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Linear impurity modes in an electrical lattice: Theory and experiment
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We examine theoretically and experimentally the localized electrical modes existing in a bi-inductive electrical
lattice containing a bulk or a surface capacitive impurity. By means of the formalism of lattice Green’s functions,
we are able to obtain closed-form expressions for the frequencies of the impurity (bound-state) eigenmodes
and for their associated spatial profiles. This affords us a systematic understanding of how these mode
properties change as a function of the system parameters. We test these analytical results against experimental
measurements, in both the bulk and surface cases, and find very good agreement. Last, we turn to a series of
quench experiments, where either a parameter of the lattice or the lattice geometry itself is rapidly switched
between two values or configurations. In all cases, we are able to naturally explain the results of such quench
experiments from the larger analytical picture that emerges as a result of the detailed characterization of the
impurity-mode solution branches.
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I. INTRODUCTION

In solid-state physics, it is a well established fact that
lattices can feature localized modes in the presence of point
defects, such as chemical impurities, vacancies, or intersti-
tials, that break the shift translational invariance of the perfect
lattice [1,2]. This type of disorder-induced localization can
change the macroscopic properties of the crystal, its photon
absorption spectrum (i.e., color) being a well-known exam-
ple, but can also be responsible for a variety of interesting
scattering phenomena [3]. Related applications abound in
a diverse array of themes, ranging from defect modes in
photonic crystals [4] as well as optical waveguide arrays [5–7]
to superconductors [8] and from dielectric superlattices with
embedded defect layers [9] to electron-phonon interactions
[10] and granular crystals in materials science [11].

A related theme that is of particular interest concerns the
existence of localized modes at the surface (i.e., at the ends)
of linear chains due to the finite-size effect or, otherwise
stated, the imposition of different kinds of boundary con-
ditions. This type of exploration has also been a topic of
consideration for over half a century, dating back to the early
considerations of R. F. Wallis on the effects of free ends in
one-dimensional [12] as well as surface modes in two- and
three-dimensional lattices [13]. It is remarkable that the rele-
vant considerations continue to inspire recent work, either on
the theoretical role of different types of boundary conditions
[14] or on modern applications including those of phononic
crystals [15] that may also involve transversal-rotational
modes [16].
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In the present work, we take advantage of the well-
established framework of electrical transmission lines [17,18]
as a prototypical setting where the theory of linear impurity
modes can be tested. On modeling the experimental setting of
recent experiments such as in Refs. [19–21] at the linear level
(i.e., in the absence of nonlinearity), we utilize the formulation
of Green’s functions [22–24] in order to identify both the
eigenvalues or eigenfrequencies and eigenfunctions of the
linear modes of the lattice, focusing naturally on the localized
vibrations thereof. We provide analytical expressions for these
and a systematic comparison with the corresponding exper-
imental results. This is done not only for the linear lattice
with a defect but also in the case of existence of a localized
surface mode. Very good agreement is achieved between the
two. Beyond that, there are some interesting observations and
twists offered. In particular, it is found that in each range
of frequencies (i.e., both above and below the linear band),
only one mode can be identified theoretically and observed
experimentally. Additionally, quench-type experiments are
performed where we vary the parameter controlling the detun-
ing from the homogeneous limit. In these we explore how the
experimental lattice “jumps” from one value to the other and
the lattice response accordingly transforms itself under such
a quench. Finally, we also examine the voltage dynamics on
the lattice during a switching transformation in its geometry
from a line with an edge impurity into a ring with a bulk
impurity.

Our presentation will be structured as follows. In Sec. II,
we will present the physical setup and mathematical model.
In Sec. III, we will provide details of the Green’s function
formalism for identifying the corresponding localized modes.
In Sec. IV, we present our corresponding experimental results.
Finally, in Sec. V, we summarize our conclusions and provide
some directions for future study.
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FIG. 1. Bi-inductive electrical lattice containing a single capacitive impurity (in line with Remoissenet et al. [17,18]).

II. THE MODEL

Our physical setup is that of Refs. [17,18] (see also
Refs. [19–21] for some recent experimental studies in this
system). In particular, we consider the bi-inductive electrical
lattice shown in Fig. 1. It consists on N units composed of
LC resonators {L2,Cn} coupled inductively by an inductor L1.
If we call Qn and Vn, respectively, the charge stored on the
nth capacitor and the voltage drop across the inductor L2, then
the use of the Kirchhoff laws leads to a system of coupled
equations

d2Qn

dt2
= 1

L1
( Vn+1 + Vn−1 − 2Vn ) − 1

L2
Vn. (1)

The impurity at the center of our current considerations is
assumed to be a capacitive one located at n = 0, with capac-
itance C0. The rest of the capacitances are taken as identical
and equal to C. In other words, Cn = C + (C0 − C)δn,0.

By taking Qn = CnVn and Vn(t ) ∼ cos(�t + φn), we arrive
at the stationary equations, i.e., the eigenvalue problem:

�2 Un = −ω2
1 (Un+1 + Un−1 − 2Un ) + ω2

2Un

−(�C/C) �2δn,0 Un, (2)

where �C = C0 − C and Un = Vn/Vc is a dimensionless volt-
age, where Vc is a characteristic voltage. By means of simple
manipulations, we can rearrange Eq. (2) as

z Un = γ (Un+1 + Un−1) + ε δn,0 Un (3)

with

z ≡ �2 − 2ω2
1 − ω2

2

γ ≡ −ω2
1

ε = −(�C/C)�2,

where ω2
1 = 1/(L1C), and ω2

2 = 1/(L2C).
Equation (3) describes formally a single impurity tight-

binding model, whose Hamiltonian is given by

H = H0 + Hd . (4)

Using Dirac’s notation, we can express H0 and Hd in terms of
Wannier functions {|n〉} as

H0 = γ
∑

n

(|n + 1〉〈n| + |n〉〈n + 1|), (5)

the (undisturbed) lattice Hamiltonian, and

Hd = ε |0〉〈0|, (6)

the defect (or impurity) Hamiltonian. The Hamiltonian H0

describes the lattice without the impurity and, as is well

known, possesses plane-wave eigenvectors,

〈n|k〉 = (1/
√

N ) exp(ikn), (7)

and eigenvalues,

zk = 2γ cos(k), (8)

or, in terms of the electrical lattice parameters,

�2 = 4 ω2
1 sin2(k/2) + ω2

2. (9)

Thus, the system is able to support the propagation of elec-
trical waves that form a band extending (in terms of �2)
from ω2

2 to ω2
2 + 4ω2

1. Notice that in the infinite lattice limit
this band would be a continuous spectrum, while in the finite
lattice case, the boundary conditions select a specific set of
wave numbers k (e.g., km = mπ/N with m integer running
up to N for periodic boundary conditions), and thus only the
corresponding frequencies are observed.

III. THE GREEN’S FUNCTION FORMALISM

Given a Hamiltonian H , the lattice Green’s function is
defined as [22–24]

G(z) = 1/(z − H ). (10)

In our case, H = H0 + Hd . Treating Hd formally as a pertur-
bation, we can express G(z) as

G(z) = G(0) + G(0) Hd G(0) + G(0) Hd G(0) Hd G(0) + · · · ,

(11)

where G(0) = 1/(z − H0) is the unperturbed Green function.
Inserting Hd = ε|0〉〈0|, we have

G(z) = G(0) + ε G(0)|0〉〈0|G(0)

+ ε2G(0)|0〉〈0|G(0)|0〉〈0|G(0) + · · ·

= G(0) + ε G(0)|0〉
[ ∞∑

n=0

εnG(0)n
00

]
〈0|G(0)

= G(0) + G(0)|0〉 ε 〈0|G(0)

1 − ε G(0)
00

.

In this expression, we use the notation: G(0)
00 = 〈0|G(0)|0〉.

It can thus be easily proven that the eigenenergies of the
localized modes are given by the poles of G, while the
probability amplitudes are given by the residues of G at those
poles.
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FIG. 2. Eigenfrequencies of the localized mode versus the capac-
itive mismatch for several ω1, ω2 values. Recall that for δ < 1 only
the higher frequencies (above the band) are physically relevant, while
for δ > 1 only the lower frequencies (below the band) are physically
relevant (among the two branches shown). This will be an important
observation to bear in mind also for the physical experiments that
will follow.

A. Electrical impurity in the bulk

Let us consider a capacitive defect that is located far from
the boundaries of the system. In that case we have from
Ref. [22] that:

G(0)
00 (z) = sgn(z)√

z2 − (2γ )2
. (12)

After solving the energy equation 1/ε = G(0)
00 (zb), one obtains

zb = ±
√

ε2 + (2γ )2. (13)

In terms of our electrical parameters, this leads to

�2 =
−(

2ω2
1 + ω2

2

) ±
√

4ω4
1 + (δ − 1)2ω2

2

(
4ω2

1 + ω2
2

)
δ(δ − 2)

,

(14)
where δ = C0/C is the capacitive mismatch. However, it
should be kept in mind that only one of the branches cor-
responds to each case: the (−) one in Eq. (14) for C0 < C
or δ < 1 and the (+) one in Eq. (14) for C0 > C or δ > 1.
Figure 2 shows the theoretically predicted energy branches as
a function of the capacitive mismatch δ for several different
resonant frequencies ω2

1, ω
2
2. All eigenfrequencies �2 lie out-

side of the band. In the absence of the defect, i.e., for δ = 1,
the solutions touch the band right at the edges of the band.
These edge modes are the ones that detach from the band due
to the presence of the defect.

For the bound-state profile |b〉, we start from |b〉 =∑
n bn|n〉, where bn is the mode amplitude profile and is given

( )

− −−
−

( )

− −−

FIG. 3. Spatial profiles of the localized electrical bulk modes
for ω1 = 1 = ω2; (a) δ = 0.5 (upper branch) and (b) δ = 3 (lower
branch).

by the residue of G(z) at z = zb,

bn = Gn0(zb)√−G′
00(zb)

, (15)

where

Gn0(z) = sgn(z)√
z2 − (2γ )2

⎧⎨
⎩−

(
z

2|γ |
)

+ sgn(z)

√(
z

2γ

)2

− 1

⎫⎬
⎭

|n|

.

(16)

We obtain:

bn = sgn(zb)

[
z2

b − (2γ )2
]1/4

|zb|1/2

{
−

(
zb

2|γ |
)

+ sgn(zb)

√(
zb

2γ

)2

− 1

}|n|
, (17)

where zb = �2 − 2ω2
1 − ω2

2, |γ | = ω2
1, and �2 is given by

Eq. (14). Recall that zb > 0 for δ < 1, while zb < 0 for δ > 1.
Figure 3 shows the spatial profile of the bound state for differ-
ent electrical parameters, namely for δ < 1 and δ > 1. The
mode width decreases with either an increase in capacitive
mismatch (associated with δ) or an increase in frequency
mismatch |ω2

1 − ω2
2|.

B. Electrical impurity at the boundary

Now we consider the case where the defect is placed at the
very surface of a semi-infinite electrical array (Fig. 4). Com-
putation of the proper Green’s function for this case requires
realizing that, even though the main formalism is still the
same as in Sec. III A, the unperturbed Green’s function G(0)

mn
needs to be computed by the method of mirror images: since
there is no lattice to the left of n = 0, G(0)

mn must vanish identi-
cally at n = −1. This means G(0)

mn(z) = G∞
mn(z) − G∞

m,−n−2(z),
where G∞

mn(z) is the unperturbed Green’s function of the bulk
case: G∞

mn(z) = sgn(z)(1/
√

z2 − 1)[z − sgn(z)
√

z2 − 1]|n−m|.
The procedure for computing the frequency of the surface
bound state and its profile is exactly the same as in Sec. III A,
and it is detailed in the Appendix.

Figure 5 shows the eigenfrequency �2 of the bound state as
a function of the capacitive mismatch δ. An interesting feature
of �2 in this case (with the boundary) concerns the forbidden
bands inside which there are no bound states. In terms of
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FIG. 4. Bi-inductive electrical lattice containing a single surface capacitive impurity (in line with Remoissenet et al. [17,18]).

frequencies, there exists the well-known frequency band that
extends from ω2

2 to ω2
2 + 4ω2

1. In terms of the parameter δ,
there exists an interval in capacitive mismatch that extends
from δ = 1 to

δ1 =
(
2 ω2

1 + ω2
2

)2

4ω2
1ω

2
2 + ω4

2

, (18)

inside which the mode is complex. The most important in-
tervals, however, are the ones originating from the condition
that the capacitance mismatch |δ − 1| be sufficiently large to
produce a bound state. These are given by δ < δ2 and δ > δ3,
where

δ2 = 3ω2
1 + ω2

2

4ω2
1 + ω2

2

< 1, δ3 = 1 +
(

ω1

ω2

)2

> 1. (19)

The origin of this condition lies in the fact that the real part
of the surface Green’s function, G(0)

00 (z) for z outside the band,
is bounded from above and below, unlike the case of the bulk
Green’s function. Of the different critical δ values only δ2 and
δ3 are relevant since δ2 < 1 and δ3 > δ1. It can be also proven
that at δ = δ2,3 the energy curves touch the linear band. These
features can be appreciated in Fig. 5.

Figure 6 shows once again some spatial mode profiles. We
now turn to the experimental realization of the above localized
modes.
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2

FIG. 5. Eigenfrequencies �2 of the electrical surface mode, in
terms of the capacitance mismatch δ for ω2

1 = 1 = ω2
2. The dashed

lines mark the position of the critical δ values δ2 = 0.8 and δ3 = 2.

IV. THE EXPERIMENT

We have built the bi-inductance lattice shown in Fig. 1
made up of discrete electrical elements of inductors and
capacitors. The inductors were ferrite (radial-lead) inductors
of 470 μH inductance and about 1 � resistance (equivalent
series resistance, ESR). We used these inductors both as the
L1 and L2 elements in a lattice with ω2

2 ≈ ω2
1. The inductance

values were all within 1% of one another. One set of measure-
ments was also done on a lattice with ω2

2 ≈ 2ω2
1, and there

we also incorporated 975 μH inductors with an ESR of 2 �.
The fixed capacitors, C, were all of 1 nF capacitance to within
2% of one another. In addition, in order to excite any mode
we incorporated a driving signal using an arbitrary function
generator (Agilent 33220A) whose signal was injected into
the electrical lattice via 10-k� resistors. The voltages at
each lattice node were monitored using multichannel data
acquisition boards (National Instruments PXI-6133).

The impurity was introduced via the replacement at one lat-
tice site of the 1-nF capacitor with a varactor diode (NTE-618)
whose capacitance can be continuously varied by applying a
bias voltage. The capacitance-voltage relationship for the var-
actor diode was carefully mapped out by separately measuring
the resonance curve of an RLC circuit that incorporated this
diode in parallel with a known inductor. When introducing
such a bias voltage across the varactor diode, care must be
taken, however, to ensure that none of the inductors in the
lattice experiences a dc potential drop across them. This was
achieved by using a large (2-μF) block capacitor in series with
the varactor diode. In essence, then, we can continuously vary
the δ parameter with a dc power supply that controls the bias
voltage across the varactor diode. This yields a capacitance
range for C0 from about 900 pF to about 150 pF. Given our
choice of C = 1 nF, in order to attain the δ > 1 regime, we
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FIG. 6. Spatial profiles of the localized surface modes marked in
Fig. 5 for δ = 0.5 and δ = 2.5.
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FIG. 7. (a) The experimental frequencies of the upper-branch impurity modes as a function of capacitance-mismatch parameter δ. The data
fit the theoretical prediction quite well. Panels (b) and (c) depict measured mode profiles at δ = 0.62 and δ = 0.32, respectively. The times at
which the center node is most positive and most negative are shown, respectively, by solid and dashed lines.

can place this varactor diode in parallel with a fixed 1- or 2-nF
capacitor.

A. Impurity in the lattice bulk

To compare the experimental observations to the theoret-
ical predictions in the previous section, Fig. 7(a) depicts the
square of the normalized frequencies, (ω/ω2)2, as a function
of the capacitance-mismatch parameter, δ, which measures the
strength of the impurity for the upper-branch localized modes.
We see that the experimental data points (black circles) match
the theoretical curve very well for the parameter values of
ω2

2 = 1 and ω2
1 = 0.95. Importantly, as we highlighted in

the theoretical section only one of the two solutions with
frequencies above the band is selected in line with the the-
oretical prediction. To excite these impurity modes, we can
use a sinusoidal waveform that is swept through a range
of frequencies while simultaneously recording the impurity
mode response. In this way a spectrum is generated, and the
mode frequency is obtained from the peak’s center frequency
within that spectrum. The driving waveform can be applied
uniformly at each site of the lattice or alternatively only
at the impurity site. Both driving methods yield the same
frequency information, although the exact mode profile does
depend slightly on the driving method. Here we show results
corresponding to local driving.

From the inductor values themselves, i.e., L1 = L2 =
470 μH, we would expect ω2

1 = 1. The fact that this value
is slightly lower in the experimental system, however, is
confirmed independently by separately measuring the zone-
boundary (ZB) mode frequency. Here a spatially staggered
driver is employed to probe the resonance curve associated
with the ZB mode, and its center frequency is recorded
at around 502 kHz. Given that the zone-center mode is

at ω2/(2π ) = 228 kHz, we would expect the ZB to be at
approximately 510 kHz. The fact that it is found at somewhat
lower frequency indicates that the effective ω1 is also lower
by a small amount.

Figures 7(b) and 7(c) show the measured spatial profiles of
two impurity modes, corresponding to δ = 0.62 and δ = 0.32,
respectively. The node voltages measured at two particular
times are shown at which the voltage at the center node

FIG. 8. The experimental frequencies of the lower-branch im-
purity modes as a function of the mismatch parameter δ. Again,
the data fit the theoretical prediction quite well, with some slight
deviation near δ = 1. As explained in the previous section only
the portion of the branch with δ > 1 is physically relevant and
hence experimentally observed. The inset depicts the measured mode
profile at δ = 2.0.
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FIG. 9. (a) The experimental frequencies of the surface impurity modes as a function of the capacitance-mismatch parameter δ; both
upper-branch and lower-branch solutions are shown. The theoretical prediction is depicted by the solid curves with only the left branch being
relevant for δ < δ2 and the top branch for δ > δ3. Panels (b)–(d) show the measured profiles of three particular surface modes, located at
δ = 0.32, δ = 0.62, and δ = 2.78, respectively.

(n = 7) is most positive and most negative, respectively. As
also seen in the theoretical waveforms, the farther δ departs
from 1, and thus the higher the frequency, the more localized
the impurity mode is in space.

We now turn to the lower-branch modes in this lattice.
From the theoretical picture of Fig. 2, we discern that when
ω2 is raised relative to ω1, the branch descends away from
the bottom of the plane-wave spectrum more rapidly. (The
same is also true in the case when ω1 is lowered relative
to ω2.) For this reason, we decided to decrease the coupling
strength—and thus ω1—while leaving ω2 unchanged when
observing the lower branch. This was accomplished by using
coupling inductors of L1 = 975 μH.

Figure 8 depicts the experimental results on the lower
branch. The lines represent the theoretical curves given in
Eq. (14) for ω2

2 = 1 and ω2
1 = 0.475. We again see good

agreement between theory and experiment, although some de-
viation is observed for δ values close to 1, where the localized
mode becomes quite broad (and where perhaps a larger lattice
would thus be needed). Recall that per our theoretical analysis,
only the portion of the branch with δ > 1 is physical (and thus
experimentally traceable). The inset panel shows the impurity
mode profile. We see that, contrary to the upper-branch modes
where neighboring sites oscillate out of phase, for these lower-
branch impurity modes the nodes all oscillate in-phase. Thus,
the impurity modes in both instances share the basic symmetry
with that plane-wave mode into which they merge as δ → 1.

B. Impurity at the boundary

It is straightforward to transform the electrical lattice used
so far into a lattice where the impurity is at its boundary.
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FIG. 10. Space n-time t contour plot evolution of quench ex-
periments for the voltage Vn(t ): (a) From δ = 0.57, we quench to
δ = 1.43 in the case of the upper branch; (b) the same is done in the
case of the lower branch. The two panels clearly illustrate in line also
with the theory that the upper frequency branch only exists for δ < 1,
while the lower frequency branch only for δ > 1.

We simply disconnect the far end of the coupling inductor
at n = 7 and instead ground it. We also return to the case
L1 = 470 μH, such that ω2

2 = 1, ω2
1 = 0.95.

Confirming the theoretical prediction, no surface modes are
found within the interval of 0.80 < δ < 1.95. For δ < δ2 =
0.80, we observe upper-branch solutions and for δ > δ3 =
1.95 lower-branch solutions. Their frequencies nicely match
the theoretical prediction, as seen in Fig. 9(a). Figures 9(b)
and 9(c) show the spatial profiles of the upper-branch modes
measured at the two δ values of 0.32 and 0.62, respectively.
As expected, we clearly observe the mode widening in space
as δ approaches 1. Figure 9(d) depicts the lower-branch mode
at δ = 2.78. The width of the mode is somewhat larger than
what is obtained in the analysis; one possible reason might be
that experimentally some part of the uniform mode may still
be excited.

C. Quench experiments

In order to examine the impact of quenches and the re-
sponse of the system between the two fundamentally dif-
ferent regimes examined (δ < 1 and δ > 1 in the bulk and
correspondingly also in the case of the surface), we devise
the following quenching experiment. We use a single pole
double throw analog switch, the chip ADG436, to rapidly
switch between two capacitor values for C0: 0.57 and 1.43 nF.
These two values were chosen because they are symmetrically
situated relative to 1 nF. Again, the driving of the lattice can
be either local (at the impurity) or the spatially homogenous

(shown in the following figures). For the upper-branch case
in Fig. 10(a), the driving frequency corresponded to �2 =
5.52 (equivalent to 536 kHz). We see that at this frequency
and for C0 = 0.57 nF (corresponding to a δ of 0.57), the
upper-branch impurity mode can be stably excited. When we
abruptly switch to δ = 1.43 at time t = 200 μs; however, the
mode disintegrates and does not reconstitute itself. That is,
there is no corresponding physical branch on the other side at
δ = 1.43.

A similar phenomenon can be discerned in Fig. 10(b) for
the lower branch, where we chose a frequency of 219 kHz
(or �2 = 0.92). Here no mode exists at δ = 0.57, but on
abruptly switching to δ = 1.43, the lower-branch impurity
mode emerges. We should mention that if we start with the
larger value of δ and then switch to the lower one, no impurity
mode is generated in that case either.

Another appealing switching experiment that can be per-
formed in the present setting involves transforming the impu-
rity mode from a surface one to a bulk one by using the analog
switch to temporarily impose a boundary in the lattice that is
otherwise ringlike. The switch connects the far end of the L1

inductor at n = 7 first to ground and then abruptly to the L1

inductor at n = 8. Here we chose a δ of 0.47 and excited the
lattice with a spatially homogenous driver at various upper-
branch frequencies. This is illustrated in Fig. 11(a), where
the frequency corresponds to �2 = 6.34. The switch from
boundary lattice bearing a surface to a ring lattice (i.e., a bulk
one with periodic boundary conditions) occurs at 200 μs. We
see that the initial surface mode naturally transforms itself
into the bulk mode after the switch. Figures 11(b) and 11(c)
decrease the driver frequency consecutively to �2 = 5.86 and
5.65, respectively. It is clear that the bulk mode is weakened in
Fig. 11(b) and then disappears altogether in Fig. 11(c), while
the surface mode is still generated at these frequencies.

This last result makes sense upon close comparison of
Figs. 7(a) and 9(a), which (for convenience) is shown in
Fig. 11(d). When superimposing the solution branches in the
two cases, we see that the upper-branch surface modes have
lower frequency compared to the bulk modes for all allowed δ

values of the former (i.e., for δ < δ2). Since the experimental
system features dissipation and thus potential relaxation to
the modes, those modes have some width in frequency and
therefore can overlap, such that at a given driving frequency
both can be excited. However, if the driving frequency is
repeatedly lowered, then we first lose the bulk mode and only
later the surface mode.

V. CONCLUSIONS AND FUTURE CHALLENGES

We have studied both theoretically and experimentally
an electrical transmission-line lattice possessing a capacitive
impurity point-defect located either at the bulk or at the
boundary of the circuit. By using the formalism of lattice
Green’s functions, we were able to predict the existence of
localized modes for which the voltage decreases in space
as we move away from the defect position. We obtained
in closed form the bound-state frequency of the impurity
state, as well as the bound-state profile as a function of the
parameters of the electrical circuit. Very good agreement
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FIG. 11. Switching between a surface mode and a bulk mode by closing a switch to complete the ring at t = 200 μs. The driver frequency
corresponds to �2 of (a) 6.34, (b) 5.86, and (c) 5.65. While the surface impurity mode can be generated at all three frequencies, we see the
bulk impurity mode unable to sustain itself in (c). This makes sense when comparing the frequencies of the solution branches in (d), where
the dotted vertical line is the δ chosen in these experiments, and the solid and dashed lines are the upper-branch bulk and surface modes,
respectively.

was observed between the theoretical predictions and the
corresponding experimental results both for the bulk and also
for the surface impurity modes. Additionally, quench-type
experiments were performed by rapidly switching a lattice
parameter and observing how the voltage profile adapts itself
to such a modification. Also an interesting scenario of a
switch from a bulk lattice to a surface one was explored and
the spontaneous transformation of the bulk modes to surface
ones was elucidated. Such experiments were found to be in
accord with the analytical picture characterized by its relevant
solution branches.

Naturally, this study and the systematic benchmarking
of the linear lattice properties paves the way toward fur-
ther explorations. At the linear level, the theory of Green’s
functions also permits an analytical characterization of the
transmission problem from an impurity as a function of
the wave number of the incoming wave, as well as of the
impurity (and lattice) parameters. This is a technically more
challenging problem as it arguably requires larger lattices
than the ones considered herein, yet is, in principle, experi-
mentally tractable. On the other hand, numerous studies have
focused on nonlinear impurities in a linear lattice [10,25,26]
as the first among the many different possible scenarios in-
volving nonlinearity in the present setting. This is a natural
next step for our studies and will be considered in future
publications.
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APPENDIX: SURFACE MODES

The bound-state energies are given by the poles of Gn,m,
that is, G(0)

0,0(z) = 1/ε, where G(0)
n,m = G∞

n,m − G∞
n,−m−2, ε =

(1 − δ)�2/2ω2
1, and z = �2 − 2ω2

1 − ω2
2.

We obtain the eigenfrequencies as a function of the capac-
itance mismatch δ, as the residues of Gn,m at the poles:

�2
± =

(
2ω2

1 + ω2
2

) ±
√

−4ω4
1

δ−1 + 4ω2
1ω

2
2 + ω4

2

2δ
. (A1)

The bound-state amplitudes are formally given by the
residues of the surface Green function Gnm(z), that is,

b±
n = G(0)

n,0[z(δ)]√
−G(0)′

n0 [z(δ)]
, (A2)
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where

G(0)
n,0(z) = sgn(z)√

z2 − 1
{[z − sgn(z)

√
z2 − 1)|n| (A3)

−(z − sgn(z)
√

z2 − 1]|n+2|} (A4)

and

G(0)′
n,0 (z) = − 2 sgn(z)√

z2 − 1
[z − sgn(z)

√
z2 − 1]. (A5)
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