mentally and numerically, the interplay of the two timescales
μ−1 and D−1

R leads to fascinating dynamical features as we
demonstrate below. The physical picture emerging from our
study is summarized in Fig. 6 for D−1

R < μ−1 (upper panel)
and for D−1

R > μ−1 (lower panel). In both cases, at short-times
t � min(D−1

R , μ−1), the presence of the activity gives rise to
strong anisotropy with the particle retaining its initial orienta-
tion (chosen to be along x direction here). In this regime, the
effect of the trap can be neglected and the dynamics reduces
to that of a free ABP. At later times, if D−1

R < μ−1, then the
anisotropy starts to disappear and the ABP undergoes ordinary
diffusion (upper middle panel). Eventually, for t � μ−1 the
probability distribution saturates to a Boltzmann-like form
with a single Gaussian peak at the center of the trap. On the
other hand, for a strongly active system, i.e., when D−1

R > μ−1

the anisotropy persists and the particle starts to accumulate
away from the center of the trap. For t � D−1

R the isotropy is
slowly recovered (lower right panel). The stationary distribu-
tions we obtain in the two limiting cases are in agreement with
the experimental and numerical observations [28,32].

The position distribution Pμ(x, y, t ) can be obtained by
integrating out the orientational degree of freedom from the
full probability density Pμ(x, y, φ, t ):

Pμ(x, y, t ) =
∫

dφPμ(x, y, φ, t ). (51)

Starting from the Langevin equations (50), it is easy to write
down the corresponding Fokker-Planck equation,

∂tPμ(x, y, φ, t ) = ∂

∂x
[(μx − v0 cos φ)Pμ]

+ ∂

∂y
[(μy − v0 sin φ)Pμ] + DR

∂2Pμ

∂φ2
,

(52)

where we have suppressed the argument of Pμ on the right-
hand side for brevity.

In the long-time limit the position distribution Pμ(x, y, t )
converges to a stationary form which is denoted by

Pstat(x, y) = Pμ(x, y, t → ∞). (53)

Unfortunately, the Fokker-Planck equation (52) is hard to
solve, even for the stationary state. Very recently, in Ref. [42],
the same Langevin equation (50) was studied but in the
presence of an additive translational noise in the x and y
directions with a nonzero translational diffusion constant DT .
The stationary distribution Pstat(x, y) was computed from the
associated Fokker-Planck equation as a power-series expan-
sion in terms of the parameter λ = v0/

√
DRDT . However, this

result cannot be easily extrapolated to the case DT = 0, where
λ → ∞ (except in the strongly passive case where DR → ∞
limit is taken first). This is because, in general, the two limits
do not commute: (i) First DT → 0 and then t → ∞ and (ii)

first t → ∞ with finite DT and then DT → 0. While we are
interested in limit (i), Ref. [42] studied mostly the limit (ii).

Here we follow a different approach that involves deriving
and solving an exact recursion relation satisfied by the mo-
ments of the position. A similar method involving recursion
of moments was studied by Gredat, Dornic, and Luck (GDL)
in Ref. [63] in the context of a reaction diffusion equation.
In their problem, GDL were interested in the (imaginary)
exponential functional of a Brownian motion with a nonzero
drift. Here we adapt their approach to our ABP problem in
a harmonic trap. Our recursion relation, though formally ap-
pears deceptively similar to that of GDL, the slight difference
actually leads to very different physics and results. Indeed, in
Appendix C we will discuss in detail the differences between
the two recursion relations.

It is first convenient to recast the Langevin equations (50)
in terms of a complex coordinate z = x + iy. Our goal is to
evaluate the moments of the type

Mk,l (t ) = 〈zk (t )z̄l (t )〉, (54)

where z̄(t ) = x(t ) − iy(t ) is the complex conjugate of z. From
Eq. (50) it immediately follows that z(t ) evolves according to

ż = −μz + v0eiφ(t ), (55)

which can be formally solved to get

z(t ) = v0

∫ t

0
dse−μ(t−s)eiφ(s). (56)

We assume that the particle starts initially at the origin x =
y = 0 with φ(0) = 0. In principle, one can use Eq. (56) and
the Gaussian property of the process φ(s) to express Mk,l (t )
as a (k + l )-fold multiple integral. However, evaluating this
multiple integral explicitly seems very hard. Instead, we will
derive below an exact recursion relation for the moments
Mk,l (t ).

To proceed further, it is useful to discretize the continuous-
time expression of Eq. (56) in a discrete-time setting. We
imagine that the interval [0, t] consists of n discrete intervals
each of length ε > 0, such that t = nε. We then split the time
interval [0, t] in the integral in Eq. (56) into two separate
intervals [0, ε] and [ε, t]. This gives

z(t ) = v0

[∫ ε

0
e−μ(t−s)+iφ(s) ds +

∫ t

ε

e−μ(t−s)+iφ(s) ds

]
. (57)

The first integral, to leading order in ε, gives e−μ tε, where we
used φ(0) = 0. In the second integral, we make a change of
variable s = ε + τ and rewrite it as

∫ t−ε

0 e−μ(t−ε−τ )+iφ(ε+τ )dτ .
Next we write φ(ε + τ ) = φ(ε + τ ) − φ(ε) + φ(ε), i.e., add
and subtract φ(ε). Putting this together, we get

z(t ) ≈ v0

[
e−μtε + eiφ(ε)

∫ t−ε

0
e−μ(t−ε−τ )+iφ̃(τ )dτ

]
, (58)

where

φ̃(τ ) = φ(ε + τ ) − φ(ε). (59)

Now we will use the crucial property that φ̃(τ ) is also a
Brownian motion starting at φ̃(0) = 0 and with correlation
function 〈φ̃(t1)φ̃(t2)〉 = 2DR min(t1, t2). Importantly, the sta-
tistical properties of φ̃(τ ) do not depend on ε. In other words,
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one can write a statistical identity in law

φ̃(τ ) ≡ φ(τ ), (60)

where ≡ means that the right-hand side and left-hand side
have identical distributions. Consequently, using this identity
(60) and the definition of z(t ) in Eq. (56), one gets∫ t−ε

0
e−μ(t−ε−τ )+iφ̃(τ )dτ ≡ z(t − ε). (61)

Hence, (58) provides us with a statistical identity,

z(t ) ≡ v0 ε e−μt + eiφ(ε)z(t − ε). (62)

Denoting zn = z(t = nε) in the discrete-time setting, we then
obtain a statistical recursion relation

zn ≡ v0 ε e−μnε + ηn zn−1, (63)

where ηn = eiφ(ε) is an effective noise, independent of zn−1.
The complex conjugate z̄n also satisfies a similar relation,

z̄n = v0 ε e−με + η̄n z̄n−1, (64)

where η̄n is the complex conjugate of ηn. Using the Gaussian
property of φ(s), one can easily evaluate the moments of the
noise ηn. For instance, one gets 〈ηn〉 = e−εDR and correlation
〈ηk

n η̄l
n〉 = e−εDR (k−l )2

.

Using Equations (63) and (64) one can now derive a
recursion relation for the discrete-time version of the moment
Mk,l (n) = 〈zk

nz̄l
n〉. We take zk

n in Eq. (63) and z̄l
n in Eq. (64),

multiply them, and then take the expectation value with re-
spect to the noise ηn. We use the independence of ηn and zn−1

and the known moments of the noise ηn and then expand in
powers of ε. Keeping terms only up to order O(ε), we get

Mk,l (n) � [1 − εDR(k − l )2]Mk,l (n − 1)

+ v0εe−μnε[kMk−1,l (n − 1) + lMk,l−1(n − 1)].

(65)

Taking the continuous-time limit ε → 0 and replacing
[Mk,l (n) − Mk,l (n − 1)]/ε by the time derivative dMk,l/dt we
arrive at the exact recursion relation

Ṁk,l = −DR(k − l )2Mk,l + v0e−μt [kMk−1,l + lMk,l−1],
(66)

with the conditions M0,0(t ) = 1 at all times and Mk,l (0) = 0
for k, l > 0. We also use the convention Mk,l (t ) = 0 for k, l <

0. It is easy to check that Mk,l (t ) = Ml,k (t ). Equation (66)
allows us to compute the moments explicitly in a recursive
fashion (see Appendix D for the first few values of k, l).

Note that, since the right-hand side is explicitly time
dependent, it is not possible to obtain the stationary state
by simply equating Ṁk,l to zero; rather, one has to find the
full time-dependent solution and then take long-time limit
to find the same. It turns out that this can be done in the
two limiting cases, DR → ∞ (strongly passive) and DR → 0
(strongly active) which are discussed in details below.

A. Strongly passive limit (DR → ∞)

To solve the moment evolution Eq. (66) in the limit of
DR → ∞ we inspect the large DR behavior of the first few
moments presented in Eq. (D4) in Appendix D. It turns out

that these quantities, to the leading order in D−1
R , are of the

form

Mk,l (t ) � vk+l
0 k!

[(k − l )!]2

(
e−μt

DR

)k(eμt − e−μt

μ

)l

, k � l.

(67)
Indeed, substituting this ansatz in the recursion relation (66),
it can be verified that Eq. (66) is indeed satisfied by Eq. (67) to
leading order for large DR. Note that this leading-order result
for Mk,l (t ) in Eq. (67) is actually valid for all time t , including
t = 0.

To extract further information, we consider the diagonal
moments Mk,k (t ) = 〈[z(t )z̄(t )]k〉. Using z(t )z̄(t ) = x2(t ) +
y2(t ) = r2(t ), the diagonal element Mk,k (t ) = 〈r2k (t )〉 is pre-
cisely the 2kth radial moment of the full distribution. This
radial moment is given by

〈r2k (t )〉 =
∫ ∞

0
r2k+1 Prad(r, t ) dr, (68)

where Prad(r, t ) is the marginal radial distribution,

Prad(r, t ) =
∫ 2π

0
Pμ(r, θ, t ) dθ. (69)

Here Pμ(r, θ, t ) denotes the position probability in the radial
coordinates and is equivalent to Pμ(x, y, t ) [64]. Setting l = k
in Eq. (67) we then get

〈r2k (t )〉 = Mk,k (t ) � �(k + 1)

[
v2

0

μDR
(1 − e−2μt )

]k

. (70)

Anticipating a Gaussian behavior for the radial distribution,
we make the ansatz, and check a posteriori that Prad(r, t ) has
the form Prad(r, t ) = A(t ) e−B(t )r2

. Substituting this ansatz in
Eq. (68) and comparing to the result in (67), we see that

A(t ) = 2B(t ), B(t ) = μDR

v2
0 (1 − e−2μt )

. (71)

Finally, this gives

Prad(r, t ) � 2 μDR

v2
0 (1 − e−2μt )

exp

[
− μDRr2

v2
0 (1 − e−2μt )

]
. (72)

Note that this solution is valid at all times t . In particular, at
early times, when D−1

R � t � μ−1 the solution in Eq. (72)
corresponds to free isotropic diffusion with a diffusion con-
stant Deff = v2

0/2DR. This scenario corresponds to the upper
middle panel in Fig. 6. In contrast, when t � μ−1, the radial
distribution (72) approaches a stationary form.

Moreover, from Eq. (67) it follows that for k �= l, Mk,l (t )
decays exponentially with time and vanishes in the long-time
limit. This indicates that the distribution quickly loses the
anisotropy and the stationary distribution becomes radially
symmetric. Consequently, the stationary position distribution
in Eq. (53) is given by

Pstat(x, y) = 1

2π
Prad(r, t → ∞). (73)

Using Eq. (72), one gets the expected Boltzmann distribution

Pstat(x, y) = μDR

πv2
0

exp

[
−μDR(x2 + y2)

v2
0

]
, (74)
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FIG. 7. Stationary distribution Pstat(x, y) of an ABP in a harmonic trap for different values of DR = 0.1 (left), DR = 1.0 (center), and
DR = 10.0 (right). The left and middle panels show the delocalized state where the particle is most likely to be accumulated away from the
center. The right panel corresponds to the passive limit where the stationary distribution is Gaussian. Here the trap stiffness μ = 1.0 and
v0 = 1.0.

with an effective temperature Teff = v2
0/2DR = Deff, in full

agreement with the experimental observation [32].

B. Strongly active limit (DR = 0)

In this case, the first term on the right-hand side of Eq. (66)
drops out and it can be checked that

Mk,l (t ) =
[
v0

μ
(1 − e−μt )

]k+l

(75)

solves the resulting equation at all times t . Again, setting l = k
in (75) the time-dependent radial moments are given by

〈r2k (t )〉 = Mk,k (t ) =
[
v0

μ
(1 − e−μt )

]2k

. (76)

Comparing Eq. (68) with Eq. (76) gives the time-dependent
marginal radial distribution,

Prad(r, t ) = μ

v0(1 − e−μt )
δ

[
r − v0(1 − e−μt )

μ

]
. (77)

Note, however, that strictly for DR = 0, the position distribu-
tion P(x, y, t ) is not radially symmetric. Indeed, in this case,
the Langevin equation (1) in the main text reduces to a pair of
deterministic equations:

ẋ = −μx + v0 and ẏ = −μy, (78)

with initial conditions x(0) = y(0) = 0. Solving these equa-
tions give x(t ) = (v0/μ)(1 − e−μ t ) and y(t ) = 0. Conse-
quently, the position distribution function is given by

Pμ(x, y, t ) = δ

[
x − v0(1 − e−μt )

μ

]
δ(y). (79)

One can check that the moment Mk,l (t ) computed with
this distribution is indeed given by (75). Moreover, the ra-
dial marginal distribution Prad(r, t ) computed from this two-
dimensional distribution is indeed given by (77).

Thus strictly for DR = 0 the position distribution in the 2D
plane is highly anisotropic. This is true even in the t → ∞
limit, where we see from Eq. (75) that

Mk,l (t → ∞) =
(

v0

μ

)k+l

for all k, l. (80)

Thus, the off-diagonal elements remain nonzero as t → ∞,
indicating the presence of anisotropy in the stationary state.

However, for any finite DR > 0, the rotational diffusion
spreads the particle position uniformly over the angle [0, 2π ].
Consequently, in the long-time limit and DR → 0+, the po-
sition distribution approaches a stationary form that is fully
isotropic in the 2D plane. Indeed, from the exact expression
for the moments in (D4), it is easy to verify that, for DR → 0+,
the off-diagonal elements decay as Mk,l (t ) ∼ e−DR (k−l )2 t at
late times for k �= l . In particular, for t � D−1

R , Mk,l (t ) →
0 for k �= l . In contrast, the diagonal elements approach to
nonzero values as t → ∞. More precisely, we find

Mk,k (t → ∞) →
(

v0

μ

)2k

Mk,l (t → ∞) → 0, k �= l. (81)

Note the difference with the strictly DR = 0 case in Eq. (80).
Consequently, in this DR → 0+ limit, for t � D−1

R , it follows
from Eq. (81) that the position distribution approaches an
isotropic form in the stationary limit and is given by

Pstat(x, y) = μ

2πv0
δ

[√
x2 + y2 − v0

μ

]
, (82)

where the particle is strongly confined at the boundary of the
trap rb = v0/μ. This non-Boltzmann distribution results from
the strongly active nature of the dynamics.

Figure 7 shows the stationary distribution Pstat(x, y) in the
(x, y) plane obtained from simulations, for different DR. As
DR decreases, the stationary distribution shows a crossover
from the passive regime, with a single-peaked Gaussian
around r = 0, to the active regime, with a delocalized state
where the particle is confined around a narrow ring away from
the origin at rb = v0/μ.

V. CONCLUSION

To summarize, this paper has two parts. In the first part,
we have studied the late-time dynamics of a free ABP in two
dimensions, focusing on the position distribution P(x, y, t ).
We have showed that while the typical fluctuations are de-
scribed by a Gaussian distribution as expected from the
central limit theorem, large fluctuations, where

√
x2 + y2 ∼

O(v0t ), are described by non-Gaussian tails. These rare
fluctuations capture the signature of “activity” even at late
times t . In this regime we have showed that P(x, y, t ) admits
a large deviation form P(x, y, t ) ∼ exp [−DRt�(z)], where

062116-11



BASU, MAJUMDAR, ROSSO, AND SCHEHR PHYSICAL REVIEW E 100, 062116 (2019)

z =
√

x2 + y2/(v0t ). We have computed the rate function
�(z) both analytically and numerically.

Another way to observe the fingerprints of activity in the
position distribution at late times is to switch on an external
harmonic potential with stiffness μ. In this case the position
distribution approaches a stationary form at late times and
the stationary distribution Pstat(x, y) depends explicitly on the
activity parameter D−1

R . We compute the stationary distribu-
tion explicitly in the two opposite limits: (i) strongly active
(DR → 0) and (ii) strongly passive (DR → ∞). In the former
case the distribution is ring shaped with ring radius r = v0/μ,
while in the latter case it is a Gaussian centered at the origin.
As DR increases the shape of the distribution smoothly crosses
over from the ring shape to the Gaussian shape. This is
in agreement with the results seen in experiments [32] and
simulations [24,28].

We find it remarkable that even for this simplest ABP
model (free or harmonically confined) the position distribu-
tion P(x, y, t ) cannot be computed exactly at all times in the
real space. At least in this paper we managed to compute
analytically the large deviation function that describes the
atypical fluctuations at late times for the free ABP.

Another well-studied model for active particle is the so
called run-and-tumble particle (RTP) where a particle chooses
an angle at random and moves with a constant speed v0 in
that direction during a random interval of flight time τ , drawn
from a distribution p(τ ). At the end of each flight, the particle
chooses a new random direction and a random flight time and
the process continues. This describes typically the movement
of Escherichia coli bacteria. When the interval distribution
p(τ ) = δ(τ − τ0), corresponding to a constant flight length
during each run, the process is known as Pearson’s random
walk [65–67]. On the other hand, if p(τ ) = γ e−γ τ , then this
is called the persistent random walk [68]. For the persistent
random walk, with an exponential flight-time distribution, the
Fourier transform of the position distribution function f (�k, t )
at time t has been computed explicitly in d = 2 in Ref. [23]
and more recently for d = 1, 2, 3 in Ref. [25]. However, to
the best of our knowledge, the large deviation function has
not been extracted from these Fourier transforms. It would be
interesting to compute the large deviation function �RTP(z)
for the RTP in d = 2 and compare it to the �(z) for the ABP
computed in this paper. For the Pearson’s case, one has to
consider a discrete time n (the number of flights) and calculate
the associated large deviation function �Pearson(z). To the best
of our knowledge, this also has not been done explicitly
and it would be interesting to compare this to the ABP. We
expect, on general grounds, that this large deviation function is
nonuniversal and varies from model to model. However, in all
these models, we expect that the large deviation function will
carry the signature of activity, as demonstrated in this paper
for the ABP model.

There are many other interesting open questions related
to our work. For example, it would be interesting to study
the dynamics of an ABP in higher dimensions and derive the
associated rate function �(z). In this paper we have focused
on a single ABP—it would be interesting to derive the large
deviation function associated with the late-time density profile
of a gas of interacting ABP’s. Finally, in the presence of a
confining potential, we have studied the stationary state in the

case of an isotropic harmonic trap. It would be interesting to
study the position distribution of an ABP in an anisotropic
harmonic trap, or more generally for anharmonic traps, in two
or higher dimensions.
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APPENDIX A: EXACT SOLUTION OF MATHIEU
EIGENFUNCTIONS

As explained in Sec. III, we are interested only in the π -
periodic even solutions of the Mathieu equation,

ce′′
2n(v, q) + [a2n(q) − 2q cos 2v]ce2n(v, q) = 0, (A1)

where a2n(q) are the associated eigenvalues. To calculate
the moments and the large deviation function we only need
the lowest eigenvalue. The series expansion of that lowest
eigenvalue a0(q) is known for both in the small-q and large-q
limits. For small q,

a0(q) =
∞∑

n=1

α2nq2n. (A2)

The first few coefficients are quoted here (see, e.g., Ref. [69]),

α2 = − 1
2 , α4 = 7

128 ,

α6 = − 29
2304 , α8 = 68687

18874368 , · · · . (A3)

On the other hand, in the large-q limit, the expansion is given
by (see, e.g., Ref. [69])

a0(q) =
∞∑

n=0

βnq1− n
2 , (A4)

where

β0 = −2, β1 = 2, β2 = − 1
4 ,

β3 = − 1
32 , β4 = − 3

256 , β5 = − 53
8192 · · · . (A5)

APPENDIX B: SYSTEMATIC DETERMINATION OF �(z)

Equation (13) in the main text relates the large deviation
function �(z) to the eigenvalue a0 through a Legendre trans-
form,

min
−1�z�1

[
p

DR
z + �(z)

]
= 1

4
a0

(
2p

DR

)
. (B1)
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The large deviation function can be extracted from the inverse
transform,

�(z) = max
h∈R

[
1
4 a0(2h) − hz

]
, (B2)

where we have defined h = p/DR. The large deviation func-
tion is then given by

�(z) = 1
4 a0[2h∗(z)] − z h∗(z), (B3)

where h∗(z) is the value of h corresponding to the maximum
of the function gz(h) = 1

4 a0(2h) − z h and can be obtained by
setting its derivative to zero, i.e., by solving

1

4

d

dh
a0(2h) = z. (B4)

As a0(2h) is known as the sum of an infinite series in h
[see Eqs. (A2)–(A4)], it is best to solve the above equation
recursively. It is easy to see that for small values of z, h∗ is
also small while for z → ±1, the maximum occurs at large
values of h∗ [70]. It is then convenient to use Eq. (A2) [respec-
tively, Eq. (A4)] for finding h∗(z) near z = 0 (respectively,
near z = ±1).

Let us first look at the case z ≈ 0. In this case, using the
series (A2), Eq. (B4) becomes

1

2

∞∑
n=1

α2nn22n(h∗)2n−1 = z. (B5)

In the following we solve this equation recursively to system-
atically determine �(z) as a series in z. To the lowest order,
i.e., keeping the term linear in h only, we have

2α2h∗ = z, (B6)

which, using the value of α2 [see Eq. (A3)] yields h∗ = −z.
This value of h∗, substituted in Eq. (B3), and keeping the
lowest-order term again, gives

�(z) ≈ 1
2 z2. (B7)

Equation (B7) implies that, close to the origin z = 0, in the
long-time limit, the position distribution is Gaussian. The
higher-order corrections can also be systematically calculated
in a recursive manner.

Since both �(z) and a0(2h) are even functions of their
arguments, it is easy to see that h∗ must be an odd function
of z, and we can write a series expansion,

h∗(z) =
∞∑

m=1,3,···
cmzm. (B8)

Substituting this form in Eq. (B5), and then comparing co-
efficients of powers of z on both sides, one can solve for
the cm recursively. Clearly, c1 = −1, as we have explicitly
shown above. The next few coefficients are computed using
Mathematica as follows:

c3 = − 7
8 , c5 = − 209

192 , c7 = − 53231
294912 . (B9)

Using these coefficients and substituting Eq. (B8) in Eq. (B3)
one can construct �(z) as a series expansion in z, which is
given in Eq. (15) in the main text.

The behavior of �(z) near the boundaries z = ±1 can
also be extracted in a similar manner. As �(z) is an even

function of z, it suffices to compute it near one boundary, say,
z = −1. We follow the same procedure as traced above but
use Eq. (A4) for a0. Accordingly, Eq. (B5) becomes

∞∑
n=0

βn

21+ n
2

(
1 − n

2

)
(h∗)−

n
2 = z, (B10)

which we solve order by order to find h∗(z).
To the lowest order, we have

β0 + β1

23/2
√

h∗ = 2z, (B11)

which, after substituting the values of β0 and β1, yields h∗ =
1/8(1 + z)2. Using this value of h∗ in Eq. (B3), we get, near
z = −1,

�(z) ≈ 1

8(1 + z)
. (B12)

The higher-order corrections are systematically obtained by
assuming a series expansion for h∗,

h∗(z) =
∞∑

n=−2

bn(1 + z)n, (B13)

where b−2 = 1/8, as shown above. The coeffcients bn for n >

−2 can be obtained by substituting Eq. (B13) into Eq. (B11)
and equating coefficients of powers of 1 + z on both sides.
This exercise gives

b−1 = 0, b0 = 1
64 , b1 = 3

128 . (B14)

The large deviation function �(z) near z = −1 is then ob-
tained using Eq. (B13) in Eq. (B3) and is given by

�(z) = 1

8(1 + z)
− 1

16
− (1 + z)

64

− 3

256
(1 + z)2 − 51

4096
(1 + z)3 + · · · . (B15)

Using the symmetry of �(z), its behavior near z = 1 can
be obtained from the above equation by substituing z → −z.
This is quoted in the main text in the second line of Eq. (15).

APPENDIX C: CONNECTION TO GDL

In Ref. [63] GDL were interested in the imaginary ex-
ponential functional of a Brownian motion and studied an
effective process given by

zGDL(t ) = v0

∫ t

0
e−μs+iφ(s) ds. (C1)

The two processes, z(t ) in (56) and zGDL(t ) in (C1), look
deceptively similar. However, it turns out that they have rather
different properties and in fact the recursion relation for the
moments turn out to be rather different.

A recursion relation for the discretized version of zGDL(t )
can be derived following a scheme similar to the one used for
z(t ) in the main text, and yields [63]

zGDL
n ≡ v0 ε + e−με ηn zGDL

n−1 , (C2)

which is manifestly different from our recursion relation (63).
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Correspondingly, the recursion relation for the moments
M̃k,l (t ) = MGDL

k,l (t ) in the GDL case also turns out to be very
different [63],

d

dt
M̃k,l = −[μ(k + l ) + DR(k − l )2] M̃k,l

+ v0(k M̃k−1,l + l M̃k,l−1). (C3)
Note that there is no explicit time dependence on the right-
hand side of this equation (C2) and the moments in the station-
ary state can be simply obtained by setting the time derivative
to be zero on the left-hand side of (C2). As mentioned above,
the situation in our case is completely different.

APPENDIX D: SOLUTION OF THE MOMENT RECURSION
RELATION

The moments Mk,l (t ) evolve according to

Ṁk,l = −DR(k − l )2Mk,l

+ v0e−μt [kMk−1,l + lMk,l−1]. (D1)

We can think of (k, l ) as the grid points on the 2D lattice with
k, l � 0. We note that by definition M0,0(t ) = 1 at all times t .
As a result, it is easy to see from the recursion relation (D1)
that the solution Mk,l (t ) is symmetric under exchange of k and
l , i.e.,

Mk,l (t ) = Ml,k (t ). (D2)

Hence, it is sufficient to study Mk,l (t ) only for k � l . The
recursion relations for the first few values of k and l read, for
instance (with the convention that Mk,l (t ) = 0 for k, l < 0),

Ṁ1,0(t ) = −DRM1,0(t ) + v0e−μt M0,0(t )

Ṁ1,1(t ) = 2v0e−μt M1,0(t )

Ṁ2,0(t ) = −4DRM2,0(t ) + 2v0e−μt M1,0(t ), (D3)

and so on. These equations can be solved recursively, i.e.,
using the solution of the previous equation. The solution
of these first few moments can be written explicitly at all
times t ,

M1,0(t ) = v0(e−μt − e−DRt )

DR − μ

M1,1(t ) = v2
0

(DR − μ)

[
1 − e−2μt

μ
− 2(1 − e−(DR+μ)t )

DR + μ

]

M2,0(t ) = v2
0[(3DR − μ)e−2μt − 2(2DR − μ)e−(DR+μ)t + (DR − μ)e−4DRt ]

(DR − μ)(2DR − μ)(3DR − μ)
. (D4)

As we see, the solutions quickly become long and cumbersome as k and l increase. Fortunately, Eq. (D1) can be solved exactly
to find Mk,l (t ) for all k and l in the two limiting cases (DR → ∞ and DR = 0) which is done in the main text.

[1] P. Romanczuk, M. Bär, W. Ebeling, B. Lindner, and L.
Schimansky-Geier, Eur. Phys. J. Spec. Top. 202, 1 (2012).

[2] M. C. Marchetti, J. F. Joanny, S. Ramaswamy, T. B. Liverpool,
J. Prost, M. Rao, and R. A. Simha, Rev. Mod. Phys. 85, 1143
(2013).

[3] C. Bechinger, R. Di Leonardo, H. Löwen, C. Reichhardt,
G. Volpe, and G. Volpe, Rev. Mod. Phys. 88, 045006
(2016).

[4] S. Ramaswamy, J. Stat. Mech. (2017) 054002.
[5] É. Fodor and M. C. Marchetti, Physica A 504, 106 (2018).
[6] H. C. Berg, E. Coli in Motion (Springer-Verlag, Heidelberg,

2004).
[7] M. E. Cates, Rep. Prog. Phys. 75, 042601 (2012).
[8] X. Trepat, M. R. Wasserman, T. E. Angelini, E. Millet, D. A.

Weitz, J. P. Butler, and J. J. Fredberg, Nat. Phys. 5, 426 (2009).
[9] T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and O. Shochet,

Phys. Rev. Lett. 75, 1226 (1995).
[10] S. Hubbard, P. Babak, S. Th. Sigurdsson, and K. G. Magnússon,

Ecol. Model. 174, 359 (2004).
[11] D. L. Blair, T. Neicu, and A. Kudrolli, Phys. Rev. E 67, 031303

(2003).
[12] L. Walsh, C. G. Wagner, S. Schlossberg, C. Olson, A. Baskaran,

and N. Menon, Soft Matter 13, 8964 (2017).

[13] J. Palacci, S. Sacanna, A. P. Steinberg, D. J. Pine, and P. M.
Chaikin, Science 339, 936 (2013).

[14] J. Toner, Y. Tu, and S. Ramaswamy, Ann. Phys. 318, 170
(2005).

[15] N. Kumar, H. Soni, S. Ramaswamy, and A. K. Sood, Nat.
Commun. 5, 4688 (2014).

[16] Y. Fily and M. C. Marchetti, Phys. Rev. Lett. 108, 235702
(2012).

[17] A. B. Slowman, M. R. Evans, and R. A. Blythe, Phys. Rev. Lett.
116, 218101 (2016).

[18] A. B. Slowman, M. R. Evans, and R. A. Blythe, J. Phys. A:
Math. Theor. 50, 375601 (2017).

[19] J. Schwarz-Linek, C. Valeriani, A. Cacciuto, M. E. Cates, D.
Marenduzzo, A. N. Morozov, and W. C. K. Poon, Proc. Natl.
Acad. Sci. USA 109, 4052 (2012).

[20] G. S. Redner, M. F. Hagan, and A. Baskaran, Phys. Rev. Lett.
110, 055701 (2013).

[21] J. Stenhammar, R. Wittkowski, D. Marenduzzo, and M. E.
Cates, Phys. Rev. Lett. 114, 018301 (2015).

[22] A. P. Solon, Y. Fily, A. Baskaran, M. E. Cates, Y. Kafri, M.
Kardar, and J. Tailleur, Nat. Phys. 11, 673 (2015).

[23] W. Stadje, J. Stat. Phys. 46, 207 (1987).
[24] A. Pototsky and H. Stark, Europhys. Lett. 98, 50004 (2012).

062116-14

https://doi.org/10.1140/epjst/e2012-01529-y
https://doi.org/10.1140/epjst/e2012-01529-y
https://doi.org/10.1140/epjst/e2012-01529-y
https://doi.org/10.1140/epjst/e2012-01529-y
https://doi.org/10.1103/RevModPhys.85.1143
https://doi.org/10.1103/RevModPhys.85.1143
https://doi.org/10.1103/RevModPhys.85.1143
https://doi.org/10.1103/RevModPhys.85.1143
https://doi.org/10.1103/RevModPhys.88.045006
https://doi.org/10.1103/RevModPhys.88.045006
https://doi.org/10.1103/RevModPhys.88.045006
https://doi.org/10.1103/RevModPhys.88.045006
https://doi.org/10.1088/1742-5468/aa6bc5
https://doi.org/10.1088/1742-5468/aa6bc5
https://doi.org/10.1088/1742-5468/aa6bc5
https://doi.org/10.1016/j.physa.2017.12.137
https://doi.org/10.1016/j.physa.2017.12.137
https://doi.org/10.1016/j.physa.2017.12.137
https://doi.org/10.1016/j.physa.2017.12.137
https://doi.org/10.1088/0034-4885/75/4/042601
https://doi.org/10.1088/0034-4885/75/4/042601
https://doi.org/10.1088/0034-4885/75/4/042601
https://doi.org/10.1088/0034-4885/75/4/042601
https://doi.org/10.1038/nphys1269
https://doi.org/10.1038/nphys1269
https://doi.org/10.1038/nphys1269
https://doi.org/10.1038/nphys1269
https://doi.org/10.1103/PhysRevLett.75.1226
https://doi.org/10.1103/PhysRevLett.75.1226
https://doi.org/10.1103/PhysRevLett.75.1226
https://doi.org/10.1103/PhysRevLett.75.1226
https://doi.org/10.1016/j.ecolmodel.2003.06.006
https://doi.org/10.1016/j.ecolmodel.2003.06.006
https://doi.org/10.1016/j.ecolmodel.2003.06.006
https://doi.org/10.1016/j.ecolmodel.2003.06.006
https://doi.org/10.1103/PhysRevE.67.031303
https://doi.org/10.1103/PhysRevE.67.031303
https://doi.org/10.1103/PhysRevE.67.031303
https://doi.org/10.1103/PhysRevE.67.031303
https://doi.org/10.1039/C7SM01206C
https://doi.org/10.1039/C7SM01206C
https://doi.org/10.1039/C7SM01206C
https://doi.org/10.1039/C7SM01206C
https://doi.org/10.1126/science.1230020
https://doi.org/10.1126/science.1230020
https://doi.org/10.1126/science.1230020
https://doi.org/10.1126/science.1230020
https://doi.org/10.1016/j.aop.2005.04.011
https://doi.org/10.1016/j.aop.2005.04.011
https://doi.org/10.1016/j.aop.2005.04.011
https://doi.org/10.1016/j.aop.2005.04.011
https://doi.org/10.1038/ncomms5688
https://doi.org/10.1038/ncomms5688
https://doi.org/10.1038/ncomms5688
https://doi.org/10.1038/ncomms5688
https://doi.org/10.1103/PhysRevLett.108.235702
https://doi.org/10.1103/PhysRevLett.108.235702
https://doi.org/10.1103/PhysRevLett.108.235702
https://doi.org/10.1103/PhysRevLett.108.235702
https://doi.org/10.1103/PhysRevLett.116.218101
https://doi.org/10.1103/PhysRevLett.116.218101
https://doi.org/10.1103/PhysRevLett.116.218101
https://doi.org/10.1103/PhysRevLett.116.218101
https://doi.org/10.1088/1751-8121/aa80af
https://doi.org/10.1088/1751-8121/aa80af
https://doi.org/10.1088/1751-8121/aa80af
https://doi.org/10.1088/1751-8121/aa80af
https://doi.org/10.1073/pnas.1116334109
https://doi.org/10.1073/pnas.1116334109
https://doi.org/10.1073/pnas.1116334109
https://doi.org/10.1073/pnas.1116334109
https://doi.org/10.1103/PhysRevLett.110.055701
https://doi.org/10.1103/PhysRevLett.110.055701
https://doi.org/10.1103/PhysRevLett.110.055701
https://doi.org/10.1103/PhysRevLett.110.055701
https://doi.org/10.1103/PhysRevLett.114.018301
https://doi.org/10.1103/PhysRevLett.114.018301
https://doi.org/10.1103/PhysRevLett.114.018301
https://doi.org/10.1103/PhysRevLett.114.018301
https://doi.org/10.1038/nphys3377
https://doi.org/10.1038/nphys3377
https://doi.org/10.1038/nphys3377
https://doi.org/10.1038/nphys3377
https://doi.org/10.1007/BF01010341
https://doi.org/10.1007/BF01010341
https://doi.org/10.1007/BF01010341
https://doi.org/10.1007/BF01010341
https://doi.org/10.1209/0295-5075/98/50004
https://doi.org/10.1209/0295-5075/98/50004
https://doi.org/10.1209/0295-5075/98/50004
https://doi.org/10.1209/0295-5075/98/50004


LONG-TIME POSITION DISTRIBUTION OF AN ACTIVE … PHYSICAL REVIEW E 100, 062116 (2019)

[25] K. Martens, L. Angelani, R. Di Leonardo, and L. Bocquet, Eur.
Phys. J. E 35, 84 (2012).

[26] L. Angelani, R. Di Lionardo, and M. Paoluzzi, Euro. J. Phys. E
37, 59 (2014).

[27] F. J. Sevilla and L. A. Gómez Nava, Phys. Rev. E 90, 022130
(2014).

[28] A. P. Solon, M. E. Cates, and J. Tailleur, Eur. Phys. J. Spec. Top.
224, 1231 (2015).

[29] J. Elgeti and G. Gompper, Europhys. Lett. 109, 58003 (2015).
[30] L. Angelani, J. Phys. A: Math. Theor. 48, 495003 (2015).
[31] P. Pietzonka, K. Kleinbeck, and U. Seifert, New J. Phys. 18,

052001 (2016).
[32] S. C. Takatori, R. De Dier, J. Vermant, and J. F. Brady, Nat.

Commun. 7, 10694 (2016).
[33] L. Angelani, J. Phys. A: Math. Theor. 50, 325601 (2017).
[34] K. Malakar, V. Jemseena, A. Kundu, K. Vijay Kumar, S.

Sabhapandit, S. N. Majumdar, S. Redner, and A. Dhar, J. Stat.
Mech. (2018) 043215.

[35] T. Demaerel and C. Maes, Phys. Rev. E 97, 032604 (2018).
[36] U. Basu, S. N. Majumdar, A. Rosso, and G. Schehr, Phys. Rev.

E 98, 062121 (2018).
[37] C. Kurzthaler, C. Devailly, J. Arlt, T. Franosch, W. C. K. Poon,

V. A. Martinez, and A. T. Brown, Phys. Rev. Lett. 121, 078001
(2018).

[38] T. GrandPre and D. T. Limmer, Phys. Rev. E 98, 060601(R)
(2018).

[39] M. R. Evans and S. N. Majumdar, J. Phys. A: Math. Theor. 51,
475003 (2018).

[40] A. Dhar, A. Kundu, S. N. Majumdar, S. Sabhapandit, and G.
Schehr, Phys. Rev. E 99, 032132 (2019).

[41] G. Gradenigo and S. N. Majumdar, J. Stat. Mech. (2019)
053206.

[42] K. Malakar, A. Das, A. Kundu, K. Vijay Kumar, and A. Dhar,
arXiv:1902.04171.

[43] O. Dauchot and V. Démery, Phys. Rev. Lett. 122, 068002
(2019).

[44] P. Le Doussal, S. N. Majumdar, and G. Schehr, Phys. Rev. E
100, 012113 (2019).

[45] P. Singh and A. Kundu, J. Stat. Mech. (2019) 083205.
[46] F. J. Sevilla, A. V. Arzola, and E. P. Cital, Phys. Rev. E 99,

012145 (2019).
[47] L. Caprini, E. Hernàndez-Garca, C. Lòpez, and U. M. B.

Marconi, Sci. Rep. 9, 16687 (2019).

[48] D. Mumford, Elastica and computer vision, in Algebraic Geom-
etry and Its Applications, edited by C. L. Bajaj (Springer, New
York, 1994).

[49] S. N. Majumdar, Curr. Sci. 89, 2076 (2005).
[50] M. Abramowitz and I. A. Stegun (Eds.), Handbook of Mathe-

matical Functions with Formulas, Graphs, and Mathematical
Tables, 9th ed. (Dover, New York, 1972), p. 928.

[51] J. L. Lebowitz and H. Spohn, J. Stat. Phys. 95, 333 (1999).
[52] A. K. Hartmann, Phys. Rev. E 65, 056102 (2002).
[53] A. K. Hartmann, Eur. Phys. J. B 84, 627 (2011).
[54] C. Nadal, S. N. Majumdar, and M. Vergassola, J. Stat. Phys.

142, 403 (2011).
[55] S. N. Majumdar, C. Nadal, A. Scardicchio, and P. Vivo, Phys.

Rev. E 83, 041105 (2011).
[56] G. Claussen, A. K. Hartmann, and S. N. Majumdar, Phys. Rev.

E 91, 052104 (2015).
[57] T. Dewenter, G. Claussen, A. K. Hartmann, and S. N.

Majumdar, Phys. Rev. E 94, 052120 (2016).
[58] H. Schawe, A. K. Hartmann, and S. N. Majumdar, Phys. Rev. E

96, 062101 (2017).
[59] H. Schawe, A. K. Hartmann, and S. N. Majumdar, Phys. Rev. E

97, 062159 (2018).
[60] H. Schawe and A. K. Hartmann, Eur. Phys. J. B 92, 73

(2019).
[61] A. K. Hartmann, P. Le Doussal, S. N. Majumdar, A. Rosso, and

G. Schehr, Europhys. Lett. 121, 67004 (2018).
[62] J. Borjes, H. Schawe, and A. K. Hartmann, Phys. Rev. E 99,

042104 (2019).
[63] D. Gredat, I. Dornic, and J. M. Luck, J. Phys. A: Math. Theor.

44, 175003 (2011).
[64] Note that, in polar coordinates, the normalization of the total

probability translates to
∫ ∞

0 rPrad(r, t )dr = 1.
[65] K. Pearson, Nature 72, 342 (1905).
[66] B. D. Hughes, Random Walks and Random Environments,

Vol. 1 (Clarendon Press, Oxford, 1995).
[67] G. H. Weiss and J. E. Kiefer, J. Phys. A: Math. Gen. 16, 489

(1983).
[68] G. H. Weiss, Physica A 311, 381 (2002).
[69] M. Abramowitz and I. A. Stegun, Handbook of Mathematical

Functions (National Bureau of Standards, Washington, DC,
1999).

[70] To be convinced one can simply plot gz(h) for different values
of z.

062116-15

https://doi.org/10.1140/epje/i2012-12084-y
https://doi.org/10.1140/epje/i2012-12084-y
https://doi.org/10.1140/epje/i2012-12084-y
https://doi.org/10.1140/epje/i2012-12084-y
https://doi.org/10.1140/epje/i2014-14059-4
https://doi.org/10.1140/epje/i2014-14059-4
https://doi.org/10.1140/epje/i2014-14059-4
https://doi.org/10.1140/epje/i2014-14059-4
https://doi.org/10.1103/PhysRevE.90.022130
https://doi.org/10.1103/PhysRevE.90.022130
https://doi.org/10.1103/PhysRevE.90.022130
https://doi.org/10.1103/PhysRevE.90.022130
https://doi.org/10.1140/epjst/e2015-02457-0
https://doi.org/10.1140/epjst/e2015-02457-0
https://doi.org/10.1140/epjst/e2015-02457-0
https://doi.org/10.1140/epjst/e2015-02457-0
https://doi.org/10.1209/0295-5075/109/58003
https://doi.org/10.1209/0295-5075/109/58003
https://doi.org/10.1209/0295-5075/109/58003
https://doi.org/10.1209/0295-5075/109/58003
https://doi.org/10.1088/1751-8113/48/49/495003
https://doi.org/10.1088/1751-8113/48/49/495003
https://doi.org/10.1088/1751-8113/48/49/495003
https://doi.org/10.1088/1751-8113/48/49/495003
https://doi.org/10.1088/1367-2630/18/5/052001
https://doi.org/10.1088/1367-2630/18/5/052001
https://doi.org/10.1088/1367-2630/18/5/052001
https://doi.org/10.1088/1367-2630/18/5/052001
https://doi.org/10.1038/ncomms10694
https://doi.org/10.1038/ncomms10694
https://doi.org/10.1038/ncomms10694
https://doi.org/10.1038/ncomms10694
https://doi.org/10.1088/1751-8121/aa734c
https://doi.org/10.1088/1751-8121/aa734c
https://doi.org/10.1088/1751-8121/aa734c
https://doi.org/10.1088/1751-8121/aa734c
https://doi.org/10.1088/1742-5468/aab84f
https://doi.org/10.1088/1742-5468/aab84f
https://doi.org/10.1088/1742-5468/aab84f
https://doi.org/10.1103/PhysRevE.97.032604
https://doi.org/10.1103/PhysRevE.97.032604
https://doi.org/10.1103/PhysRevE.97.032604
https://doi.org/10.1103/PhysRevE.97.032604
https://doi.org/10.1103/PhysRevE.98.062121
https://doi.org/10.1103/PhysRevE.98.062121
https://doi.org/10.1103/PhysRevE.98.062121
https://doi.org/10.1103/PhysRevE.98.062121
https://doi.org/10.1103/PhysRevLett.121.078001
https://doi.org/10.1103/PhysRevLett.121.078001
https://doi.org/10.1103/PhysRevLett.121.078001
https://doi.org/10.1103/PhysRevLett.121.078001
https://doi.org/10.1103/PhysRevE.98.060601
https://doi.org/10.1103/PhysRevE.98.060601
https://doi.org/10.1103/PhysRevE.98.060601
https://doi.org/10.1103/PhysRevE.98.060601
https://doi.org/10.1088/1751-8121/aae74e
https://doi.org/10.1088/1751-8121/aae74e
https://doi.org/10.1088/1751-8121/aae74e
https://doi.org/10.1088/1751-8121/aae74e
https://doi.org/10.1103/PhysRevE.99.032132
https://doi.org/10.1103/PhysRevE.99.032132
https://doi.org/10.1103/PhysRevE.99.032132
https://doi.org/10.1103/PhysRevE.99.032132
https://doi.org/10.1088/1742-5468/ab11be
https://doi.org/10.1088/1742-5468/ab11be
https://doi.org/10.1088/1742-5468/ab11be
http://arxiv.org/abs/arXiv:1902.04171
https://doi.org/10.1103/PhysRevLett.122.068002
https://doi.org/10.1103/PhysRevLett.122.068002
https://doi.org/10.1103/PhysRevLett.122.068002
https://doi.org/10.1103/PhysRevLett.122.068002
https://doi.org/10.1103/PhysRevE.100.012113
https://doi.org/10.1103/PhysRevE.100.012113
https://doi.org/10.1103/PhysRevE.100.012113
https://doi.org/10.1103/PhysRevE.100.012113
https://doi.org/10.1088/1742-5468/ab3283
https://doi.org/10.1088/1742-5468/ab3283
https://doi.org/10.1088/1742-5468/ab3283
https://doi.org/10.1103/PhysRevE.99.012145
https://doi.org/10.1103/PhysRevE.99.012145
https://doi.org/10.1103/PhysRevE.99.012145
https://doi.org/10.1103/PhysRevE.99.012145
https://doi.org/10.1038/s41598-019-52420-1
https://doi.org/10.1038/s41598-019-52420-1
https://doi.org/10.1038/s41598-019-52420-1
https://doi.org/10.1038/s41598-019-52420-1
https://doi.org/10.1023/A:1004589714161
https://doi.org/10.1023/A:1004589714161
https://doi.org/10.1023/A:1004589714161
https://doi.org/10.1023/A:1004589714161
https://doi.org/10.1103/PhysRevE.65.056102
https://doi.org/10.1103/PhysRevE.65.056102
https://doi.org/10.1103/PhysRevE.65.056102
https://doi.org/10.1103/PhysRevE.65.056102
https://doi.org/10.1140/epjb/e2011-10836-4
https://doi.org/10.1140/epjb/e2011-10836-4
https://doi.org/10.1140/epjb/e2011-10836-4
https://doi.org/10.1140/epjb/e2011-10836-4
https://doi.org/10.1007/s10955-010-0108-4
https://doi.org/10.1007/s10955-010-0108-4
https://doi.org/10.1007/s10955-010-0108-4
https://doi.org/10.1007/s10955-010-0108-4
https://doi.org/10.1103/PhysRevE.83.041105
https://doi.org/10.1103/PhysRevE.83.041105
https://doi.org/10.1103/PhysRevE.83.041105
https://doi.org/10.1103/PhysRevE.83.041105
https://doi.org/10.1103/PhysRevE.91.052104
https://doi.org/10.1103/PhysRevE.91.052104
https://doi.org/10.1103/PhysRevE.91.052104
https://doi.org/10.1103/PhysRevE.91.052104
https://doi.org/10.1103/PhysRevE.94.052120
https://doi.org/10.1103/PhysRevE.94.052120
https://doi.org/10.1103/PhysRevE.94.052120
https://doi.org/10.1103/PhysRevE.94.052120
https://doi.org/10.1103/PhysRevE.96.062101
https://doi.org/10.1103/PhysRevE.96.062101
https://doi.org/10.1103/PhysRevE.96.062101
https://doi.org/10.1103/PhysRevE.96.062101
https://doi.org/10.1103/PhysRevE.97.062159
https://doi.org/10.1103/PhysRevE.97.062159
https://doi.org/10.1103/PhysRevE.97.062159
https://doi.org/10.1103/PhysRevE.97.062159
https://doi.org/10.1140/epjb/e2019-90667-y
https://doi.org/10.1140/epjb/e2019-90667-y
https://doi.org/10.1140/epjb/e2019-90667-y
https://doi.org/10.1140/epjb/e2019-90667-y
https://doi.org/10.1209/0295-5075/121/67004
https://doi.org/10.1209/0295-5075/121/67004
https://doi.org/10.1209/0295-5075/121/67004
https://doi.org/10.1209/0295-5075/121/67004
https://doi.org/10.1103/PhysRevE.99.042104
https://doi.org/10.1103/PhysRevE.99.042104
https://doi.org/10.1103/PhysRevE.99.042104
https://doi.org/10.1103/PhysRevE.99.042104
https://doi.org/10.1088/1751-8113/44/17/175003
https://doi.org/10.1088/1751-8113/44/17/175003
https://doi.org/10.1088/1751-8113/44/17/175003
https://doi.org/10.1088/1751-8113/44/17/175003
https://doi.org/10.1038/072342a0
https://doi.org/10.1038/072342a0
https://doi.org/10.1038/072342a0
https://doi.org/10.1038/072342a0
https://doi.org/10.1088/0305-4470/16/3/009
https://doi.org/10.1088/0305-4470/16/3/009
https://doi.org/10.1088/0305-4470/16/3/009
https://doi.org/10.1088/0305-4470/16/3/009
https://doi.org/10.1016/S0378-4371(02)00805-1
https://doi.org/10.1016/S0378-4371(02)00805-1
https://doi.org/10.1016/S0378-4371(02)00805-1
https://doi.org/10.1016/S0378-4371(02)00805-1

