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Instabilities of time-averaged configurations in thermal glasses
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In amorphous solids at finite temperatures the particles follow chaotic trajectories which, at temperatures
sufficiently lower than the glass transition, are trapped in “cages.” Averaging their positions for times shorter
than the diffusion time, one can define a time-averaged configuration. Under strain or stress, these average
configurations undergo sharp plastic instabilities. In athermal glasses the understanding of plastic instabilities
is furnished by the Hessian matrix and its eigenvalues and eigenfunctions. Here we propose an uplifting of
Hessian methods to thermal glasses, with the aim of understanding the plastic responses in the time-averaged
configuration. We discuss a number of potential definitions of Hessians and identify which of these can
provide eigenvalues and eigenfunctions which can explain and predict the instabilities of the time-averaged
configurations. The conclusion is that the nonaffine changes in the average configurations during an instability
is accurately predicted by the eigenfunctions of the low-lying eigenvalues of the chosen Hessian.
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I. INTRODUCTION

The theory of the micromechanics of plasticity and ma-
terial failure of amorphous solids at finite temperatures lags
behind the understanding of the athermal counterpart. At
T = 0 an amorphous solids in mechanical equilibrium can be
usefully characterized by the eigenfunctions and eigenvalues
of the Hessian matrix. In a system with N particles in a volume
V in d dimensions and a Hamiltonian U (r1, r2 . . . , rN ), where
the particles’ coordinates are {ri}N

i=1, the Hessian matrix is
defined as

Hi j ≡ ∂2U (r1, r2 . . . , rN )

∂ri∂r j
. (1)

Being a symmetric real matrix the eigenvalues {λi}dN
i=1 of H are

real and semipositive as long as the system is mechanically
stable. The normal modes of the system have frequencies
ωi ≡ √

λi from which the density of states can be calculated.
Mechanical instabilities are associated with nonzero eigenval-
ues going to zero, and the associated eigenfunction predicts
the nonaffine material response during the instability [1,2].

Once the system gains thermal energy at temperature
T , it is never in mechanical equilibrium since the particles
constantly dance around a mean position. Thus a temporal
Hessian calculated at any given time will exhibit negative
eigenvalues and will be less useful in predicting instabilities or
providing structural information [3]. Nevertheless, at tempera-
tures low enough compared to the glass transition temperature
Tg, the particles are stuck for sufficiently long times in cages,
allowing us to compute their average positions. It is therefore
interesting and relevant to attempt to characterize the average
configurations and their instabilities using a modified Hessian
Ĥ which is adapted for the thermal conditions. In Sec. II we
discuss a number of candidates, requiring a minimal condition
that as long as the average positions are stationary and stable,
the eigenvalues of Ĥ were semipositive, in contradistinction

with the instantaneous Hessian Eq. (1). Having a number of
candidates, we test their efficacy in a standard model of a glass
former, which is described in Sec. III. In Sec. IV we motivate
the selection of one of the candidate Hessians which appears
to provide an excellent characterization of the plastic events in
the average configurations. In fact, the nonaffine displacement
of the average particle positions during a plastic event can
be understood from the knowledge of the eigenvalues and
eigenfunctions of Ĥ just before the event takes place.

Possibly one of the interesting conclusions of this study is
that providing a typical glass-forming system with tempera-
ture is not like increasing the level of the allowed motion on
top of the athermal energy landscape. The dynamics which
temperature allows results in momentum transfers that are
interpreted as effective forces between the particles that are
very different from the bare forces [4–7]. Thus even when
the bare forces are binary, the dressed forces gain ternary,
quaternary, and higher order components due to multiple
interactions between particles. If one thinks of these forces as
derivable from an effective Hessian as discussed below, it be-
comes obvious that the resulting “energy landscape” becomes
quite different from the athermal counterpart and explicitly
temperature dependent. This important point is emphasized
below in the conclusions section.

II. CANDIDATE HESSIANS

The first derivation of a microscopic theory of the response
of the materials to external mechanical strains was devel-
oped by Born (see, e.g., Refs. [8,9]) for athermal systems.
Further developments of the microscopic theory of elasticity
at finite temperatures using statistical mechanics were of-
fered in Ref. [10]. The result is that thermal corrections to
the Born theory include fluctuation terms, the magnitude of
which are significant at high temperatures, vanishing at zero
temperature in the case of perfect crystals. A generalization
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of this approach to arbitrary systems in the solid state was
developed in Ref. [11]. The limit of zero temperatures in this
approach indicates the existence of nonvanishing fluctuation
contributions in systems that are more complex than the
perfect crystal. Considering systems at zero temperature has
an obvious advantage: it is possible to study the response
of a single configuration which is an “inherent state” [12].
This allows us to use a purely mechanical approach [1,2,13–
16], which is very useful in studying mechanical properties
of amorphous solids. The Hessian matrix, whose eigenvalues
are semipositive at T = 0, provides important information,
leading to an athermal theory that provides good understand-
ing of the density of states, plastic events, and the failure
mechanisms of amorphous solids.

In order to lift the methods that were so useful at T = 0
to finite temperatures one needs to recognize that although
the particle positions in a thermal systems are indeed not
stationary, in glasses with large relaxation times one can
determine the averaged positions much before the onset of
diffusion or the glass relaxation to thermodynamic equilib-
rium. The averaged positions are obviously stationary and
can be used to determine the renormalized force laws that
hold these average positions stable [4–7]. It was recognized
that the renormalized forces are very different from the bare
forces. For example, even if the bare forces are binary, the
renormalized forces are not; generically they contain ternary,
quaternary, and higher order contribution [5–7]. The effective
potential from which such renormalized forces can be derived
is in general not known. We thus need to proceed with care in
searching for the “correct” effective Hessian that may provide
useful predictions for the plastic instabilities of the average
configuration of a thermal glass under external strains and
stresses. In this section we demonstrate possible definitions
of an effective Hessian at finite temperatures with the aim of
rationalizing instabilities in the average configurations.

Consider a glassy system composed of N particles with
time-dependent positions {ri(t )}N

i=1 which is endowed with
a Hamiltonian U (r1(t ), . . . , rN (t )). Assume that the system
is at temperature T which is sufficiently low so that the
glassy relaxation time (or the effective diffusion time) τG

is long enough, so that one can compute the time-averaged
positions Ri:

Ri ≡ 1

τ

∫ τ

0
dt ri(t ), (2)

where τ � τG. By definition the positions Ri are time inde-
pendent and the configuration {Ri}N

i=1 is stable, at least for the
time interval [0, τG]. In addition to the mean positions we will
employ below also the covariance matrix � defined as

�i j ≡ 1

τ

∫ τ

0
dt[ri(t ) − Ri][r j (t ) − R j]. (3)

We can then define three different effective Hessians as fol-
lows:

A. Hessian computed at the average positions

To emphasize the fact that the bare Hessian which is
computed from the bare potential (which is fully sufficient at
zero temperature) is not providing useful information at finite

temperatures, we consider the first possible candidate Hes-
sian, denoted as H (1). Here derivatives of the bare potential
are computed at the average positions:

H (1)
i j = ∂U (r1 · · · rN )

∂ri∂r j

∣∣∣
ri=Ri,r j=R j

. (4)

B. Hessian computed as the time average of
the instantaneous Hessian

Following the success of computing the effective forces
in thermal glasses as the time average of the instantaneous
forces [5–7] one can try also to time average the instantaneous
Hessian, denoting it H (2):

H (2)
i j ≡ 1

τ

∫ τ

0
dt

∂2U (r1(t ), r2(t ) . . . , rN (t ))
∂ri(t )∂r j (t )

, (5)

where the integration time τ is large enough to achieve conver-
gence and small enough for the cage structure to remain intact.
One could hope that this candidate Hessian would be sensitive
to the dynamics to be able to provide useful information.

C. Hessian computed from the inverse of the covariance matrix

The third candidate Hessian is the most tricky, since it
is based on the notion of effective potential. As said above,
in amorphous solids we can define the average positions Ri

which are stationary in time and can consider the effective
forces F̂ that stabilize these positions. These forces are de-
termined by the momentum transfer during the dynamics,
but the momentum transferred between particles i and j can
depend on intervening interaction between particles i and k
(leading to ternary rather than binary effective interactions), or
between particle i, k, and �, giving rise to quaternary effective
interactions, etc. While the bare force on the ith particle
−∂U/∂ri does not vanish at Ri, we can think of an effective
Hamiltonian Û from which (in principle) the effective forces
F̂ i can be derived and of course should satisfy the condition
−∂Û/∂ri = 0 when computed at Ri.

Although we do not have an explicit solution for the
effective potential Û , we can still Taylor expand it around the
average positions Ri:

Û ({ri}) = Û ({Ri}) + 1
2 ũH(3)|Ru + · · · , (6)

where u = {ri − Ri} is the set of particle displacements from
the average. The candidate Hessian H(3) is given by

H (3)
i j = ∂2Û (ri)

∂ri∂r j

∣∣∣∣
Ri,Rj

. (7)

Of course, at this point the definition is useless since we do
not know the actual form of Û ({ri}). But if we did we could
also compute the average positions and the covariance matrix
according to

Ri =
∫

rie
− Û (rj )

kBT d{rj}∫
e− Û (r j )

kBT d{rj}
, (8)

〈rir j〉 =
∫

rir je
− Û ({rk })

kBT d{rk}∫
e− Û ({rk })

kBT d{rk}
. (9)
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Knowing the first and the second moments one can define the
multivariate Gaussian distribution

f (r) = C exp
{ − 1

2
˜(r − R)�−1(r − R)

}
. (10)

Comparing Eq. (6) and Eq. (10) one identifies

H(3) = kBT �−1. (11)

We should note at this point that the covariance matrix is
positive semidefinite only, due to the existence of Goldstone
modes, and Eq. (11) should be replaced by

H(3) = kBT �+, (12)

where �+ is the pseudoinverse of the covariance matrix.
Of course, the effective Hessian given by Eq. (12) and the
covariance matrix have the same set of eigenfunctions

H(3)�i = λH
i �i, (13)

and their eigenvalues are related by

λH
i = kBT

λ�+
i

. (14)

This approach was used to study the vibrational spectra of
colloids and granular systems based on measurements using
video and confocal microscopy (see e.g., Refs. [17,18]) and
restoration of effective interaction potential using simulation
methods [19]. It should be stressed that this method appears
to have been used only for unstrained systems. Below we will
use this effective Hessian for shear strained systems before
and after plastic responses.

In the next section we will use a standard model of glass
formers to decide which of the candidate Hessians provides
the information that we seek.

III. MODEL

To make a choice between the three candidate Hessians
we compute them together with their eigenvalues and eigen-
functions in a standard model of a glass former, i.e., a binary
mixture of point particles interacting via inverse power-law
potentials [20]. Here 50% of the particles are “small” (type
A), and the other 50% of the particles are “large” (type B). The
interactions between particle α (being A or B) and particle β

(being A or B) are defined as

φαβ (r) = ε
(σαβ

r

)12
. (15)

It is convenient to introduce reduced units, with σAA = 1
being the units of length and ε = 1 the unit of energy (with
Boltzmann’s constant being unity).

Time-averaged configurations and their instabilities

Simulations were performed using a Monte Carlo method
in an NVT ensemble of N = 256 particle in a two-
dimensional box of size L × L with periodic boundary con-
ditions. L was chosen such that at any temperature the density
ρ = 0.76 [20]. The acceptance rate was chosen to be 30% at
all temperatures. We first equilibrate a system at a temperature
T = 3 and then cool it down in steps of �T = 10−3 to a
target temperature 0 < T � 0.1, where the upper limit was
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FIG. 1. The stress averaged over 10 000 Monte Carlo sweeps
vs strain, for three different temperatures: (a) T = 0.0001, (b) T =
0.01, (c) T = 0.1. Arrows indicate the plastic events in the average
configuration that are analyzed in detail below.

chosen since in this system Tg ≈ 0.3 [20]. Once the system
is equilibrated at the target temperature we begin to strain
the system by simple shear in a quasistatic manner. Here
“quasistatic” means that after every small step of strain we
allow the system to equilibrate performing 10 000 Monte
Carlo sweeps. After completing the last Monte Carlo sweep
a small affine increase in strain �γ is defined by the volume
preserving transformation

x′
i = xi + �γ yi, y′

i = y. (16)

In thermal glasses every such affine step destroys the thermal
equilibrium, causing a change in the average positions and the
covariance matrix. To regain equilibrium one should allow a
nonaffine relaxation to a new average particle position and
covariance matrix. In the quasistatic protocol we make sure
that the average positions are stabilized. Computing the aver-
age stress is done in a subsequent run of 1 500 000 sweeps,
again controlling convergence. Typical time-averaged stress
σxy versus strain γ for temperatures T = 0.001, T = 0.01,
and T = 0.1 is shown in Fig. 1.

We note that the time-averaged stress exhibits sharp drops
even at T/Tg ≈ 0.33, and these are easily distinguishable from
temperature fluctuations that are averaged out in these plots.
We refer to the drops in the time-averaged stress as plastic
drops. Our aim here is to understand, and possibly predict, the
nonaffine change in the average positions of particles (average
displacement) that occur during these plastic drops, using the
Hessian and its eigenproperties before the drop takes place.

To prepare for comparisons with theory we consider the
nonaffine displacement fields that are obtained from the time-
averaged configurations before and after a sharp drop. These
displacement fields are obtained by subtracting from the mea-
sured change in averaged configurations the last affine step as
defined in Eq. (16) before the drop. We denote below the
normalized nonaffine displacement field as N (r). Examples
of such fields are shown in Fig. 2 for T = 0.0001 (panel a),
T = 0.01 (panel b), and T = 0.1 (panel c). The displacement
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FIG. 2. The nonaffine displacement field for T = 0.0001 (a),
T = 0.01 (b), and T = 0.1 (c) measured for the time-averaged mean
particle positions during the plastic drops indicated with arrows in
Fig. 1.

fields shown here are associated with the plastic drops that are
indicated with an arrow in Fig. 1.

We note that the observable sharp plastic drops in the time-
averaged stress can be accompanied by nonaffine displace-
ment in the average configurations that can be either system
spanning or localized. In our simulation systems spanning
events are more prevalent, presumably smaller localized drops
are swamped by temperature fluctuations.

IV. WHICH HESSIAN?

At this point we are ready to select which Hessian fits
the bill and provides a useful theory for understanding the
instabilities and the nonaffine displacements in the average
configurations. For the present model, and presumably quite
generally, the first candidate H (1) can be ruled out quite
immediately since its calculation at the average points yields
negative eigenvalues similarly to the instantaneous Hessian.
We thus do not discuss it further.

The second candidate H (2) computed as the time average
of the bare Hessian provides a semipositive spectrum at all
the simulated temperatures, with two zero eigenvalues for the
Goldstone modes. It therefore appears on the face of it to be a
valid candidate. However, computing the eigenvalues of H (2)

at a series of increasing temperatures reveals that even in the
equilibrium state with zero strain these eigenvalues increase
as a function of temperature. We propose that this is highly
unphysical. One expects the amorphous solid to become softer
as temperature increases, with eigenvalues going to zero at the
glass transition temperature. We have checked that this un-
physical behavior persists for different model Hamiltonians,
including the standard Lennard-Jones glass [21]. A second
problem with H (2) is that its lowest eigenvalue never appears
to approach zero near a plastic instability. Its eigenfunctions
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FIG. 3. (a) The drop in the average stress expanded at γ ≈
0.0755. (b) The two lowest-lying eigenvalues of the average Hessian
Ĥ as a function of strain in the expanded strain neighborhood of
the sharp drop indicated with an arrow in Fig. 1. The temperature is
T = 0.0001.
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FIG. 4. (a) The drop in the average stress expanded at γ ≈
0.0653. (b) The two lowest-lying eigenvalues of the average Hessian
Ĥ as a function of strain in the expanded strain neighborhood of
the sharp drop indicated with an arrow in Fig. 1. The temperature is
T = 0.01.

did not show a resemblance to the nonaffine events that we
describe.

In hindsight, this should not be surprising. The bare Hes-
sian has information about the binary interactions only, and
by time averaging it we do not input anywhere the pertinent
information about higher order interactions. Not having this
information makes the second candidate useless. We thus
discard this candidate Hessian from our list.

The third candidate Hessian H (3) appears to provide us
with the best guide for understanding the plastic instabili-
ties, as we demonstrate in detail in the next section. But
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FIG. 5. (a) The drop in the average stress expanded at γ ≈
0.0265. (b) The two lowest-lying eigenvalues of the average Hessian
Ĥ as a function of strain in the expanded strain neighborhood of
the sharp drop indicated with an arrow in Fig. 1. The temperature is
T = 0.1.
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FIG. 6. The eigenfunctions of Ĥ associated with the lowest
eigenvectors that tend to vanish at the plastic instability. Their visual
resemblance to the actual nonaffine displacement fields shown in
Fig. 2 is clear and is emphasized further in Fig. 7.
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FIG. 7. A comparison between the eigenfunctions and the actual
nonaffine displacement fields of the average configurations. Here
we superimposed the nonaffine displacement fields shown in Fig. 2
with the eigenfunctions shown in Fig. 6. Their visual resemblance is
striking.

it also agrees with physical intuition, providing eigenvalues
that reduce with increasing temperature, exhibiting a semi-
positive spectrum with two Goldstone modes. We thus drop
from this point onward the superscript (3) and denote the
chosen candidate Hessian as Ĥ to distinguish it from the bare
Hessian H .

V. PREDICTING NONAFFINE TIME-AVERAGED
DISPLACEMENTS

The most stringent test on the chosen Hessian is its ability
to predict the nonaffine-displacement using its eigenfunctions
and eigenvalues before the instability takes place. As said
above, excluding Goldstone modes, the eigenvalues of Ĥ are
all real and positive as long as the system is stable. Moreover,
they display a very weak dependence on the strain as long as
the instability is not approached. An example of the strain-
dependence stress and of the two lowest-lying eigenvalues of
Ĥ are shown in Figs. 3–5 for all three temperatures in Fig. 1.
We see that there is a clear tendency for the lowest positive
eigenvalue to vanish at strain values that correspond to the
sharp stress drops.

At this point consider the eigenfunctions �1 of Ĥ which
are associated with the lowest-lying eigenvalues λ1 at the
three temperatures discussed here. In Fig. 6 we show the
three eigenfunctions associated with the lowest eigenvalue at
each temperature, and these should be compared with the
nonaffine displacement fields in Fig. 2. It is obvious to the eye
that the correspondence is quite striking. To emphasize this
correspondence we show in Fig. 7 the nonaffine displacements
superimposed on the eigenfunctions. A quantitative measure
of the agreement (and the predictability of the nonaffine
displacement field from the eigenfunction) is obtained by
normalizing the displacement field and computing the scalar
product a1 ≡ N (r) · �1 with the (orthonormal) eigenfunction.
For the three temperatures discussed here we find the scalar
product to be 0.981 for T = 0.0001, 0.893 for T = 0.01, and
0.992 for T = 0.1. Obviously the eigenfunction associated
with the eigenvalue that goes to zero at the instability are
able to predict the nonaffine displacement field in the average
position quite successfully. It is very interesting that this
predictive capability exists even at T = 0.1, which is about
a third of Tg.

VI. SUMMARY AND CONCLUSIONS

In this paper we examined the lifting of athermal Hessian
methods to glasses at finite temperatures. The main idea is
that at temperatures that are low enough one can determine a
stationary average position of all the involved particles. Such
a configuration has a vanishing effective force on each parti-
cle, exactly as at T = 0 in an inherent state. A well-chosen
Hessian matrix then should supply information about plastic
instabilities that is as useful as the bare Hessian at T = 0. A
priori it is not obvious how to define such a “well-chosen”
Hessian. We have examined in the present paper a number
of candidates and discovered that the effective Hessian that
is found from inverting the covariance matrix is the most
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appropriate. It exhibits eigenvalue that decrease upon increas-
ing temperatures, in agreement with the expectation that the
glassy solid softens up upon heating. More importantly, the
lowest eigenvalues of this Hessian tend to vanish at the strain
values where the average stress suffers sharp drops indicating
an important plastic rearrangement in the average positions of
the particles. We discovered that the eigenfunctions associated
with the lowest eigenvalue have almost full projection on
the nonaffine displacement field, providing us with a useful
predictability of the nonaffine plastic event.

Having in mind the usefulness of the Hessian methods at
athermal conditions, we trust that the present results should

have further implications for the study and understanding of
the mechanical properties of thermal glasses.
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