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We present an exponential mode analysis of the dynamical processes determining the time behavior of
the Kubo velocity autocorrelation function (KVAF) of fluid para-H2, as obtained by ring polymer molecular
dynamics simulations at various fluid densities. The mechanisms contributing to the decay of the KVAF are
thoroughly characterized at a slightly supercritical temperature, in a density interval ranging from the critical
point to the fluid-solid transition. We show that the quantum nature of the system does not influence the specific
phenomena and decay channels through which a loss in velocity correlation takes place, since these are the same
as found in classical fluids. Similarly, a dynamical crossover is observed with increasing density, signaling the
onset of a transverse-like dynamics like in classical systems. We also investigate the effect of density on the
processes contributing to the most relevant property of a quantum fluid, namely, the large values of the total and
zero-point kinetic energy arising through the Heisenberg uncertainty principle.
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I. INTRODUCTION

Molecular dynamics simulation is the only direct way
to determine the complete time dependence of the velocity
autocorrelation function (VAF) of fluids. Together with other
single-particle and collective properties, like the self- and total
intermediate scattering functions, the VAF is a central quantity
for understanding the microscopic processes and relaxation
mechanisms that determine the overall dynamic behavior of
liquids [1–3]. Pioneering simulation studies of the VAF and
of the particle velocity field allowed researchers, for instance,
to prove the existence of microscopic vortices in fluids [4] and
to find an explanation for the so-called long-time tail (LTT) of
the VAF, i.e., its slowly decaying behavior at long times that
has been one of the principal and continuous motivations for
studying this function [5–11].

More recently, significant progress in describing and inter-
preting the complete time dependence of the VAF has been
made by exploiting the exponential series representation of
time correlation functions [12–14]. For instance, the exponen-
tial mode decomposition of the VAF of a Lennard-Jones (LJ)
fluid provided valuable information on the various dynami-
cal processes determining the time behavior of the function
on varying density and temperature [15,16]. Moreover, the
exponential expansion was also shown to be very effective
in representing other correlation functions of classical fluids
[17]. Such results therefore suggested the extension of the
methodology also to the case of quantum liquids, taking
advantage of the fact that the exponential decomposition is
readily applicable [14] to the Kubo transform of the veloc-
ity autocorrelation function (KVAF) [18]. In a very recent
paper [19] we presented a subset of ring polymer molecular
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dynamics (RPMD) [20–23] simulations of the KVAF that we
performed for dense fluid para-hydrogen (p-H2). In particular,
in Ref. [19] a study with varying temperature revealed very
clearly the efficacy of the exponential mode decomposition of
the KVAF at all the investigated temperatures. In this way, in
full analogy with the classical case, the exponential modes of
the KVAF could be associated with physical phenomena such
as shear and longitudinal sound waves, diffusive processes,
and vortices (LTT). Specifically, this allowed us to deter-
mine how the various microscopic mechanisms contribute
individually to the translational mean kinetic energy (KE)
per molecule 〈K〉 and, particularly, to a fundamental property
such as its zero-point part 〈K〉0.

Given the virtual impossibility to access the VAF of fluids
experimentally, and the notorious difficulties in simulating
the van Hove intermediate scattering functions directly in the
quantum case, the simulated KVAF represents practically the
only way to obtain information on the microscopic, collective,
and single-particle, dynamical properties of a quantum liquid.
In fact, it is well established that the motions of individual
particles reflect all the dynamical processes, even those that
are of collective nature. These unavoidably find a projection
onto the KVAF, whose frequency spectrum is, as shown long
ago by Rahman et al. [24], proportional to the density of states
(DoS) of the quantum fluid, in the same way as the (classical)
VAF spectrum is proportional to the DoS of a classical fluid
[16,17]. In particular, because the collective excitations of
longitudinal and transverse pseudophonons have been shown
to determine the DoS shape at frequencies around the maxima
of their respective dispersion curves, Z̃ (ω) bears the signature
of such molecular motions, and their presence can be linked
to specific modes in the exponential expansion of the KVAF.

Here we thus exploit the exponential mode decomposition
not only to relate the various features of the DoS to specific
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collective and single-particle properties, as done in our previ-
ous works on classical fluids, but we also investigate the role
of density on each mode in the case of a quantum fluid, where
the particles’ confinement in the cage of their neighbors plays
a very important role.

In addition, we will exploit the direct relation existing
between the mode expansion of the KVAF and the t = 0 value
of the standard quantum mechanical VAF u(t ). In particular,
the mean translational kinetic energy determined by u(0) =
2〈K〉/M (with M the molecular mass) was recently shown
to have an explicit representation in terms of the modes of
the KVAF [19]. An analogous representation was found to
hold for the zero-point part 〈K〉0 of the KE, providing the
remarkable opportunity to understand the dynamical origin
of this fundamental quantum property due to the Heisenberg
uncertainty principle and accounting for the large value of
the KE per particle [19,25–27], which, except at very high
temperatures or very low densities, differs considerably from
the classical value 3/(2β ), where β = 1/(kBT ) (kB being the
Boltzmann constant).

In this work, we focus on the density behavior of p-H2 at
a slightly supercritical temperature T = 35 K (Tcr = 32.94 K
[28]). For this purpose we performed RPMD simulations of
the KVAF, with N = 864 polymers interacting through the
Silvera-Goldman potential [29], at six number densities rang-
ing from the critical one (ncr = 9.37 nm−3 [28]) to densities
close to the melting curve (�27% higher than the triple point
density ntr = 23.01 nm−3 [28]). The calculations were carried
out in exactly the same way as reported in Refs. [19,27], to
which we direct the reader for the computational details.

Similarly to the case of a LJ fluid [15,16], the results of our
analysis will show that the evolution of the fitted exponential
terms, as far as their number, nature, intensity, and timescale
are concerned, permit the identification of some of the modes
with specific dynamical properties. In particular, the already
recognized role of slowly decaying exponentials in accounting
for the LTT [15,16,19] is further confirmed here for p-H2.
In comparison with the LJ study, we also find a similar
density evolution of the other modes, indicating the presence
of longitudinal acoustic waves and the onset, at the higher
densities, of a transverse collective dynamics.

II. THEORETICAL FRAMEWORK AND REFERENCE
FORMULAS

The complex-valued standard quantum VAF of an N-
particle system is

u(t ) = 1

N

N∑
α=1

〈v̂α (0) · v̂α (t )〉, (1)

where v̂α (t ) is the velocity operator of the αth molecule
at time t , and the angular brackets denote a quantum sta-
tistical average. The frequency spectrum of u(t ), p(ω) =

1
2π

∫ ∞
−∞ dt exp(−iωt ) u(t ), obeys the detailed balance princi-

ple

p(ω) = eβ h̄ω p(−ω), (2)

where h̄ = h/(2π ) is the reduced Planck constant. Its sym-
metric and antisymmetric parts, pS(ω) and pA(ω), are related

to the frequency spectrum Z̃ (ω) of the KVAF Z (t ) by [18,24]

Z̃ (ω) = tanh(β h̄ω/2)

β h̄ω/2
pS(ω) = 1

β h̄ω/2
pA(ω). (3)

Equivalently, a relation exists, via the Bose factor, between
p(ω) and Z̃ (ω):

p(ω) = β h̄ω

1 − e−β h̄ω
Z̃ (ω). (4)

In contrast to u(t ), Z (t ) is an even and real-valued func-
tion in the time domain and at t = 0 provides the classical
value Z (0) = 〈v2〉 = 3/(Mβ ). The spectrum Z̃ (ω) is also real
and symmetric, while, as expressed by Eq. (2), p(ω) is a
nonsymmetric function of frequency, with nonvanishing odd
frequency moments.

The value of the quantum VAF at time zero, u(0), can be
calculated directly as the zeroth frequency moment of p(ω),
i.e., as

u(0) =
∫ ∞

−∞
dω p(ω) = 2

∫ ∞

0
dω pS(ω). (5)

Therefore, using the first of Eqs. (3), an RPMD estimate of
Z (t ) provides one of the possible ways to determine the mean
KE per molecule [30]:

〈K〉 = 3

2Z (0)

∫ ∞

0
dω

h̄ω

tanh(β h̄ω/2)
Z̃ (ω). (6)

In analogy with a solid-state treatment, one can separate
〈K〉0, that is, the zero-point part of the KE, from the thermally
activated one [19,31]. The latter, given by the difference
〈K〉 − 〈K〉0, is the fraction of 〈K〉 due to the nonzero oc-
cupancy of the excited states of the system at T > 0. The
zero-point part can be calculated directly from the simulations
using, for instance, the zero-temperature version of Eq. (6),
which is [32]

〈K〉0 = 3

2Z (0)

∫ ∞

0
dω h̄ωZ̃ (ω). (7)

In Ref. [19], which focused on the behavior with temper-
ature along a single isochore, we found that the large value
of 〈K〉, at a rather high p-H2 density, is predominantly due to
the zero-point component 〈K〉0. At the even higher densities
considered in the present study, we expect both 〈K〉0 and 〈K〉
to increase further because a decrease of the volume available
per particle implies, according to the Heisenberg uncertainty
principle, a corresponding increase of the particle momentum.

In the following we will write the mode decomposition of
both 〈K〉0 and 〈K〉 in terms of the exponential modes of the
normalized autocorrelation function Zn(t ), which is

Zn(t ) = Z (t )/Z (0) =
∞∑
j=1

I j exp(z j |t |). (8)

Being by construction an even function of time, Zn(t ) as
defined by Eq. (8) is thus expressed as an infinite sum of ex-
ponentials characterized, in general, by a complex amplitude
I j and a complex frequency z j . Pure exponential decays of
Zn(t ) are accounted for in the series by what we will refer to
as “real modes,” i.e., having both I j and z j real, with z j < 0.
Damped oscillatory modes of Zn(t ) are represented in the
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series by what we will designate as “complex pairs,” i.e., by
I j exp(z j |t |) + I∗

j exp(z∗
j |t |), with both I j and z j complex, and

Re[z j] < 0.
Given the representation of Eq. (8), the frequency spectrum

of the normalized KVAF now reads

Z̃ (ω)

Z (t = 0)
=

∞∑
j=1

Lj (ω) =
∞∑
j=1

1

π
Re

[
I j

iω − z j

]
, (9)

where Lj (ω) is a “generalized” Lorentzian line. If I j and
z j are real, then Lj (ω) is a genuine Lorentzian centered at
ω = 0. If I j and z j are complex, then the corresponding mode
and its complex conjugate add up to give a pair of distorted
Lorentzians centered at the nonzero frequencies ±Im [z j] [see
Eq. (4) of Ref. [17] for details]. Finally, it is useful to recall
that the continuity of a time autocorrelation function and the
existence of its kth order (k = 0, 1, 2, . . .) time derivatives at
t = 0 lead, in the exponential representation of Zn(t ), to an
infinite set of sum rules of the form

∞∑
j=1

I jz
k
j = dkZn(t )

dtk

∣∣∣∣
t=0

. (10)

In particular, the zeroth (
∑∞

j=1 I j = 1) and first (
∑∞

j=1 I jz j =
0) sum rules express the normalization and the vanishing of
Żn(t ) at t = 0, respectively.

Mode decomposition of the kinetic energy

In order to find the mode decomposition of the KE, we
perform the frequency integration indicated in Eq. (6) via
the convolution theorem, i.e., by replacing the integral of
the product of functions over frequency space with the t = 0
value of the convolution of their inverse Fourier transforms.
This can readily be done by exploiting the mathematically
well-behaved kernel that Braams and co-workers [33] derived
to obtain the quantum u(t ) from the knowledge of Z (t ). In par-
ticular, these authors showed that Re[u(t )] can be expressed as

Re[u(t )] = Z (t ) +
∫ ∞

−∞
dt ′k1(t − t ′)Z̈ (t ′) (11)

with the kernel k1 given by

k1(t ) = β h̄

2π
log

(
1 − e− 2π

β h̄ |t |)
. (12)

Here we are concerned with the t = 0 value of Eq. (11),
which, given the even character of both k1(t ) and Z̈ (t ), can be
written as

u(0) = Z (0) + 2
∫ ∞

0
dt k1(t )Z̈ (t ). (13)

Inserting the exponential representation for Zn(t ) [Eq. (8)], we
obtain

u(0) = Z (0)

⎡
⎣1+ β h̄

π

∫ ∞

0
dt log

(
1− e− 2π

β h̄ t) ∞∑
j=1

I jz
2
j exp(z jt )

⎤
⎦,

(14)

which casts into an explicit form the contribution of each
mode to u(0). By defining a new variable y = e− 2π

β h̄ t it is

possible to express u(0) as

u(0) = Z (0)

⎡
⎣1+ 2

(
β h̄

2π

)2∞∑
j=1

I jz
2
j

∫ 1

0
dy log(1 − y) y− β h̄

2π
z j−1

⎤
⎦,

(15)

with Re[− β h̄
2π

z j] > 0, and finally (see 4.293.8 in Ref. [34]) as

u(0) = Z (0)

⎧⎨
⎩1 + β h̄

π

∞∑
j=1

I jz j

[
ψ

(
1 − β h̄

2π
z j

)
+ γ

]⎫⎬
⎭,

(16)
where ψ is the digamma function and γ is the
Euler-Mascheroni constant. By also replacing Z (0) by
3/(mβ )

∑∞
j=1 I j , one finally finds for the mean KE

〈K〉 = 3h̄

2π

∞∑
j=1

I j

{
π

β h̄
+ z j

[
ψ

(
1 − β h̄

2π
z j

)
+ γ

]}
. (17)

In order to write an analogous representation for the zero-
point contribution, 〈K〉0, to the kinetic energy, one can either
repeat the above derivation starting from Eq. (7) instead of
Eq. (6) or equivalently exploit the asymptotic behavior of
Eq. (17). By retaining the leading term in the asymptotic series
for the digamma function at large values of its argument [see
(6.3.18) in Ref. [35]], we obtain

〈K〉0 = 3h̄

2π

∞∑
j=1

I jz j

[
log

(
−β h̄

2π
z j

)
+ γ

]
, (18)

which will be discussed later in the paper. Here it is important
to stress that 〈K〉0 and 〈K〉 have no relation with the classical
value of the KE, except in the limit of high temperature or
low density. Therefore, 〈K〉0 should not be interpreted as the
deviation of 〈K〉 from 3/(2β ).

III. MULTIEXPONENTIAL ANALYSIS OF THE
SIMULATED KVAF

Practical applications of the mode decomposition of course
require a truncation of the infinite series of Eq. (8). We showed
in our previous studies that a small number of real and com-
plex terms is typically sufficient to provide an extremely good
representation of the correlation functions considered so far
[15–17,19]. As in our earlier investigations, we have also here
employed a number of constraints, when fitting these modes
(i.e., the respective I j and z j) to the simulated KVAFs, in order
to incorporate the normalization condition,

∑
j I j = 1, and to

enforce the first few odd sum rules dictated by Eq. (10) up
to k − 1, where k is even. Given the specific form our finite
mode expansion, which is infinitely often differentiable except
at t = 0, this not only ensures that the odd derivatives of Z (t )
up to order k − 1 vanish at t = 0, but that all derivatives up to
order k exist and are finite at the origin.

The analysis of the time dependence of the KVAF is thus
performed by fitting the sum of a finite number of expo-
nential terms to the data, with I j and z j as parameters. The
total number of terms in the series, the number of real and
complex ones, and the set of sum rules to be imposed is es-
sentially dictated by physical considerations and, eventually,
by the fit quality achieved with a reasonably low (ideally
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TABLE I. Temperature T and number density n of the thermo-
dynamic states of p-H2 considered for the simulations. The critical
(subscript cr) and triple (subscript tr) point density and temperature
are from Ref. [28]. The average collision time t0 is also reported for
each state (see Sec. IV). The zero-point and total translational kinetic
energy calculated via Eqs. (7) and (6), respectively, are expressed
in units of K and are also plotted in Fig. 4. p-H2 (T = 35 K);
ncr = 9.37 nm−3, Tcr = 32.94 K; ntr = 23.01 nm−3, Ttr = 13.80 K.

n [nm−3] t0 [ps] 〈K〉0/kB [K] 〈K〉/kB [K]

10.61 0.115 31.89 64.17
14.33 0.098 40.15 68.52
18.05 0.084 49.88 74.03
21.77 0.071 62.08 81.96
25.49 0.060 76.88 92.49
29.21 0.051 94.09 105.9

minimized) number of parameters. Moreover, in regions of
thermodynamic phase diagram where a dynamical crossover
may be expected to occur (cf. Table III of Ref. [16] for the LJ
fluid), the model must be chosen flexible enough to account
for physical changes induced in the microscopic dynamics
by an increase of density. For instance, in our previous ex-
perience, we found that a small number of real modes is
required in high-density states around and above the triple
point density. At our supercritical temperature, one of these
always represents the LTT mentioned in the Introduction.
Longitudinal sound waves must also be accounted for by a
complex pair at all densities, while shear waves are detectable
in the dynamical properties only in high-density states. In fact,
the clear need to introduce a low-frequency complex pair in
the fit model in order to obtain an accurate description of
the KVAF may be taken to be the hallmark of the dynamical
change associated with the ability of the (denser) fluid to
also sustain transverse oscillations, which are absent at lower
densities.

According to the above schematization, first applied in
the LJ case from low to high density [16], and subsequently
confirmed in the high-density temperature study of Ref. [19],
we adopt a similar procedure for the present density study of
p-H2 at constant temperature, as detailed below. For reference,
the thermodynamical conditions of the RPMD simulations
are summarized in Table I. To put them in perspective, we
also included the fixed (critical and triple) points of the phase
diagram of p-H2 [28].

Specifically, for the three low-density states of p-H2, we ob-
tained very good fits to Zn(t ) by considering three real modes
and two complex pairs, and imposing four sum rules. The
latter correspond, of course, to the zeroth frequency moment
(normalization)

∑
j I j = 1 and the conditions

∑
j I jz

k−1
j = 0

for k = 2, 4, 6, ensuring the vanishing of all odd derivatives at
t = 0 up to fifth order.

In the following, a labeling of the modes consistent with
that adopted in Refs. [16,19] will be used. Therefore, the three
real modes mentioned above will be referred to as R2, R3, and
R4, and the two complex pairs will be indicated by C1 and C2,
with the same physical interpretation as for the LJ system.
In particular, R4 corresponds to the slowest decaying real
mode (LTT). We recall that, while C2 in our nomenclature is

related to the contribution of longitudinal waves, C1 is a very
high-frequency, strongly damped mode of nearly negligible
intensity whose origin is still unclear, but which seems to be
essential for a good description of the low-density KVAF at
very short times. Interestingly, in the present case of p-H2,
C1 ceases to be necessary in complex form as soon as a
genuine transverse dynamics sets in, i.e., in the high-density
case discussed below.

Concerning the three high-density states, an excellent de-
scription of the KVAF and its spectrum was obtained by
considering two real modes and two complex pairs, satisfying
three sum rules. In this case, the decay channels of Z (t )
will be referred to as R1 and R4 (real modes) and C2, C3
(complex pairs). This labeling scheme was chosen in order
to indicate in a natural way that the slowest decaying mode
(R4) is actually present at all densities, as we will show
below. The same holds for the damped longitudinal oscillatory
component (C2). By contrast, the new real mode (R1) at high
density seems to originate from a vanishing of the oscillatory
part of the C1 pair found at low density. It is important to
stress that, exactly as in the LJ case, the increase of density
leads to the disappearance of the faster real modes mentioned
before (R2 and R3), and the emergence of a complex pair C3
at high density, as reflected by the labeling scheme. Also, in
high-density p-H2, C3 can be recognized to be the fingerprint,
in the density of states Z̃ (ω) (and therefore in the KVAF), of
the existence of low-frequency transverse propagating waves
in the medium, with a typically very weak dispersive character
that is responsible for the main maximum in the DoS [16,17].

Thus, a remarkable consistency is found in the kind of
processes that, according to the exponential decomposition,
account for the entire time behavior of the VAF, irrespective
of quantum delocalization effects. In fact, the density dictates,
in more or less the same way, the emergence or disappearance
of real and complex modes in the VAF both in a classical LJ
system and in a moderate quantum fluid like p-H2. One of the
outcomes of the present work regards the better identification
of the evolution that C1 (at low densities) undergoes after a
clear, density-driven transition in the dynamics: the complex
high-frequency mode at low density becoming, apparently, a
very fast real decay (R1) at high density.

The fit results for one low- and one high-density state
at 35 K are reported in Fig. 1. The various fit components
are also plotted separately and identified in the legend, both
for the KVAF and for the spectra. The latter are shown
using a semilogarithmic scale in order to appreciate the very
good performance of the model over nearly three decades.
In Figs. 1(c) and 1(d) the tiny peak at ω = 0 hints at the
presence of an LTT at both states. The onset of shear modes
(low-frequency shoulders evolving into maxima of the DoS
with increasing density) is also evident.

IV. DENSITY BEHAVIOR AND MODE CONTRIBUTIONS
TO DIFFUSION

Figure 2 shows the density dependence of the damping,
−z j , of the various real modes [Fig. 2(a)], and the damping,
−Re[z j] [Fig. 2(b)], and frequency, Im[z j] [Fig. 2(c)], of the
oscillatory modes related to wave propagation in the fluid.
The trends look rather smooth, indicating that the fit at a
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R4 

n = 25.49 nm-3
~ 
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C2 pair 
C3 pair 
R1 
R4 

ω

FIG. 1. Fit results for one low-density (left panels) and one high-density (right panels) state of p-H2 at T = 35 K. The normalized KVAFs
are shown in the upper panels (a) and (b). Lower panels (c) and (d) report the corresponding spectra on a semilogarithmic scale. The various
fit components are shown separately, as specified in the legend. Their sum provides the fit curve (red solid line) which is in perfect agreement
with the simulation data (black empty circles).

given density is consistent with the one at the successive
density and so on. Also, there is consistency in the density
dependence of the modes (R4 and C2) present across the
mentioned dynamical transition. A drastic change is observed
only in the imaginary part of C3, which is very low at the
first density at which such a mode is required to obtain a good
fit, probably indicating that, although the fit is sensitive to its
presence, C3 lacks a fully propagating character. Conversely,
the longitudinal component C2 varies smoothly with density
and becomes less damped in approaching the triple point
density, while its frequency grows monotonically, as expected.

Similar to our analysis of the LJ fluid [15,16], it is interest-
ing to estimate the average number of collisions involved in
the loss of velocity correlation brought about by the various
processes, and to understand if there are differences between
p-H2 and a classical fluid. In the quantum case, an appropriate
characteristic timescale must be chosen to replace the classical
Enskog mean free time between collisions of hard spheres
[15,16], which the presence of delocalization effects renders
too drastic an approximation. As demonstrated in Ref. [27],
a more appropriate time scale is the average collision time t0,
i.e., the inverse of the Einstein frequency �0 [3]. The latter
can be determined either by fits of the short time behavior of
the normalized KVAF or directly from the multiexponential

analysis, since �2
0 = −∑

j I jz2
j . Both methods provided the

t0 values reported in Table I. Denoting by τ j = −1/Re[z j]
the decay times of the various modes, we show the scaled
quantities τ j/t0 in Fig. 3.

The oscillatory modes C1 and C2 have the shortest decay
times at low density. These correspond, on average, to less
than or about one collision time and can thus be identified
with the so-called binary processes contributing to the VAF
behavior at short times [3]. Figure 3 also shows that the
low-density real modes R2 and R3 correspond to about two
to five collision times, implying that these modes require
interactions among groups of a few particles before decaying,
similar to the LJ fluid. By contrast, R4 involves some tens of
collisions, nearly a factor five more than R3. This suggests that
R4 originates from cooperative multiparticle motions, so it is
this mode that likely reflects the “nonbinary” processes [3],
leading to the slow loss of correlation of the VAF and to the
manifestation of the LTT. However, quite differently from the
LJ case, where the decay of R4 was found to span more than
60 collision times, here the number of collisions pertaining
to R4 is considerably reduced to about 25. A possible reason
for this difference might lie in the interaction properties. In
fact, by performing an exponential mode decomposition of
the Silvera-Goldman-based VAF of classical p-H2, in the
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FIG. 2. Density dependence of the damping of real modes (a) and
of the damping (b) and frequency (c) of the complex pairs associated
with longitudinal and transverse waves.

thermodynamic “ corresponding” states of Ref. [27], we found
a LTT (R4) and a number of collisions involved in its decay
again of the order of about 25. So, quantum effects are likely
to be excluded in the explanation of the mentioned difference.
These findings suggest a future useful comparison between
quantum RPMD or CMD simulations of the KVAF based on
either the LJ or the Silvera-Goldman potential.

We finally note that the agreement between the number
of collisions involved in C1, at low density, and in R1, at
high density, suggests that these two modes are in fact closely
linked, and that the dynamical transition changes the complex
character of C1, at low densities, into a real, fast decaying,
mode (R1) at high densities.

It is also interesting to break down into contributions from
real and complex modes the integral of the VAF, which
is proportional to the self-diffusion coefficient D through a

n [nm-3] 

C2
C3

R4

R1

/t 0

C1

R3

R2jτ

FIG. 3. Decay times τ j of the fitted exponentials, in units of the
collision time t0, as functions of density. The various modes are
identified as described in the text. The plotted quantities provide the
average number of collisions involved in each decay mechanism.

well-known classical Green-Kubo relation [3], which can be
easily shown to also hold for the quantum KVAF, owing to the
spectral identity Z̃ (ω = 0) = pS(ω = 0) = 3D/π .

Table II shows the percentage contribution of individual
modes (or groups of modes) to D, when pure decays are
gathered together and compared to the significant oscillatory
modes, at low (upper part of Table II) and high density (lower
part of Table II). At low density, given the negligible intensity
of the C1 mode, Table II reports its sum with C2, whereas, at
high density, we give the C2 and C3 percentages separately,
in order to show how transverse and longitudinal components
share the largest contribution to D. Here no special difference
is found between the classical LJ and the quantum p-H2 case.
At low density real modes are the main constituents of D,
while at high density complex modes (damped propagating
waves) become dominant in establishing the diffusion mecha-
nism and, thereby, its macroscopic coefficient D.

V. MODE CONTRIBUTIONS TO 〈K〉0 AND 〈K〉
Using the amplitudes and frequencies obtained from the

fits, we are finally able to determine how the various

TABLE II. Percentage contribution, as a function of density, to
the integral of the VAF of the purely decaying modes (grouped
together) and of the damped oscillatory modes (grouped only at low
density, as explained in the text). Upper rows report the low-density
results; lower rows refer to the high-density states. p-H2 (T = 35 K).

n [nm−3] 10.61 14.33 18.05

R2+R3+R4 89.7 80.4 66.5
C1+C2 10.3 19.6 33.5

n [nm−3] 21.77 25.49 29.21

R1+R4 21.0 13.7 3.0
C2 55.0 55.9 64.0
C3 24.0 30.4 33.0
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FIG. 4. Density dependence of the quantum translational kinetic
energy, in units of K, as obtained by resummation of the individual
modes of Eq. (17) (black full stars) or from the direct calculation
of Eq. (6) (black open circles joined by the black solid line). Single
terms of Eq. (17) are shown as: R1 (orange full diamonds), R2 (bright
green squares), R3 (violet diamonds), R4 (cyan full circles), C1 (blue
full squares), C2 (pink full circles), and C3 (green full stars). The
individual zero-point contributions of Eq. (18) are displayed in the
same color, but with dashed curves. That the symbols for the real
modes R1 and R4 and the complex pair C1 fall onto the dashed
curves indicates that they contribute only to the zero-point energy.
The open red squares connected by solid line correspond to the direct
calculation of 〈K〉0 from Eq. (7). The resummation of the dashed
curves, according to the expansion of Eq. (18), is displayed with red
asterisks.

dynamical processes contribute to the translational kinetic
energy by studying the individual terms of the series in
Eqs. (17) and (18). Figure 4 shows the density behavior of
each real mode and each complex pair: Dashed curves are the
contributions to the zero-point KE, while full symbols include
the effect of temperature and represent the contributions to
the total KE. A resummation of the dashed curves perfectly
coincides with the 〈K〉0 value obtained from the direct calcu-
lation of Eq. (7) shown as a red curve through empty squares.
Similarly, the sum of the full symbols agrees very well with
the values computed from Eq. (6) and displayed as a black
line joining empty circles. Numerical values of 〈K〉0 and 〈K〉
can be found in Table I. As expected, the zero-point energy
grows with density because the more restrictive confinement
of particles translates, quantum mechanically, into an increase
of their momentum. It is seen, however, that, although we are
moving along an isotherm, the total KE grows less rapidly
than 〈K〉0, meaning that the thermally activated part of the
KE decreases with increasing density. This can be understood
by analogy with the case of a solid, where an increase of
density corresponds to a narrower potential well with higher
energy levels, so that the occupation probability of excited
states diminishes.

In addition to these general considerations, the high-
density part of Fig. 4 confirms the results of Ref. [19] and
the dominant role of longitudinal waves (C2) in determining
the KE, with their larger and larger contribution to both

〈K〉0 and 〈K〉 as confinement grows. The contribution of the
LTT is minute, given the very different, nonbinary, dynamical
origin of R4, which represents an extremely slow multiparticle
process of almost negligible intensity [19]. Moreover, it is
seen that the KE, at all densities, results from a cancellation
of effects, given the negative contributions of either the C1
pair (at low density) or R1 (at high density). From a math-
ematical point of view, these are dictated by the extremely
large damping of the modes, which implies, e.g., for a real
mode with positive amplitude like R1, that −β h̄z j/(2π ) takes
a large and positive value. Therefore, z j log[−β h̄z j/(2π )] in
Eq. (18) is negative for R1. A similar consideration holds for
the C1 pair, although the mathematics of complex modes is
less transparent and difficult to detail. That the contributions
of R1 and C1 are negative can be ascribed to a diffusive-like
fast decaying character of these modes (even when they are
complex), which works in opposition to the particles’ local
confinement. This can be realized by noting that the density
and temperature behavior of the R1 component in the KE
is consistent with a diffusion process. In fact, R1 was found
to become more negative as T is raised [19], while here it
is seen to increase slightly (become less negative) with n.
Both trends imply that the more diffusion increases with T
(decreases with n), the more (the less) the confinement will be
counteracted by R1. The reason why, at low density, C1 does
not display the same diffusive-like trend as R1 is probably
due to the interplay between the real and imaginary parts
of amplitude and frequency of this mode, which transforms
into a genuine diffusion process (with the expected density
dependence) only above the triple point density, i.e., after the
dynamical crossover.

In Fig. 4 the coincidence of dashed curves and symbols
for these modes indicates that they affect mainly the zero-
point energy, without any relevant influence on the thermally
activated part of 〈K〉. Indeed, it is not evident why R1 and
C1 contribute only to 〈K〉0. We can only state again that this
common behavior of C1 and R1 suggests that they are prob-
ably different manifestations of the same dynamical process,
which still escapes a full characterization, especially below
the triple point density.

The low-density part of Fig. 4 provides further insight
on the dynamical evolution of the system in general. Real
modes at low density (R2 and R3) are seen to contribute
significantly to both 〈K〉0 and 〈K〉. For instance, the thermally
activated part due to R2 is even larger than that of C2 in the
neighborhood of the critical point. Moreover, the comparison
of the behavior of R3 (at low density) and C3 (at high density)
seems to indicate an analogous, though reversed, relationship
with respect to the one between C1 and R1: In this case,
a real mode at low density seems to evolve into a complex
pair, with a nonvanishing characteristic frequency, at high
density. In other words, R3 (or R2 plus R3) might perhaps be
interpreted as the low-density ancestors of the final transverse
low-frequency mode C3.

VI. CONCLUSIONS

The present investigation extends and complements our
previous work [19] on the dynamical interpretation of the
VAF of p-H2 by providing results of RPMD simulations
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for a number of thermodynamic states along a supercritical
isotherm, which were analyzed by means of an exponential
mode representation. A general outcome of the whole work is
that the semiquantum nature of fluid p-H2 does not alter some
general aspects of the dynamics of fluids. Like in classical
systems, a certain scheme and meaning of the modes holds
also in the quantum case. In particular, we found clear evi-
dence of the existence of a dynamical modification in passing
from close-to-critical to close-to-solidification density states.
This is quite evidently in relation to the increased viscosity
and shear stress resistance acquired by the fluid with growing
density, and leading to propagating, though strongly damped,
transverse excitations in the fluid.

As far as the mean KE is concerned, the present results
fully corroborate the conclusions of our previous temperature
study [19], namely, that (1) the origin of the large zero-point
(and then total) KE values of a molecule in a quantum fluid
and their growth with increasing density are a manifestation of
the Heisenberg uncertainty principle, and (2) the contribution
of longitudinal modes C2, which is comparable to that of
R2 at low density, grows rapidly with density and becomes
dominant at high density, as happened at all temperatures
investigated at the high-density state of Ref. [19]. Concerning
point (1), we observe that the effect can be interpreted as a
consequence of the mutual confinement exerted by the fluid
particles, due to the reduction of the effective volume avail-
able per molecule, enhanced by the increase of the excluded
volume fraction in a dense fluid. On the other hand, as shown
by Eq. (7), 〈K〉0 is, to within a constant factor, the average
excitation frequency in the KVAF spectrum, so that intense
mode pairs with the highest frequency, i.e., C2, contribute
most to the average. Thus, the smooth monotonic increase of
the C2 oscillation frequency [see Fig. 2(c)] explains point (2).
Of course, any effect of the even higher frequency character-
izing the C1 pair at low densities is completely hidden by the

negligible amplitude of this component, giving practically no
contribution to the probability density represented by Z̃ (ω) in
Eq. (7).

Explaining the large zero-point and total KE quantum
values, and their density dependence, as a manifestation of
the Heisenberg uncertainty principle can be interpreted as
evidence for the influence of the local structure on quantum
behavior. This fact is in line with simulation results obtained
for structural properties [36] and the VAF [37].

As mentioned, at the three highest densities studied here,
the dynamical picture changes somewhat abruptly, due to the
onset of propagating transverse excitations (C3) that makes
Z̃ (ω) more intense at their respective frequencies. At the
same time, Z̃ (ω) diminishes at the C2 frequency in order to
satisfy the normalization condition, and the C2 contribution
to the average frequency value is reduced. The onset of C3
thus partly mitigates the dominant role played by longitudinal
modes, as shown in Fig. 4.

Thus, it can also be appreciated that the dynamical change
across the triple point density, requiring a rather drastic modi-
fication of the scheme of the modes, does not affect the global,
perfectly smooth trends of both 〈K〉0 and 〈K〉. This might
be taken as an indication of the reliability of our description
of the density behavior of the KVAF. In fact, despite the
clear change in the dynamics, our low- and high-density
representations account very well, without discontinuities, for
a static property like the KE.

ACKNOWLEDGMENTS

This research was funded by Ente Cassa di Risparmio
Firenze (Grant No. 2016-0866) and by Ministero
dell’Istruzione dell’Università e della Ricerca Italiano (Grant
No. PRIN2017-2017Z55KCW).

[1] J. P. Boon and S. Yip, Molecular Hydrodynamics (Dover, New
York, 1980).

[2] J. P. Hansen and I. R. McDonald, Theory of Simple Liquids
(Academic Press, London, 1986).

[3] U. Balucani and M. Zoppi, Dynamics of the Liquid State
(Clarendon, Oxford, 1994).

[4] B. J. Alder and T. E. Wainwright, Decay of the velocity auto-
correlation function, Phys. Rev. A 1, 18 (1970).

[5] D. Levesque and W. T. Ashurst, Long-Time Behavior of the
Velocity Autocorrelation Function for a Fluid of Soft Repulsive
Particles, Phys. Rev. Lett. 33, 277 (1974).

[6] A. McDonough, S. P. Russo, and I. K. Snook, Long-time
behavior of the velocity autocorrelation function for moderately
dense, soft-repulsive, and Lennard-Jones fluids, Phys. Rev. E
63, 026109 (2001).

[7] R. F. A. Dib, F. Ould-Kaddour, and D. Levesque, Long-time
behavior of the velocity autocorrelation function at low densi-
ties and near the critical point of simple fluids, Phys. Rev. E 74,
011202 (2006).

[8] K. Meier, A. Laesecke, and S. Kabelac, Transport coefficients
of the Lennard-Jones model fluid. I. Viscosity, J. Chem. Phys.
121, 3671 (2004).

[9] K. Meier, A. Laesecke, and S. Kabelac, Transport coefficients
of the Lennard-Jones model fluid. II Self-diffusion, J. Chem.
Phys. 121, 9526 (2004).

[10] S. R. Williams, G. Bryant, I. K. Snook, and W. van Megen, Ve-
locity Autocorrelation Functions of Hard-Sphere Fluids: Long-
Time Tails Upon Undercooling, Phys. Rev. Lett. 96, 087801
(2006).

[11] R. E. Ryltsev and N. M. Chtchelkatchev, Hydrodynamic
anomalies in supercritical fluid, J. Chem. Phys. 141, 124509
(2014).

[12] F. Barocchi, U. Bafile, and M. Sampoli, Exact exponential
function solution of the generalized Langevin equation for
autocorrelation functions of many-body systems, Phys. Rev. E
85, 022102 (2012).

[13] F. Barocchi and U. Bafile, Expansion in Lorentzian functions of
spectra of quantum autocorrelations, Phys. Rev. E 87, 062133
(2013).

[14] F. Barocchi, E. Guarini, and U. Bafile, Exponential series ex-
pansion for correlation functions of many-body systems, Phys.
Rev. E 90, 032106 (2014).

[15] S. Bellissima, M. Neumann, E. Guarini, U. Bafile, and F.
Barocchi, Time dependence of the velocity autocorrelation

062111-8

https://doi.org/10.1103/PhysRevA.1.18
https://doi.org/10.1103/PhysRevA.1.18
https://doi.org/10.1103/PhysRevA.1.18
https://doi.org/10.1103/PhysRevA.1.18
https://doi.org/10.1103/PhysRevLett.33.277
https://doi.org/10.1103/PhysRevLett.33.277
https://doi.org/10.1103/PhysRevLett.33.277
https://doi.org/10.1103/PhysRevLett.33.277
https://doi.org/10.1103/PhysRevE.63.026109
https://doi.org/10.1103/PhysRevE.63.026109
https://doi.org/10.1103/PhysRevE.63.026109
https://doi.org/10.1103/PhysRevE.63.026109
https://doi.org/10.1103/PhysRevE.74.011202
https://doi.org/10.1103/PhysRevE.74.011202
https://doi.org/10.1103/PhysRevE.74.011202
https://doi.org/10.1103/PhysRevE.74.011202
https://doi.org/10.1063/1.1770695
https://doi.org/10.1063/1.1770695
https://doi.org/10.1063/1.1770695
https://doi.org/10.1063/1.1770695
https://doi.org/10.1063/1.1786579
https://doi.org/10.1063/1.1786579
https://doi.org/10.1063/1.1786579
https://doi.org/10.1063/1.1786579
https://doi.org/10.1103/PhysRevLett.96.087801
https://doi.org/10.1103/PhysRevLett.96.087801
https://doi.org/10.1103/PhysRevLett.96.087801
https://doi.org/10.1103/PhysRevLett.96.087801
https://doi.org/10.1063/1.4895726
https://doi.org/10.1063/1.4895726
https://doi.org/10.1063/1.4895726
https://doi.org/10.1063/1.4895726
https://doi.org/10.1103/PhysRevE.85.022102
https://doi.org/10.1103/PhysRevE.85.022102
https://doi.org/10.1103/PhysRevE.85.022102
https://doi.org/10.1103/PhysRevE.85.022102
https://doi.org/10.1103/PhysRevE.87.062133
https://doi.org/10.1103/PhysRevE.87.062133
https://doi.org/10.1103/PhysRevE.87.062133
https://doi.org/10.1103/PhysRevE.87.062133
https://doi.org/10.1103/PhysRevE.90.032106
https://doi.org/10.1103/PhysRevE.90.032106
https://doi.org/10.1103/PhysRevE.90.032106
https://doi.org/10.1103/PhysRevE.90.032106


DENSITY DEPENDENCE OF THE DYNAMICAL PROCESSES … PHYSICAL REVIEW E 100, 062111 (2019)

function of a fluid: An eigenmode analysis of dynamical pro-
cesses, Phys. Rev. E 92, 042166 (2015).

[16] S. Bellissima, M. Neumann, E. Guarini, U. Bafile, and F.
Barocchi, Density of states and dynamical crossover in a dense
fluid revealed by exponential mode analysis of the velocity
autocorrelation function, Phys. Rev. E 95, 012108 (2017).

[17] E. Guarini, S. Bellissima, U. Bafile, E. Farhi, A. De Francesco,
F. Formisano, and F. Barocchi, Density of states from mode
expansion of the self-dynamic structure factor of a liquid metal,
Phys. Rev. E 95, 012141 (2017).

[18] R. Kubo, The fluctuation-dissipation theorem, Rep. Prog. Phys.
29, 255 (1966).

[19] E. Guarini, M. Neumann, U. Bafile, S. Bellissima, and D.
Colognesi, Dynamical Origin of the Total and Zero-Point Ki-
netic Energy in a Quantum Fluid, Phys. Rev. Lett. 123, 135301
(2019).

[20] I. R. Craig and D. E. Manolopoulos, Quantum statistics and
classical mechanics: Real time correlation functions from ring
polymer molecular dynamics, J. Chem. Phys. 121, 3368 (2004).

[21] T. F. Miller III and D. E. Manolopoulos, Quantum diffusion in
liquid para-hydrogen from ring-polymer molecular dynamics,
J. Chem. Phys. 122, 184503 (2005).

[22] I. R. Craig and D. E. Manolopoulos, Inelastic neutron scattering
from liquid para-hydrogen by ring polymer molecular dynam-
ics, Chem. Phys. 322, 236 (2006).

[23] S. Habershon, D. E. Manolopoulos, T. E. Markland, and T. F.
Miller III, Ring-polymer molecular dynamics: Quantum effects
in chemical dynamics from classical trajectories in an extended
phase space, Annu. Rev. Phys. Chem. 64, 387 (2013).

[24] A. Rahman, K. S. Singwi, and A. Sjölander, Theory of slow
neutron scattering by liquids. I, Phys. Rev. 126, 986 (1962).

[25] M. Celli, D. Colognesi, and M. Zoppi, Direct experimental
access to microscopic dynamics in liquid hydrogen, Phys. Rev.
E 66, 021202 (2002).

[26] D. Colognesi, M. Celli, M. Neumann, and M. Zoppi, Micro-
scopic self-dynamics in liquid hydrogen and in its mixtures with
deuterium, Phys. Rev. E 70, 061202 (2004).

[27] S. Bellissima, M. Neumann, U. Bafile, D. Colognesi, F.
Barocchi, and E. Guarini, Density and time scaling effects on
the velocity autocorrelation function of quantum and classical
dense fluid para-hydrogen, J. Chem. Phys. 150, 074502 (2019).

[28] E. W. Lemmon, M. O. McLinden, and D. G. Friend, Ther-
mophysical properties of fluid systems, in NIST Chemistry

WebBook, NIST Standard Reference Database Number 69,
edited by P. J. Linstrom and W. G. Mallard (National Insti-
tute of Standards and Technology, Gaithersburg, MD, 2017),
http://webbook.nist.gov.

[29] I. F. Silvera and V. V. Goldman, The isotropic intermolecular
potential for H2 and D2 in the solid and gas phases, J. Chem.
Phys. 69, 4209 (1978).

[30] The mean kinetic energy can alternatively be derived from the
intrapolymer spring energies of either RPMD or path-integral
Monte Carlo simulations. In general, these values are within
2%–3% of the results obtained with Eq. (6), as shown in Table
IV of Ref. [27].

[31] M. Zoppi, D. Colognesi, and M. Celli, Density dependence of
mean kinetic energy in liquid and solid hydrogen at 19.3 K, Eur.
Phys. J. B 23, 171 (2001).

[32] Note that in Eq. (7), Z̃ (ω) is evaluated at the actual temperature
of the fluid. The concept of zero-point mean kinetic energy
is the natural extension to a quantum fluid of a key physical
quantity which originally appears in the phonon dynamics of
a solid crystal, because Z̃ (ω) is the liquid-state counterpart
of the density of phonon states G(ω) and shares with it the
property of determining the single-particle mean kinetic energy
〈K〉 through Eq. (6) [see, e.g., K. S. Singwi and M. P. Tosi, Phys.
Rev. 149, 70 (1966)]. In the most trivial case, the so-called Ein-
stein solid, G(ω) = δ(ω − ω0) and a single three-dimensional
harmonic oscillator represents the full phonon dynamics of
the system. Here one sees that 〈K〉0 = (3/4)h̄ω0, while 〈K〉 =
(3/4)h̄ω0 coth(β h̄ω0), in full agreement with Eqs. (6) and (7).

[33] B. J. Braams, T. F. Miller III, and D. E. Manolopoulos, Sum rule
constraints on Kubo-transformed correlation functions, Chem.
Phys. Lett. 418, 179 (2006).

[34] I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series,
and Products, 7th ed. (Elsevier Academic Press, New York,
2007).

[35] M. Abramowitz and I. A. Stegun, Handbook of Mathematical
Functions, with Formulas, Graphs, and Mathematical Tables
(Dover, New York, 1964).

[36] R. Potestio and L. Delle Site, Quantum locality and equilibrium
properties in low-temperature parahydrogen: A multiscale sim-
ulation study, J. Chem. Phys. 136, 054101 (2012).

[37] A. Agarwal and L. Delle Site, Grand-canonical adaptive reso-
lution centroid molecular dynamics: Implementation and appli-
cation, Comput. Phys. Commun. 206, 26 (2016).

062111-9

https://doi.org/10.1103/PhysRevE.92.042166
https://doi.org/10.1103/PhysRevE.92.042166
https://doi.org/10.1103/PhysRevE.92.042166
https://doi.org/10.1103/PhysRevE.92.042166
https://doi.org/10.1103/PhysRevE.95.012108
https://doi.org/10.1103/PhysRevE.95.012108
https://doi.org/10.1103/PhysRevE.95.012108
https://doi.org/10.1103/PhysRevE.95.012108
https://doi.org/10.1103/PhysRevE.95.012141
https://doi.org/10.1103/PhysRevE.95.012141
https://doi.org/10.1103/PhysRevE.95.012141
https://doi.org/10.1103/PhysRevE.95.012141
https://doi.org/10.1088/0034-4885/29/1/306
https://doi.org/10.1088/0034-4885/29/1/306
https://doi.org/10.1088/0034-4885/29/1/306
https://doi.org/10.1088/0034-4885/29/1/306
https://doi.org/10.1103/PhysRevLett.123.135301
https://doi.org/10.1103/PhysRevLett.123.135301
https://doi.org/10.1103/PhysRevLett.123.135301
https://doi.org/10.1103/PhysRevLett.123.135301
https://doi.org/10.1063/1.1777575
https://doi.org/10.1063/1.1777575
https://doi.org/10.1063/1.1777575
https://doi.org/10.1063/1.1777575
https://doi.org/10.1063/1.1893956
https://doi.org/10.1063/1.1893956
https://doi.org/10.1063/1.1893956
https://doi.org/10.1063/1.1893956
https://doi.org/10.1016/j.chemphys.2005.07.012
https://doi.org/10.1016/j.chemphys.2005.07.012
https://doi.org/10.1016/j.chemphys.2005.07.012
https://doi.org/10.1016/j.chemphys.2005.07.012
https://doi.org/10.1146/annurev-physchem-040412-110122
https://doi.org/10.1146/annurev-physchem-040412-110122
https://doi.org/10.1146/annurev-physchem-040412-110122
https://doi.org/10.1146/annurev-physchem-040412-110122
https://doi.org/10.1103/PhysRev.126.986
https://doi.org/10.1103/PhysRev.126.986
https://doi.org/10.1103/PhysRev.126.986
https://doi.org/10.1103/PhysRev.126.986
https://doi.org/10.1103/PhysRevE.66.021202
https://doi.org/10.1103/PhysRevE.66.021202
https://doi.org/10.1103/PhysRevE.66.021202
https://doi.org/10.1103/PhysRevE.66.021202
https://doi.org/10.1103/PhysRevE.70.061202
https://doi.org/10.1103/PhysRevE.70.061202
https://doi.org/10.1103/PhysRevE.70.061202
https://doi.org/10.1103/PhysRevE.70.061202
https://doi.org/10.1063/1.5085202
https://doi.org/10.1063/1.5085202
https://doi.org/10.1063/1.5085202
https://doi.org/10.1063/1.5085202
http://webbook.nist.gov.
https://doi.org/10.1063/1.437103
https://doi.org/10.1063/1.437103
https://doi.org/10.1063/1.437103
https://doi.org/10.1063/1.437103
https://doi.org/10.1007/s100510170065
https://doi.org/10.1007/s100510170065
https://doi.org/10.1007/s100510170065
https://doi.org/10.1007/s100510170065
https://doi.org/10.1103/PhysRev.149.70
https://doi.org/10.1103/PhysRev.149.70
https://doi.org/10.1103/PhysRev.149.70
https://doi.org/10.1103/PhysRev.149.70
https://doi.org/10.1016/j.cplett.2005.10.127
https://doi.org/10.1016/j.cplett.2005.10.127
https://doi.org/10.1016/j.cplett.2005.10.127
https://doi.org/10.1016/j.cplett.2005.10.127
https://doi.org/10.1063/1.3678587
https://doi.org/10.1063/1.3678587
https://doi.org/10.1063/1.3678587
https://doi.org/10.1063/1.3678587
https://doi.org/10.1016/j.cpc.2016.05.001
https://doi.org/10.1016/j.cpc.2016.05.001
https://doi.org/10.1016/j.cpc.2016.05.001
https://doi.org/10.1016/j.cpc.2016.05.001

