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Energy and spin diffusion in the one-dimensional classical Heisenberg
spin chain at finite and infinite temperatures
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The energy and spin diffusion behaviors in the one-dimensional classical Heisenberg spin chain have been
systematically investigated using the equilibrium diffusion method. The spatiotemporal autocorrelation functions
for energy and spin are calculated at finite and infinite temperatures. As conserved quantities, the spreading of
excess energy and spin can be used to determine their actual diffusion behaviors. At low temperatures, the
energy diffusion shows almost ballistic behavior, and spin shows superdiffusion behavior for finite chain size.
For energy diffusion, normal diffusion behavior can be obtained when the temperature is higher than 0.75. For
spin diffusion, normal diffusion behavior is observed at infinite temperature.
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I. INTRODUCTION

As a prototypical model for real magnetic systems, the
classical Heisenberg spin chain has been extensively studied
both numerically and theoretically. One of the important
questions is the actual spin diffusion behavior for the one-
dimensional (1D) classical Heisenberg chain at high temper-
atures. Although the normal diffusive behavior of spin trans-
port is predicted by the phenomenological spin-diffusion the-
ory [1,2], the lack of rigorous microscopic theory leaves space
for contradictory claims from numerical simulations [3–10].
In order to numerically explore the spin diffusion behavior,
most of the previous studies focus on the dynamics of spin au-
tocorrelation function Cs(t ) = ∑

i 〈
−→
S i(t )

−→
S i(0)〉/N [3–10].

In the asymptotic limit, the power-law time decay of Cs(t ) ∝
t−δ will give the information for spin diffusion behavior. If
δ = 1/2, the spin diffusion is normal, which is consistent
with the prediction from the standard phenomenological spin-
diffusion theory. However, if δ > 1/2, the spin diffusion be-
havior is anomalous superdiffusion.

Besides the 1D Fermi-Pasta-Ulam β (FPU-β) lattice and
discrete nonlinear Schrödinger equation lattice, the 1D clas-
sical Heisenberg spin chain represents another prototypical
model for nonlinear systems. The chaotic dynamics is inves-
tigated by calculation of the largest Lyapunov exponent at
different temperature regimes for an isotropic and ferromag-
netic Heisenberg chain [11]. For the past two decades, the
study of heat conduction in 1D nonlinear systems has attracted
much attention since the discovery of anomalous heat conduc-
tion in a 1D FPU-β lattice where the thermal conductivity
κ diverges with the system size N as κ ∝ Nα with α ∼
1/3–1/2 [12–32]. The diverging thermal conductivities of
anomalous heat conduction have been experimentally verified
for quasi-1D carbon nanotubes [33,34] and two-dimensional
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graphene [35]. The property of heat conduction in a classical
Heisenberg chain has also been studied for both ferromagnetic
and antiferromagnetic spin chains [36]. Using the equilibrium
Green-Kubo method and nonequilibrium molecular dynamics
simulation, finite heat conductivities are obtained for the 1D
classical Heisenberg spin chain at all values of temperature
and external fields [36].

In this paper, we will systematically investigate the energy
and spin diffusion behaviors in the 1D classical Heisenberg
spin chain at finite and infinite temperatures with the equi-
librium diffusion method [37]. For conserved quantities such
as energy and moment in 1D nonlinear atomic lattices, the
spatiotemporal autocorrelation functions for excess energy
CE (i, t ) and momentum CP(i, t ) can be defined and calcu-
lated [37]. If the diffusion process is normal, the correspond-
ing distributions CE (i, t ) or CP(i, t ) will follow the Gaussian

distribution ρG(i, t ) = 1√
4πDt

e− i2

4Dt where D is the diffusion
constant in the asymptotic time limit. As a result, the mean-
square displacement (MSD) 〈�x2(t )〉 of the corresponding
conserved quantity will depend on the correlation time in
a linear way as 〈�x2(t )〉 ∝ 2Dtβ with β = 1. There is a
connection theory relating energy diffusion to heat conduction
via the relation α = β − 1 [38]. For normal energy diffusion
with β = 1, the corresponding heat conduction is also normal
with α = 0. For ballistic energy diffusion with β = 2, the
corresponding heat conduction is ballistic too with α − 1.
However, if the energy diffusion is superdiffusion with 1 <

β < 2, the corresponding heat conduction is anomalous with
0 < α < 1. The relation between energy diffusion and heat
conduction has been numerically verified for 1D nonlinear
lattices such as FPU-β, φ4, Frenkel-Kontorova, and coupled
rotator models [37–39].

Unlike the nonequilibrium molecular dynamics and equi-
librium Green-Kubo methods, the equilibrium diffusion
method generates the spatial distribution C(i, t ) over the
whole lattice at every correlation time. Once a Gaussian
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distribution ρG(i, t ) is obtained as C(i, t ) ∼ ρG(i, t ), the re-
sult of normal diffusion can be almost assured. Therefore,
in judging the normal diffusion behavior, the equilibrium
diffusion method is more advantageous than the traditional
nonequilibrium molecular dynamics and equilibrium Green-
Kubo methods.

The paper will be organized as follows. In Sec. II the model
of the 1D classical isotropic Heisenberg spin chain and the
numerical method will be introduced. In Sec. III the energy
diffusion behavior at finite and infinite temperatures will be
calculated and presented. In Sec. IV the spin diffusion behav-
ior at finite and infinite temperatures will be simulated and
discussed. The summary and conclusions will be presented in
Sec. V.

II. MODEL AND METHODS

We study the 1D classical isotropic Heisenberg spin chain
with the following Hamiltonian:

H = −J
∑

i

�Si · �Si+1 =
∑

i

Hi. (1)

The spin chain is ferromagnetic if the interaction strength J >

0. For simplicity, the interaction strength J is set as unity and
the spin �Si is set as a three-dimensional unit vector. Periodic
boundary conditions are also applied with �Si = �Si+N with N
the total spin sites or the chain length.

The equations of motion can be expressed as

d �Si

dt
= −�Si × ∂H

∂ �Si

= −�Si × (�Si−1 + �Si+1). (2)

It is straightforward to find that the total energy E = ∑
i Hi

and total spin �S = ∑
i
�Si are conserved. As the current model

is isotropic without magnetic field, we can study the diffusion
of the z component of the total spin Sz = ∑

i Si,z only for
simplicity.

In the following numerical calculations we will use the
microcanonical simulation with energy density e = E/N the
input parameter. The relation between the energy density e
and the temperature T can be expressed as [40]

e = T − coth
1

T
. (3)

It is straightforward to obtain that in the low-temperature
limit T → 0, the energy density e approaches to the lowest
energy density as e → −1. This lowest energy state cor-
responds to the state that all the spins �Si are parallel in
one direction. In the infinite temperature limit T → ∞, the
energy density e approaches to zero as e → 0. This infinite
temperature state represents the state that all spins have totally
random directions. The relation between energy density e and
temperature T of Eq. (3) is plotted in Fig. 1.

The total energy E is a conserved quantity. To investigate
the energy diffusion, the spatiotemporal correlation function
of energy fluctuation CE (i, t ) can be defined as [37]

CE (i, t ) = 〈�Hi(t )�H0(0)〉
〈�H0(0)�H0(0)〉 + 1

N − 1
, (4)

where Hi = −�Si · �Si+1 is the local energy for the ith site and
�Hi(t ) = Hi(t ) − 〈Hi(t )〉 denotes the real time local energy
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FIG. 1. The relation e = T − coth 1
T of Eq. (3) between the

energy density e and temperature T for the isotropic 1D Heiseinberg
spin chain. The energy density e = −1 corresponds to the zero
temperature T = 0 case, and the energy density e = 0 represents the
infinite temperature T = ∞ case.

fluctuation. The 〈·〉 is the ensemble average which is equiva-
lent to the time average as the system is chaotic and ergodic.
For simplicity, the total size N is chosen as a odd value, and
the site index i will range from −(N − 1)/2 to (N − 1)/2. The
introduction of the extra term 1/(N − 1) is due to the use of
a closed system, and energy density instead of temperature
is the input parameter. This extra term will vanish in the
thermodynamic limit of N → ∞. At the initial correlation
time t = 0, the distribution CE (i, t = 0) = δi,0 is a Kronecker
delta function by definition. Therefore, the spatiotemporal
distribution CE (i, t ) describes the spreading of the energy
fluctuation across the spin chain. The detailed spatiotemporal
behavior of distributions CE (i, t ) will give the information
about energy diffusion for the Heiseinberg spin chain.

Since the z component of total spin Sz is also conserved,
we can define the spatiotemporal correlation function of spin
fluctuation CSz (i, t ) as [37]

CSz (i, t ) = 〈�Si,z(t )�S0,z(0)〉
〈�S0,z(0)�S0,z(0)〉 + 1

N − 1
, (5)

where �Si,z(t ) = Si,z(t ) − 〈Si,z〉 represents the real time spin
fluctuation for ith site. The initial distribution CSz (i, t = 0) is
also a Kronecker delta function, and the spatiotemporal distri-
bution CSz (i, t ) describes the spreading of the spin fluctuation
across the spin chain.

The asymptotic time behavior of correlation functions
CE (i, t ) or CSz (i, t ) can give the information of the trans-
port behavior for corresponding quantities of energy or the
z component of spin. If the asymptotic correlation function
approaches the Gaussian normal distribution as

ρG(i, t ) = 1√
4πDt

e− i2

4Dt , (6)

which is a discrete solution of standard diffusion equation
∂ρ/∂t = D∂2ρ/∂x2 with initial condition ρ(x, t = 0) = δ(x),
then it can be concluded that the diffusion behavior for the
corresponding quantity is normal and the constant D is the
diffusion constant for that quantity.
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As a result, the corresponding MSD 〈�x2(t )〉 defined as

〈�x2(t )〉 =
∑

i

i2C(i, t ) (7)

will follow a linear time dependence for normal diffusion as

〈�x2(t )〉 =
∑

i

i2ρG(i, t ) = 2Dt . (8)

If the diffusion behavior is not normal, the asymptotic MSD
usually follows a power-law time dependence as

〈�x2(t )〉 ∝ tβ. (9)

The exponent β = 2 describes the ballistic diffusion, and 1 <

β < 2 represents a superdiffusion behavior.
In the numerical simulations, the fourth-order Runge-Kutta

integration method is applied with a small time step h = 0.01.
The initial setup for {�Si} is chosen to ensure a specified
energy density e, and the corresponding temperature T can
be resolved from Eq. (3). After a transient time of 5 × 105,
another longer time of 5 × 106 will be performed to record
the data. In order to have better accuracy of the correlation
functions, 50 runs with random initial conditions for a same
energy density e will be simulated mimicking the ensemble
average. The effective result is equivalent to the result of a
single run with a total recording time of 2.5 × 108.

III. ENERGY DIFFUSION

We first study the diffusion behavior for energy at different
temperatures. It is well known that the nonlinear classical
Heisenberg spin chain can be approximated into a linearized
spin model with collective motions described by spin waves
in the low-temperature limit T → 0.

For a linear system without interaction between different
normal modes, the energy diffusion behavior should be ballis-
tic due to the infinite long mean-free path for energy carriers.
Therefore in the low-temperature regime, the transient diffu-
sion behavior should be close to ballistic for a chain with finite
length.

For low temperature T ≈ 0.1 with the energy density set as
e = −0.9, the energy distributions CE (i, t ) at three different
correlation times t = 50, 100, and 150 are plotted in Fig. 2
with chain length N = 701. From upper to lower in the central
position, the energy distributions CE (i, t ) are plotted as solid
black (t = 50), red (t = 100), and blue (t = 150) lines. It
can be seen that there are two wave fronts for each CE (i, t )
moving outwards with a constant velocity around 1. This is
a typical signature for ballistic diffusion. It is consistent with
the expectation that the nonlinear inaction between different
modes of spin waves is very small at such a low-temperature
situation, and an almost ballistic diffusion behavior should
appear for short correlation times as the chain length is finite.

However, if the temperature is increased to T ≈ 0.75 with
the energy density set as e = −0.4, the normal diffusion
behavior for energy can be obtained for the finite chain size
N = 701. In Fig. 3(a) the energy distributions CE (i, t ) at tem-
perature T ≈ 0.75 are plotted for three different correlation
times t = 400, 700, and 1000. Comparing with those energy
distributions at T ≈ 0.1 (in Fig. 2), it can be seen that the
constantly moving wave fronts of CE (i, t ) disappear here for
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FIG. 2. Energy distribution CE (i, t ) for the 1D isotropic Heisein-
berg spin chain with the energy density e = −0.9 and the corre-
sponding temperature T ≈ 0.1. The distributions at three different
correlation times t = 50, 100, and 150 are plotted as solid black,
red, and blue lines (from upper to lower in central position). The
energy diffusion exhibits an almost ballistic behavior as the fronts of
distributions CE (i, t ) travel towards outside with a constant velocity
close to 1. The chain size is set as N = 701.

T ≈ 0.75. The height of the bell shape CE (i, t ) decreases as
the correlation time increases, which is a signature of diffusive
behavior.

In order to determine the actual diffusion behavior, we plot
the rescaled energy distributions t1/2CE (i, t ) as the function
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FIG. 3. Energy distribution CE (i, t ) for the 1D isotropic Hei-
seinberg spin chain with the energy density e = −0.4 and the cor-
responding temperature T ≈ 0.75. (a) The distributions CE (i, t ) at
three different correlation times t = 400, 700, and 1000 are plotted
as solid black, red, and blue lines (from upper to lower in central
position). (b) The rescaled distributions t1/2CE (i, t ) as the function
of rescaled position i/t1/2. All three rescaled distributions collapse
into one single curve which can be fitted perfectly by a Gaussian
distribution of Eq. (6) with diffusion constant DE = 3.30. The chain
size is set as N = 701.
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FIG. 4. Energy distribution CE (i, t ) for the 1D isotropic Heisein-
berg spin chain with the energy density e = 0 and the corresponding
temperature T = ∞. (a) The distributions CE (i, t ) at three different
correlation times t = 400, 700, and 1000 are plotted as solid black,
red, and blue lines (from upper to lower in central position). (b) The
rescaled distributions t1/2CE (i, t ) as the function of rescaled position
i/t1/2. All three rescaled distributions collapse into one single curve
which can be fitted perfectly by a Gaussian distribution of Eq. (6)
with diffusion constant DE = 1.80. The chain size is set as N = 701.

of rescaled chain position i/t1/2 in Fig. 3(b). It can be seen
that all three rescaled energy distributions t1/2CE (i, t ) at cor-
relation times t = 400, 700, and 1000 collapse into one single
curve. This single curve can be well fitted by the Gaussian
distribution of Eq. (6) with the fitted diffusion constant DE =
3.30. Therefore, the normal energy diffusion can be confirmed
for the classical Heiseinberg spin chain at temperature T ≈
0.75 even for a finite chain with N = 701.

In Fig. 4 the energy distributions CE (i, t ) at infinite tem-
perature T = ∞ with energy density e = 0 are plotted. The
CE (i, t ) at three different correlation times are plotted as solid
black (t = 400), red (t = 700), and blue (t = 1000) lines in
Fig. 4(a). A similar diffusive behavior as that for T ≈ 0.75
is clearly seen. To determine the actual diffusion behavior,
the rescaled energy distributions t1/2CE (i, t ) as the function
of rescaled chain position i/t1/2 are plotted in Fig. 4(b). It
is found that all the rescaled energy distributions t1/2CE (i, t )
at three different correlation times t = 400, 700, and 1000
collapse into one single curve which can be well fitted by
a Gaussian distribution of Eq. (6) with the fitted diffusion
constant DE = 1.80. The normal energy diffusion behavior is
also confirmed for the 1D classical Heiseinberg spin chain
at infinite temperature. The diffusion constant DE = 1.80
at infinite temperature T = ∞ is smaller than the diffusion
constant DE = 3.30 at finite temperature T ≈ 0.75.

The reason that we cannot observe normal energy diffusion
for the classical Heiseinberg spin chain at a low-temperature
regime is because the chain size of N = 701 we used is not
long enough. Since the mean-free path for energy carriers is
diverging in the low-temperature limit corresponding to linear
system, the chain size needed to observe asymptotic normal
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FIG. 5. Spin distribution CSz (i, t ) for the 1D isotropic Heisein-
berg spin chain with the energy density e = −0.9 and the corre-
sponding temperature T ≈ 0.1. (a) The distributions CSz (i, t ) at three
different correlation times t = 400, 700, and 1000 are plotted as solid
black, red, and blue lines (from upper to lower in central position).
(b) The MSD 〈�x2(t )〉Sz

as the function of correlation time t . The
hollow circles are numerical data, and the red solid line through the
circles is proportional to t1.5. The black solid line above the circles
proportional to t is plotted for comparison. The spin diffusion at this
temperature is superdiffusion at least for the chain size N = 701.

energy diffusion should also diverge, which is out of our
computation ability. However, for a temperature larger than
T = 0.75, the asymptotic normal energy diffusion behavior
can already be confirmed even for a chain size of N = 701.
We should point out that T ≈ 0.75 is not a critical value
separating normal and anomalous diffusion as it might be
smaller or even vanish in the thermodynamic limit N → ∞.

IV. SPIN DIFFUSION

For the isotropic 1D classical Heiseinberg spin chain, the
total spin �S = ∑

i
�Si and its three components are conserved.

Since the three components are symmetric, we can only
consider the diffusion process for the z component of the total
spin Sz = ∑

i Si,z.
We first consider the spin diffusion in the low-temperature

region. In Fig. 5(a) the spatiotemporal distributions CSz (i, t )
are plotted at low temperature T ≈ 0.1 with energy density
set as e = −0.9. The distributions CSz (i, t ) at three different
correlation times t = 400, 700, and 1000 are plotted as solid
black, red, and blue lines (from upper to lower in central
position). Although the distributions CSz (i, t ) without moving
fronts look like diffusive ones, they are actually not a Gaussian
distribution. The background values for CSz (i, t ) are negative
even after the adding of the extra term 1/(N − 1) in Eq. (5). To
determine whether the diffusion is Gaussian or not, the time
dependence of the MSD 〈�x2(t )〉Sz

needs to be considered.
In Fig. 5(b) the MSD 〈�x2(t )〉Sz

is plotted as the function
of correlation time t . It can be seen that the time depen-
dence of 〈�x2(t )〉Sz

can be better fitted as 〈�x2(t )〉Sz
∝ tβ

with β = 1.50. This time dependence is faster than linear
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FIG. 6. Spin distribution CSz (i, t ) for the 1D isotropic Heisein-
berg spin chain with the energy density e = −0.4 and the corre-
sponding temperature T ≈ 0.75. (a) The distributions CSz (i, t ) at
three different correlation times t = 400, 700, and 1000 are plotted
as solid black, red, and blue lines (from upper to lower in central
position). (b) The MSD 〈�x2(t )〉Sz

as the function of correlation
time t . The hollow circles are numerical data, and the red solid
line through the circles is proportional to t1.27. The black solid line
above the circles proportional to t is plotted for comparison. The
spin diffusion at this temperature is also superdiffusion at least for
the chain size N = 701.

time dependence, and the spin diffusion at low temperature
T ≈ 0.1 is superdiffusive at least for the chain size N = 701
studied here.

We next consider the spin diffusion at temperature of
T ≈ 0.75 with energy density e = −0.4. At this temperature,
the normal energy diffusion is already obtained. In Fig. 6(a)
the spin distributions CSz (i, t ) at three different correlation
times t = 400, 700, and 1000 are plotted as solid black,
red, and blue lines (from upper to lower in central position).
The negative background values for CSz (i, t ) remind us the
diffusion behavior is still not normal.

In Fig. 6(b) the MSD 〈�x2(t )〉Sz
is plotted as the function

of correlation time t . It can be seen that the numerical data can
be better fitted by a power-law dependence as 〈�x2(t )〉Sz

∝ tβ

with β = 1.27. The spin diffusion at this temperature is still a
superdiffusive behavior. The exponent β = 1.27 here at T ≈
0.75 is smaller than that of β = 1.50 at T ≈ 0.1.

At the infinite temperature T = ∞ with energy density
set as e = 0, the spin distributions CSz (i, t ) are plotted in
Fig. 7(a) for a chain with N = 1501. The CSz (i, t ) at three
different correlation times t = 1200, 2100, and 3000 are
plotted as solid black, red, and blue lines (from upper to
lower in central position). The background values for CSz (i, t )
are now vanishing, which is different from that at finite
temperatures.

In Fig. 7(b) the rescaled spin distributions t1/2CSz (i, t )
are plotted as the function of rescaled positions i/t1/2. All
three rescaled distributions t1/2CSz (i, t ) at correlation times
t = 1200, 2100, and 3000 collapse into one single curve,
and this curve can be well fitted by the Gaussian distribution
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FIG. 7. Spin distribution CSz (i, t ) for the 1D isotropic Heisein-
berg spin chain with the energy density e = 0 and the corresponding
temperature T = ∞. (a) The distributions CSz (i, t ) at three different
correlation times t = 1200, 2100, and 3000 are plotted as solid black,
red, and blue lines (from upper to lower in central position). (b) The
rescaled distributions t1/2CSz (i, t ) as the function of rescaled position
i/t1/2. All three rescaled distributions collapse into one single curve
which can be fitted very well by a Gaussian distribution of Eq. (6)
with diffusion constant DSz = 2.35. (c) The MSD 〈�x2(t )〉Sz

as the
function of correlation time with a linear-linear plot. The straight
line is 〈�x2(t )〉Sz

= −250 + 2DSz t fits well with the numerical data
demonstrating a normal diffusion behavior. The chain size is set as
N = 1501.

of Eq. (6) with the diffusion constant DSz = 2.35. Therefore
at the infinite temperature, the normal spin diffusion is also
observed for a finite chain size N = 1501.

For spin diffusion, it is hard to give a conclusion for
finite temperatures as the chain length we used is far from
thermodynamical limit. But for the infinite temperature case,
the normal spin diffusion behavior obeying the conventional
spin-diffusion theory can be assured with much confidence.
The actual spin diffusion behavior at a low temperature needs
more careful treatment with more powerful numerical simula-
tions.

V. CONCLUSION

We have systematically investigated the energy and spin
diffusions for the 1D classical and isotropic Heiseinberg spin
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chain. The energy and spin distributions are calculated for
a finite spin chain with size up to N = 1501. For energy
diffusion, the normal diffusion behavior can be obtained for
a temperature higher than T ≈ 0.75. For spin diffusion at
finite temperature, the diffusion behavior can be describe by a
superdiffusion with power-law time dependence 〈�x2(t )〉Sz

∝
tβ and the exponent β is larger than 1. The exponent β

decreases as the temperature increases. At infinite temper-
ature, the normal diffusion behavior obeying the conven-

tional spin-diffusion theory is also obtained for the spin
diffusion.
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