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Non-Markovian harmonic oscillator across a magnetic field and time-dependent force fields
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We study the non-Markovian Brownian motion of an electrically charged harmonic oscillator through the
action of both a constant magnetic field and time-dependent force fields. The generalized Langevin equation with
a friction memory kernel is used to derive the generalized phase-space Fokker-Planck equation for the harmonic
oscillator in the absence and in the presence of time-dependent force fields. To achieve our goal, the characteristic
function method is applied to obtain, in an accurate way, the theoretical description of the problem. We explicitly
calculate the correlation and cross-correlation functions for the position and velocity vectors. We show that the
relevant physics behind the theory is contained in the generalized diffusion coefficient, which accounts for the
natural coupling between both the harmonic oscillator and magnetic field. Our theoretical results are compared
with those previously reported in the literature.
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I. INTRODUCTION

The non-Markovian Brownian motion continues to be a
topic of increasing interest in the study of physical, chemi-
cal, and biological systems in which the thermal interaction
between the system and its surroundings takes place through
the friction memory effects. In the literature, there exists
an important number of works related to non-Markovian
Brownian motion characterized by a generalized Langevin
equation (GLE) with Gaussian statistical properties of the
noise. This has been corroborated in recent contributions as,
for instance, non-Markovian intracellular transport with sub-
diffusion [1], the fluctuation-dissipation theorem for particle-
bath systems in a harmonic field [2], charge-particle transport
in semiconductors [3], test particles in a gas for Markovian
and non-Markovian Langevin dynamics [4], work fluctuation
and its optimal extraction from a non-Markovian bath [5],
non-Markovian fluctuation relations [6–10], and others recent
contributions [11–18]. Also, works on the study of colloidal
motion in viscoelastic media [19–22], the dynamics of protein
filaments [23–25], anomalous diffusion in disordered media
[26,27], and molecular transport in cells [28,29] have been
reported.

It is our purpose in the present contribution to describe
the non-Markovian Brownian motion of a charged harmonic
oscillator, under the action of a magnetic field and time-
dependent force fields. We use the characteristic function
method to exactly obtain the generalized phase-space Fokker-
Planck equation for the charged harmonic oscillator described
by a GLE with a general friction memory kernel. The friction
memory kernel is assumed to be symmetric and its Laplace
transform must exist. It is shown that upon the derivation
of the non-Markovian Fokker-Planck equation, the coupling
effect between the rotational character of the magnetic field

*juliochg@xanum.uam.mx
†ines@xanum.uam.mx

and the harmonic oscillator arises in a natural way in the
generalized diffusion coefficient, which is the relevant physics
behind the theoretical description. In our contribution, we
recognize a prolonged algebra involved in the calculations;
however, the method of characteristic function provides an
accurate and exact theoretical approach. Furthermore, it has
recently been proven that in the large time limit, the GLE
associated with the harmonic oscillator in a magnetic field
without the time-dependent force fields is stationary, if the
noise correlation function satisfies the fluctuation-dissipation
relation of the second kind [8]. It is worthwhile to comment
that very few works related to non-Markovian Brownian
motion in a magnetic field has been reported in the literature
[8,14–16,18]. For this reason, we consider that our present
contribution can be useful to explore others alternative non-
Markovian fluctuation relations, as well as the study of other
non-Markovian systems where the influence of the magnetic
field is important.

In 1976, a clever method to derive the generalized Fokker-
Planck equation (FPE) for a free particle and for a particle
bounded by a harmonic potential for simple non-Markovian
systems was reported by Adelman [30]. Twenty years later,
the study of the statistical properties of linear oscillators
driven by both internal and external Gaussian colored noise
was given in Ref. [31]. By means of the explicit solution of the
GLE with a general friction memory kernel, the generalized
phase-space FPE for the harmonic oscillator could also be
derived using the characteristic function method. It was shown
that the generalized phase-space FPE is exactly the same as
the one derived by Adelman [30].

Over three years ago, the characteristic function method
was also used to study the Brownian motion of a charged
particle in the presence of a magnetic field and time-
dependent force fields [15]. The consistency of the results
reported in [15] was corroborated in two limiting cases,
namely, in the case of a free particle and in the Marko-
vian limit. In the former, the velocity-space and phase-
space FPE exactly reduce to those obtained by Adelman
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[30], whereas in the latter, they also reduce to the expected
results [32–36].

Very recently, in Ref. [14], an alternative method for
deriving the non-Markovian phase-space FPE for a charged
particle bounded by a harmonic potential and under the action
of a constant magnetic field was proposed. However, before
obtaining the non-Markovian phase-space FPE for such a
system, the authors applied the proposed method to obtain
the generalized FPE in the following cases: the velocity-space
FPE for a free particle, the phase-space FPE for a particle
bounded by a harmonic potential, the velocity-space FPE for
a free particle in a magnetic field, and, finally, the generalized
phase-space FPE for a harmonic oscillator in a magnetic field.
Comments on the method in each case will be explicitly given
in the last section of our present contribution. In principle,
the generalized phase-space FPE for a harmonic oscillator
in a magnetic field is the original contribution reported in
[14]; however, notable differences are found when such a
non-Markovian FPE is compared with the one derived in
our present contribution, in which we use the method of
characteristic function.

Our paper is organized as follows: To easily follow the
mathematics in our current contribution, we consider it nec-
essary to include a brief study, in Sec. II, of the problem
of a harmonic oscillator in a similar way as in Ref. [31]. In
Sec. III, we derive the generalized phase-space FPE for the
harmonic oscillator across a magnetic field in the absence of
time-dependent force fields, which in turn is compared with
previous results reported in [15,30,31]. Section IV focuses
on the derivation of the generalized phase-space FPE for the
charged harmonic oscillator across a magnetic field, taking
into account the presence of time-dependent force fields.
The comparison of the results reported in Ref. [14] and the
corresponding comments are explicitly given in Sec. V. Our
concluding remarks are given in Sec. VI and, at the end of our
work, two appendices are given for an explicit algebra.

II. GENERALIZED PHASE-SPACE FPE FOR
A HARMONIC OSCILLATOR

A. Generalized Langevin equation

In this section, we summarize the calculations given in
Ref. [31] to derive the generalized phase-space FPE for a
harmonic oscillator of mass m = 1 embedded in a thermal
bath of temperature T . The non-Markovian dynamics involv-
ing memory thermal interaction with its surroundings is, in
general, characterized by a GLE containing a general friction
memory kernel. For the one-dimensional (1D) harmonic os-
cillator, the GLE can be written as

ẍ +
∫ t

0
γ (t − t ′) ẋ(t ′) dt ′ − ω2x = f (t ), (1)

where γ (t ) is the friction memory kernel considered as a
general and symmetric function of time, ω2 = k/m is the char-
acteristic frequency of the harmonic oscillator, and f (t ) is the
internal noise per unit mass, which satisfies the fluctuation-
dissipation relation of the second kind [37],

〈 f (t ) f (t ′)〉 = kB T γ (t − t ′), (2)

with kB being the Boltzmann’s constant. This relation guaran-
tees that the Langevin dynamics (1) becomes stationary in the
large time limit [38]. The solution of Eqs. (1) can be obtained
using Laplace transformation and reads

x(t ) = 〈x(t )〉 +
∫ t

0
Ha

0 (t − t ′) f (t ′)dt ′, (3)

where the average value is given for nonrandom initial condi-
tions by

〈x(t )〉 = x0χ
a
0 (t ) + v0Ha

0 (t ), (4)

with x0 = x(0), v0 = v(0). The function χa
0 (t ) reads

χa
0 (t ) = 1 − ω2

∫ t

0
Ha

0 (t ′)dt ′, (5)

and Ha
0 (t ) is the inverse Laplace transform of Ĥa

0 (s), such that

Ĥa
0 (s) = 1

s2 + sγ̂ (s) + ω2
. (6)

Also, γ̂ (s) is the Laplace transform of γ (t ).

B. Generalized phase-space FPE

The generalized phase-space FPE associated with GLE (1)
was derived in [31] using the characteristic function. The
non-Markovian FPE for the conditional probability density
P(x, v, t |x0, v0) is shown to be

∂P

∂t
+ v

∂P

∂x
− ω̃2(t ) x

∂P

∂v

= β̃(t )
∂ (vP)

∂v
+ kB T β̃(t )

∂2P

∂v2
+ kB T [ω̃2(t ) − ω2]

∂

∂v

∂P

∂x
,

(7)

where β̃(t ) is the friction function and ω̃2(t ) is the frequency
function, both defined by

β̃(t ) = − 1

�ho
(AC̈ − ÄC) = −d ln �ho

dt
, (8)

ω̃2(t ) = 1

�ho
(ȦC̈ − ĊÄ), (9)

�ho = AĊ − ȦC, (10)

A = χa
0 (t ), Ȧ = −ω2Ha

0 (t ), Ä = −ω2Ḣa
0 (t ), (11)

C = Ha
0 (t ), Ċ = Ḣa

0 (t ), C̈ = Ḧa
0 (t ), (12)

where the “overdot” means time derivative. For a 3D isotropic
harmonic oscillator, the generalized phase-space FPE for the
conditional probability P (r, v, t |r0, v0), becomes

∂P

∂t
+ v · ∇rP − ω̃2(t ) r · ∇vP

= β̃(t ) ∇v · (vP ) + kB T β̃(t ) ∇2
vP

+ kB T [ω̃2(t ) − ω2] [∇v · ∇rP ], (13)

where r = (x, y, z) and v = (vx, vy.vz ). Equation (13) is ex-
actly the same as that reported by Adelman [30].
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III. GENERALIZED PHASE-SPACE FPE FOR A
HARMONIC OSCILLATOR ACROSS A MAGNETIC FIELD

In this section, we use the method of characteristic function
to derive the generalized phase-space FPE for a harmonic
oscillator across a magnetic field. The study is given without
the presence of time-dependent force fields. We show the
exactitude of the method as well as its consistency when
compared with other results in some limiting cases.

A. Generalized Langevin equation

We now consider the above harmonic oscillator of mass
m = 1 with a charge q across a constant magnetic field
pointing along the z axis, that is, B = (0, 0, B). As proposed in
[39,40], the diffusion process arises from local fluctuations of
the electric field, which induce collisions between particles in
a Brownian motionlike manner. These local fluctuations of the
electric field [Eint (t )] are then identified as the internal noise
responsible for the thermal diffusion of the charged particles.
The non-Markovian dynamics of the charged Brownian har-
monic oscillator involving memory thermal interaction with
its surroundings can be written as

r̈ +
∫ t

0
γ (t − t ′) ṙ(t ′) dt ′ + ω2r − q

c
ṙ × B = f (t ), (14)

where r = (x, y, z) is the position vector, and f (t ) = qEint (t )
is the internal noise per unit mass which satisfies the
fluctuation-dissipation relation of the second kind [37] given
by

〈 fi(t ) f j (t
′)〉 = kB T δi j γ (t − t ′). (15)

It should be mentioned that the validity of this relation guar-
antees that the stochastic process (14) is stationary in the
large time limit. The statement has been explicitly proven
in Ref. [8]. Due to the orientation of the magnetic field,
the GLE (14) can be written in terms of the components as
follows:

ẍ − 	ẏ + ω2x +
∫ t

0
γ (t − t ′) ẋ(t ′) dt ′ = fx(t ), (16)

ÿ + 	ẋ + ω2y +
∫ t

0
γ (t − t ′) ẏ(t ′) dt ′ = fy(t ), (17)

z̈ + ω2z +
∫ t

0
γ (t − t ′) ż(t ′) dt ′ = fz(t ), (18)

where 	 = qB/c is the cyclotron frequency. Clearly, along
the z axis, the GLE is magnetic field independent and also
independent of the process in the (x, y) plane. The solution
of Eqs. (16)–(18) can be calculated using Laplace transforma-
tion, leading, respectively, to the following solutions:

x(t ) = 〈x(t )〉 +
∫ t

0
H0(t − t ′) fx(t ′)dt ′

−	2
∫ t

0
H2(t − t ′) fx(t ′)dt ′

+	

∫ t

0
H1(t − t ′) fy(t ′)dt ′, (19)

y(t ) = 〈y(t )〉 +
∫ t

0
H0(t − t ′) fy(t ′)dt ′

−	2
∫ t

0
H2(t − t ′) fy(t ′)dt ′

−	

∫ t

0
H1(t − t ′) fx(t ′)dt ′, (20)

z(t ) = 〈z(t )〉 +
∫ t

0
H0(t − t ′) fz(t ′)dt ′, (21)

where the average values are given for nonrandom initial
conditions by

〈x(t )〉 = x0[χ0(t ) + 	2ω2χ2(t )] − y0	ω2H1(t )

+vx0[H0(t ) − 	2H2(t )] + vy0	H1(t ), (22)

〈y(t )〉 = y0[χ0(t ) + 	2ω2χ2(t )] + x0	ω2H1(t ) + vy0[H0(t )

−	2H2(t )] − vx0	H1(t ), (23)

〈z(t )〉 = z0χ0(t ) + vz0H0(t ), (24)

with x0 = x(0), y0 = y(0), z0 = z(0), vx0 = vx(0), vy0 =
vy(0), vz0 = vz(0), and the functions χ0(t ) and χ2(t ) defined
by

χ0(t ) = 1 − ω2
∫ t

0
H0(t ′)dt ′, (25)

χ2(t ) =
∫ t

0
H2(t ′)dt ′. (26)

The functions H0(t ), H1(t ), and H2(t ), are, respec-
tively, the inverse Laplace transform of Ĥ0(s), Ĥ1(s), and
Ĥ2(s), which are denoted by H0(t ) = L−1{Ĥ0(s)}, H1(t ) =
L−1{Ĥ1(s)}, and H2(t ) = L−1{Ĥ2(s)}, where Ĥ1(s) =
sĤ1(s) and Ĥ2(s) = s2Ĥ2(s), such that

Ĥ0(s) = 1

s2 + sγ̂ (s) + ω2
, (27)

Ĥ1(s) = 1

(s2 + sγ̂ (s) + ω2)2 + (	s)2
, (28)

Ĥ2(s) = 1

(s2 + sγ̂ (s) + ω2)[(s2 + sγ̂ (s) + ω2)2 + (	s)2]
,

(29)

and γ̂ (s) is the Laplace transform of γ (t ).

B. The functions H0(t ), H1(t ), H1(t ), and H2(t ) at time t = 0

Let us now determine the values of the functions H0(t ),
H1(t ), H1(t ), and H2(t ) at time t = 0, which are required in
this work. We begin our analysis with the solution given in
Eq. (24) for the z(t ) variable. At time t = 0, it reads

z0 = z0χ0(0) + vz0H0(0), (30)
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which is true only if χ0(0) = 1 and H0(0) = 0. In the case of
Eqs. (22) and (23), we get

x0 = x0[χ0(0) + 	2ω2χ2(0)] − y0	ω2H1(0)

+ vx0[H0(0) − 	2H2(0)] + vy0	H1(0), (31)

y0 = y0[χ0(0) + 	2ω2χ2(0)] + x0	ω2H1(0)

+ vy0[H0(0) − 	2H2(0)] − vx0	H1(0). (32)

However, because χ0(0) = 1 and χ2(0) = 0, Eqs. (31) and
(32) reduce to

	ω2H1(0)y0 = vx0[H0(0) − 	2H2(0)] + vy0	H1(0), (33)

	ω2H1(0)x0 = −vy0[H0(0) − 	2H2(0)] + vx0	H1(0). (34)

Again, they are identically satisfied if H1(0) = 0, H1(0) = 0,
and H0(0) = 	2H2(0). But, H0(0) = 0 and thus H2(0) =
0. Also, for the velocities vx(t ), vy(t ), and vz(t ), the time
derivative of the functions H0(t ), H1(t ), H1(t ), and H2(t ) at
time t = 0 is required. In this case, we take the time derivative
of Eqs, (19)–(21) and, after evaluating at time t = 0, we obtain

vx0 = x0[−ω2H0(0) + 	2ω2H2(0)] − y0	ω2Ḣ1(0)

+ vx0[Ḣ0(0) − 	2Ḣ2(0)] + vy0	Ḣ1(0), (35)

vy0 = y0[−ω2H0(0) + 	2ω2H2(0)] + x0	ω2Ḣ1(0)

+ vy0[Ḣ0(0) − 	2Ḣ2(0)] − vx0	Ḣ1(0), (36)

vz0 = z0[−ω2H0(0)] + vz0Ḣ0(0). (37)

From Eq. (37), we easily conclude that Ḣ0(0) = 1. From
Eqs. (35) and (36), we thus have that Ḣ1(0) = 0, Ḣ1(0) =
0, and Ḣ0(0) − 	2Ḣ2(0) = 1, but because Ḣ0(0) = 1, we
conclude that Ḣ2(0) = 0. It is now clear from Eqs. (19)–(21)
that

vx(t ) = 〈vx(t )〉+
∫ t

0
Ḣ0(t−t ′) fx(t ′)dt ′	2

−
∫ t

0
Ḣ2(t−t ′) fx(t ′)dt ′

+	

∫ t

0
Ḣ1(t − t ′) fy(t ′)dt ′, (38)

vy(t ) = 〈vy(t )〉 +
∫ t

0
Ḣ0(t − t ′) fy(t ′)dt ′

−	2
∫ t

0
Ḣ2(t − t ′) fy(t ′)dt ′

−	

∫ t

0
Ḣ1(t − t ′) fx(t ′)dt ′, (39)

vz(t ) = 〈vz(t )〉 +
∫ t

0
Ḣ0(t − t ′) fz(t ′)dt ′, (40)

with

〈vx(t )〉 = x0[−ω2H0(t ) + 	2ω2H2(t )] − y0	ω2Ḣ1(t )

+ vx0[Ḣ0(t ) − 	2Ḣ2(t )] + vy0	Ḣ1(t ), (41)

〈vy(t )〉 = y0[−ω2H0(t ) + 	2ω2H2(t )] + x0	ω2Ḣ1(t )

+ vy0[Ḣ0(t ) − 	2Ḣ2(t )] − vx0	Ḣ1(t ), (42)

〈vz(t )〉 = −ω2z0H0(t ) + vz0Ḣ0(t ). (43)

C. Generalized phase-space FPE in a magnetic field

We now proceed to explicitly calculate the generalized
phase-space FPE for a harmonic oscillator. First of all, we
must comment that along the z axis, the GLE (18) is exactly
the same as studied in Sec. II, and thus we just pay attention
to the coupled process (16) and (17) taking place in the (x, y)
plane. Due to the fact that the coupled process is Gaussian, the
phase-space conditional probability density (CPD) defined by
P(x, u, t |x0, u0) ≡ P(R, S), with x = (x, y) and u = (vx, vy),
satisfies the Gaussian distribution function,

P(R, S) = 1

4π2
√

det σ(t )
exp

[
−1

2
ȳT · σ−1(t ) · ȳ

]
, (44)

where the components of the vector ȳ read ȳi = ξi − 〈ξi〉,
with ξi = x, y, vx, vy, and σ(t ) ≡ σi j (t ) is the variance and
covariance matrix defined by σi j (t ) = 〈[ξi − 〈ξi〉][ξ j − 〈ξ j〉]〉.
It is easy to check from the solutions given by Eqs. (19),
(20), (38), and (39) that σxx(t ) = σyy(t ), σvxvx (t ) = σvyvy (t ),
σxvx (t ) = σyvy (t ), σxvy (t ) = −σyvx (t ), σxy(t ) = σyx(t ) = 0, and
σvxvy (t ) = σvyvx (t ) = 0. By defining F ≡ σxx(t ), G ≡ σvxvx (t ),
H ≡ σxvx (t ), and I ≡ σxvy (t ), we thus have

F = 〈[x − 〈x〉]2〉 = 2

β

[ ∫ t

0
H0(t ′)dt ′

∫ t ′

0
H0(t ′′)γ (t ′ − t ′′)dt ′′ + 	2

∫ t

0
H1(t ′)dt ′

∫ t ′

0
H1(t ′′)γ (t ′ − t ′′)dt ′′

+	4
∫ t

0
H2(t ′)dt ′

∫ t ′

0
H2(t ′′)γ (t ′ − t ′′)dt ′′ − 	2

∫ t

0
H0(t ′)dt ′

∫ t ′

0
H2(t ′′)γ (t ′ − t ′′)dt ′′

−	2
∫ t

0
H2(t ′)dt ′

∫ t ′

0
H0(t ′′)γ (t ′ − t ′′)dt ′′

]
. (45)

G = 〈[vx − 〈vx〉]2〉 = 2

β

[ ∫ t

0
Ḣ0(t ′)dt ′

∫ t ′

0
Ḣ0(t ′′)γ (t ′ − t ′′)dt ′′ + 	2

∫ t

0
Ḣ1(t ′)dt ′

∫ t ′

0
Ḣ1(t ′′)γ (t ′ − t ′′)dt ′′

+	4
∫ t

0
Ḣ2(t ′)dt ′

∫ t ′

0
Ḣ2(t ′′)γ (t ′ − t ′′)dt ′′ − 	2

∫ t

0
Ḣ0(t ′)dt ′

∫ t ′

0
Ḣ2(t ′′)γ (t ′ − t ′′)dt ′′

−	2
∫ t

0
Ḣ2(t ′)dt ′

∫ t ′

0
Ḣ0(t ′′)γ (t ′ − t ′′)dt ′′

]
. (46)
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H = 〈[x − 〈x〉][vx − 〈vx〉]〉 = 1

β

[ ∫ t

0
H0(t ′)dt ′

∫ t ′

0
Ḣ0(t ′′)γ (t ′ − t ′′)dt ′′

+
∫ t

0
Ḣ0(t ′)dt ′

∫ t ′

0
H0(t ′′)γ (t ′ − t ′′)dt ′′ − 	2

∫ t

0
H0(t ′)dt ′

∫ t ′

0
Ḣ2(t ′′)γ (t ′ − t ′′)dt ′′

−	2
∫ t

0
Ḣ2(t ′)dt ′

∫ t ′

0
H0(t ′′)γ (t ′ − t ′′)dt ′′ − 	2

∫ t

0
H2(t ′)dt ′

∫ t ′

0
Ḣ0(t ′′)γ (t ′ − t ′′)dt ′′

−	2
∫ t

0
Ḣ0(t ′)dt ′

∫ t ′

0
H2(t ′′)γ (t ′ − t ′′)dt ′′ + 	2

∫ t

0
H1(t ′)dt ′

∫ t ′

0
Ḣ1(t ′′)γ (t ′ − t ′′)dt ′′

+	2
∫ t

0
Ḣ1(t ′)dt ′

∫ t ′

0
H1(t ′′)γ (t ′ − t ′′)dt ′′ + 	4

∫ t

0
H2(t ′)dt ′

∫ t ′

0
Ḣ2(t ′′)γ (t ′ − t ′′)dt ′′

+	4
∫ t

0
Ḣ2(t ′)dt ′

∫ t ′

0
H2(t ′′)γ (t ′ − t ′′)dt ′′

]
. (47)

I = 〈[x − 〈x〉][vy − 〈vy〉]〉 = 1

β

[
− 	

∫ t

0
H0(t ′)dt ′

∫ t ′

0
Ḣ1(t ′′)γ (t ′ − t ′′)dt ′′ − 	

∫ t

0
Ḣ1(t ′)dt ′

∫ t ′

0
H0(t ′′)γ (t ′ − t ′′)dt ′′

+	3
∫ t

0
H2(t ′)dt ′

∫ t ′

0
Ḣ1(t ′′)γ (t ′ − t ′′)dt ′′ + 	3

∫ t

0
Ḣ1(t ′)dt ′

∫ t ′

0
H2(t ′′)γ (t ′ − t ′′)dt ′′

−	3
∫ t

0
H1(t ′)dt ′

∫ t ′

0
Ḣ2(t ′′)γ (t ′ − t ′′)dt ′′ − 	3

∫ t

0
Ḣ2(t ′)dt ′

∫ t ′

0
H1(t ′′)γ (t ′ − t ′′)dt ′′

+	

∫ t

0
H1(t ′)dt ′

∫ t ′

0
Ḣ0(t ′′)γ (t ′ − t ′′)dt ′′ + 	

∫ t

0
Ḣ0(t ′)dt ′

∫ t ′

0
H1(t ′′)γ (t ′ − t ′′)dt ′′

]
. (48)

With the help of Eqs. (27)–(29), we can calculate the matrix elements σi j (t ). After a very long algebra, we can shown that [15]

βF = −[H0(t ) − 	2H2(t )]2 − 	2H2
1(t ) + 2

∫ t

0
H0(t ′)dt ′ − 2	2

∫ t

0
H2(t ′)dt ′ − ω2	2H2

1 (t ) − ω2

( ∫ t

0
H0(t ′)dt ′

)2

+ 2ω2	2

( ∫ t

0
H0(t ′)dt ′

)( ∫ t

0
H2(t ′)dt ′

)
− ω2	4

(∫ t

0
H2(t ′)dt ′

)2

, (49)

βG = [
1 − 	2Ḣ2

1(t )
] − [Ḣ0(t ) − 	2Ḣ2(t )]2 − ω2	2H2

1(t ) − ω2[H0(t ) − 	2H2(t )]2, (50)

βH = H0(t )[1 − Ḣ0(t )] − 	2H2(t ) − 	4H2(t )Ḣ2(t ) + 	2[H0(t )Ḣ2(t ) + Ḣ0(t )H2(t )] − 	2H1(t )Ḣ1(t ) − ω2	2H1(t )Ḣ1(t )

−ω2H0(t )
∫ t

0
H0(t ′)dt ′ + ω2	2H0(t )

∫ t

0
H2(t ′)dt ′ + ω2	2H2(t )

∫ t

0
H0(t ′)dt ′ − ω2	4H2(t )

∫ t

0
H2(t ′)dt ′, (51)

βI = −	H1(t ) + 	[H0(t )Ḣ1(t ) − Ḣ0(t )H1(t )] + 	3[H1(t )Ḣ2(t ) − Ḣ1(t )H2(t )]

−ω2	H1(t )[H0(t ) − 	2H2(t )] + ω2	H1(t )

[ ∫ t

0
H0(t ′)dt ′ − 	2

∫ t

0
H2(t ′)dt ′

]
. (52)

It can also be corroborated that 1
2 Ḟ = H . The variance and covariance matrix thus becomes

σ(t ) =

⎛⎜⎜⎜⎜⎝
F 0 H I

0 F −I H

H −I G 0

I H 0 G

⎞⎟⎟⎟⎟⎠, (53)

and its inverse is

σ−1(t ) = 1

FG − H2 − I2

⎛⎜⎜⎜⎜⎝
G 0 −H −I

0 G I −H

−H I F 0

−I −H 0 F

⎞⎟⎟⎟⎟⎠. (54)
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Thus, according to Eq. (44), the phase-space CPD can be written as

P(R, S) = 1

4π2(FG − H2 − I2)
exp

{
− [F |S|2 − 2HR · S − 2I (R × S)z + G|R|2]

2(FG − H2 − I2)

}
, (55)

where the vectors are R = (R1, R2) and S = (S1, S2), R · S is the scalar product, and (R × S)z is the z component of the cross
product R × S, such that

R1 = x − 〈x〉 = x − x0[χ0(t ) + 	2ω2χ2(t )] + y0	ω2H1(t ) − vx0[H0(t ) − 	2H2(t )] − vy0	H1(t ), (56)

R2 = y − 〈y〉 = y − y0[χ0(t ) + 	2ω2χ2(t )] − x0	ω2H1(t ) − vy0[H0(t ) − 	2H2(t )] + vx0	H1(t ), (57)

S1 = vx − 〈vx〉 = vx − x0[−ω2H0(t ) + 	2ω2H2(t )] + y0	ω2Ḣ1(t ) − vx0[Ḣ0(t ) − 	2Ḣ2(t )] − vy0	Ḣ1(t ), (58)

S2 = vx − 〈vx〉 = vy − y0[−ω2H0(t ) + 	2ω2H2(t )] − x0	ω2Ḣ1(t ) − vy0[Ḣ0(t ) − 	2Ḣ2(t )] + vx0	Ḣ1(t ). (59)

The generalized phase-space FPE can be calculated with
the help of the characteristic function, which now is given by

C(η, t ) = exp

⎡⎣ 4∑
i=1

i〈ξi〉ηi − 1

2

4∑
i, j=1

σi jηiη j

⎤⎦, (60)

where η = (η1, η2, η3, η4) and the vector ξ =
(ξ1, ξ2, ξ3, ξ4) = (x, y, vx, vy). The details of how the
generalized phase-space FPE is calculated are given in
Appendix A. The method is exact and shows that the exact
generalized phase-space FPE is given by

∂P

∂t
+ u · ∇xP + Q1(t ) x · ∇uP − P2(t ) I ∇2

x P

= P1(t ) [x × ∇xP]z + P2(t ) [u × ∇xP]z

−R1(t ) [x × ∇uP]z − R3(t ) [u × ∇uP]z

−Q3(t ) ∇u · uP − S1(t ) ∇2
uP − S2(t ) ∇u · ∇xP

+S3(t ) [∇x × ∇uP]z, (61)

where each [a × ∇bP]z represents the z component of the
cross product a × ∇bP, and all coefficients are explicitly
defined in Appendix A. As we will show below, the gener-
alized diffusion coefficient P2(t ) I accounts for the coupling
effect between the magnetic field and harmonic oscillator. The
consistency of Eq. (61) must be proven when it is compared
with previous results reported in the literature.

(i) Absence of the magnetic field. In this limit, we must
exactly obtain the same non-Markovian phase-space FPE for
the harmonic oscillator reported in [30,31]. In the absence
of the magnetic field, 	 = 0, and the quantities defined in
Appendix A become A = χ0(t ), B = 0, C = H0(t ), and D =
0, which also means that A = χ0(t ) = χa

0 (t ) and C = H0(t ) =
Ha

0 (t ), given by Eqs. (11) and (12) in Sec. II. This allows one
to conclude that

P1(t ) = 1

�m
[Ȧĉx(t ) − Ċĉvx (t )] = 0, (62)

P2(t ) = 1

�m
[−Ȧd̂x(t ) − Ċd̂vx (t )] = 0, (63)

Q1(t ) = 1

�m
[Äâx(t ) + C̈âvx (t )]

= 1

�m
[(ÄĊ − ȦC̈)(AĊ − ȦC)], (64)

Q2(t ) = 1

�m
[Äĉx(t ) − C̈ĉvx (t )] = 0, (65)

Q3(t ) = 1

�m
[−Äb̂x(t ) + C̈b̂vx (t )]

= 1

�m
(C̈A − ÄC)(AĊ − ȦC), (66)

Q4(t ) = 1

�m
[−Äd̂x(t ) − C̈d̂vx (t )] = 0. (67)

However, due to the fact that Q1(t ) = R2(t ), Q2(t ) =
−R1(t ) = 0, Q3(t ) = R4(t ), Q4(t ) = −R3(t ) = 0, and the
determinant �m = (AĊ − ȦC)2, it can be shown that �m =
�2

ho, where �ho = (AĊ − ȦC) is the same as Eq. (10) given
in Sec. II. Hence,

Q1(t ) = R2(t ) = 1

�ho
(ÄĊ − ȦC̈), (68)

Q3(t ) = R4(t ) = 1

�ho
(C̈A − ÄC) = d ln �ho

dt
. (69)

Also the time-dependent coefficients S1(t ), S2(t ), and S3(t ),
appearing in Eq. (61) and given, respectively, by Eqs. (A41)–
(A43), can be reduced to the following expressions:

S1(t ) = Q1(t )H − Q2(t )I + Q3(t )G − 1
2 Ġ

= Q1(t )H + Q3(t )G − 1
2 Ġ, (70)

S2(t ) = G + [Q4(t ) − P1(t )]I + Q1(t )F + Q3(t )H − Ḣ

= G + Q1(t )F + Q3(t )H − Ḣ , (71)

S3(t ) = Q2(t )F − P2(t )G + [Q4(t ) − P1(t )]H

−Q3(t )I + İ = 0. (72)

This is because I = 0 [see Eq. (52)], P1(t ) = P2(t ) =
Q2(t ) = Q4(t ) = 0, so that when the magnetic field is absent,
the non-Markovian Fokker-Planck equation (61) reduces to

∂P

∂t
+ u · ∇xP + Q1(t ) x · ∇uP

= −Q3(t ) ∇u · uP −
[
Q1(t )H + Q3(t )G − 1

2
Ġ

]
∇2

uP

− [G + Q1(t )F + Q3(t )H − Ḣ ] ∇u · ∇xP. (73)
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This generalized phase-space FPE should be consistent with
those reported in Refs. [30,31]. To see that this is indeed the
case, we now proceed to identify the time-dependent coef-
ficients which multiply the Laplacian ∇2

uP and dot product
∇u · ∇xP. For such a purpose, we can see that when 	 = 0,
the expressions for F , G, and H , given by Eqs. (49)–(51), are
simply

βF = −H2
0 (t ) + 2

∫ t

0
H0(t ′)dt ′ − ω2

[∫
H0(t ′)dt ′

]2

= −C2 + 2
∫ t

0
C dt ′ − ω2

(∫
C dt ′

)2

, (74)

βG = 1 − Ḣ2
0 (t ) − ω2H2

0 (t ) = 1 − Ċ2 − ω2C2, (75)

βH = H0(t ) − ω2H0(t )
∫ t

0
H0(t ′) dt ′ − H0(t )Ḣ0(t )

= CA − CĊ, (76)

where we recall that A = χ0(t ) and C = H0(t ). Therefore,

S1(t ) = Q1(t )H + Q3(t )G − 1

2
Ġ

= 1

β�ho
[(ÄĊ − ȦC̈)(CA − CĊ)

+ (C̈A − ÄC)(1 − Ċ2 − ω2C2)

+ (ĊC̈ + ω2CĊ)(AĊ − ȦC)]. (77)

Using the fact that Ȧ = −ω2C, it can be shown that

S1(t ) = 1

β

C̈A − ÄC
�ho

= 1

β

C̈A − ÄC
AĊ − ȦC

= 1

β

d ln �ho

dt
, (78)

and thus

S1(t ) = 1

β
Q3(t ) = kB T

d ln �ho

dt
. (79)

For the time-dependent coefficient S2(t ), we have

S2(t ) = G + Q1(t )F + Q3(t )H − Ḣ

= 1

β�ho

{
1 − Ċ2 − ω2C2 + (ÄĊ − ȦC̈)

×
[
−C2 + 2

∫ t

0
C dt ′ − ω2

(∫
C dt ′

)2]
+ (C̈A − ÄC)(CA − CĊ)

− (ĊA + CȦ − CC̈ − Ċ2)(AĊ − ȦC)

}
. (80)

After some easy algebra, it can be shown that

−S2(t ) = 1

β ω2

[
−ÄĊ − C̈Ȧ

�ho
− ω2

]
= kB T

ω2
[−Q1 − ω2]. (81)

If we want to compare with Adelman’s result, we must
identify the following coefficients: according to Eq. (68), we
can write

−Q1(t ) = 1

�ho
[ȦC̈ − ĊÄ] = ω̃2(t ), (82)

which is the same as Eq. (9) given in Sec. II. In a sim-
ilar way, −S2(t ) = (kB T/ω2)[ω̃2(t ) − ω2], the coefficient
−Q3(t ) = − d ln �ho

dt = −β̃(t ), and −S1(t ) = −kB T d ln �ho
dt =

kB T β̃(t ). Therefore, in the absence of the magnetic field,
Eq. (73) reduces to

∂P

∂t
+ u · ∇xP − ω̃2(t ) x · ∇uP

= β̃(t ) ∇u · uP + kB T β̃(t ) ∇2
uP

+ kB T

ω2
[ω̃2(t ) − ω2]∇u · ∇xP. (83)

Along the z direction, the non-Markovian FPE is the same
as Eq. (7) of Sec. II, so that the generalized FPE for
the 3D probability distribution function, P (r, v, t |r0, v0) ≡
P(x, u, t |x0, u0)P(z, vz, t |z0, vz0), is the same as given by
Eq. (13) of Sec. II, where P(x, u, t |x0, u0) satisfies Eq. (83).
We conclude that in the absence of the magnetic field, the
generalized phase-space FPE given by Eq. (61) is totally
consistent with the results reported in [30,31].

(ii) Absence of a harmonic potential. In this limiting case,
Eq. (61) must also be consistent with the non-Markovian FPE
reported in [15] for a free particle in a magnetic field. In
this case, ω2 = 0 and now the quantities A = 1, B = 0, C =
H0(t ) − 	2 H2(t ), and D = 	H1(t ), and thus, according to
Appendix A we have

P1(t ) = 1

�m
[Ȧĉx(t ) − Ċĉvx (t ) + Ḋĉvy (t )]

= 1

�m

{
Ȧ[ȦĊD − ȦCḊ] − Ċ[Ȧ2D − AȦḊ]

+ Ḋ[Ȧ2C − AȦĊ]
} = 0, (84)

P2(t ) = 1

�m

[−Ȧd̂x(t ) − Ċd̂vx (t ) + Ḋd̂vy (t )
]

= 1

�m
{−Ȧ[−ACḊ + AĊD] − Ċ[A2Ḋ − AȦD]

+ Ḋ[A2Ċ − AȦC]} = 0, (85)

Q1(t ) = 1

�m

[
C̈âvx (t ) + D̈âvy (t )

] = 0, (86)

Q2(t ) = 1

�m

[−C̈ĉvx (t ) + D̈ĉvy (t )
] = 0, (87)

Q3(t ) = 1

�m

[
C̈b̂vx (t ) + D̈b̂vy (t )

] = 1

�m
[ĊC̈ + ḊD̈], (88)

Q4(t ) = 1

�m

[−C̈d̂vx (t ) + D̈d̂vy (t )
] = 1

�m
[ĊD̈ − ḊC̈], (89)

where the determinant now reads �m = Ċ2 + Ḋ2. We
have in mind that Q1(t ) = R2(t ) = 0, Q2(t ) = −R1(t ) = 0,
Q3(t ) = R4(t ), and Q4(t ) = −R3(t ). The functions of time
S1(t ), S2(t ), and S3(t ) also reduce to

S1(t ) = Q1(t )H − Q2(t )I + Q3(t )G − 1
2 Ġ

= Q3(t )G − 1
2 Ġ, (90)
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S2(t ) = G + [Q4(t ) − P1(t )]I + Q1(t )F + Q3(t )H − Ḣ

= G + Q3(t )H + Q4(t )I − Ḣ , (91)

S3(t ) = Q2(t )F − P2(t )G + [Q4(t ) − P1(t )]H

−Q3(t )I + İ

= Q4(t )H − Q3(t )I + İ. (92)

Therefore, in the absence of harmonic potential, the gener-
alized phase-space Fokker-Planck Eq. (61) reduces to

∂P

∂t
+ u · ∇xP

= −Q3(t ) ∇u · uP + Q4(t ) [u × ∇uP]z

−
[
Q3(t )G − 1

2
Ġ

]
∇2

uP − [G + Q3(t )H + Q4(t )I − Ḣ ]

×∇u · ∇xP + [Q4(t )H − Q3(t )I + İ] [∇x × ∇uP]z. (93)

To compare with the non-Markovian FPE reported in [15],
we require the identification of the following time-dependent
parameters: The determinant calculated in Ref. [15] is given
by �xv (t ) = Ȧ2(t ) + Ḃ2(t ), where A(t ) = H0(t ) − 	2H2(t )
and B(t ) = 	H1(t ). In our present contribution and according
to Appendix A, we can see that the parameters C = A(t )
and D = B(t ), and thus �m = Ċ2 + Ḋ2 = �xv (t ). Also, in
Ref. [15], the time-dependent parameters F (t ) and G(t ) have
been defined by

F (t ) = Ȧ(t )Ä(t ) + Ḃ(t )B̈(t )

�xv (t )
, (94)

G(t ) = Ȧ(t )B̈(t ) − Ḃ(t )Ä(t )

�xv (t )
. (95)

However, we see from Eqs. (88) and (89) that Q3(t ) = F (t )
and Q4(t ) = G(t ), and therefore the following sum can be
written as

−Q3(t ) ∇u · uP + Q4(t ) [u × ∇uP]z

= −F (t )

(
∂vxP

∂vx
+ ∂vyP

∂vy

)
+ G(t )

(
vx

∂P

∂vy
− vy

∂P

∂vx

)
= ∇ · �(t ) uP, (96)

where �(t ) is an antisymmetric matrix defined by

�(t ) = −
(

F (t ) G(t )

−G(t ) F (t )

)
. (97)

Finally, in the absence of the harmonic oscillator, the non-
Markovian FPE (93) reduces to

∂P

∂t
+ u · ∇xP = ∇ · �(t ) uP −

[
F (t )G − 1

2
Ġ

]
∇2

uP

− [G + F (t )H + G(t )I − Ḣ ] ∇u · ∇xP

+ [G(t )H − F (t )I + İ] [∇x × ∇uP]z, (98)

which is exactly the same as Eq. (114) reported in Ref. [15],
when the the time-dependent force fields are absent. There-
fore, also in this limiting case, Eq. (61) is totally consistent
with the result reported in Ref. [15]. As a consequence of both
limiting cases, it is now clear that the generalized diffusion

coefficient P2(t ) I accounts for the coupling effect between
the magnetic field and harmonic oscillator. This is because,
in the absence only of the magnetic field, the time-dependent
coefficient I = 0, and thus P2(t ) I = 0. However, in the case
of only a free particle in a magnetic field, the time-dependent
coefficient P2(t ) = 0, and thus also P2(t ) I = 0. The compar-
ison with the non-Markovian FPE reported in Ref. [14] will
be studied in the last section of this work.

IV. GENERALIZED PHASE-SPACE FPE FOR A
HARMONIC OSCILLATOR ACROSS A MAGNETIC FIELD

AND TIME-DEPENDENT FORCE FIELDS

A. Generalized Langevin equation

In this section, we study the influence of additional
time-dependent force fields in the non-Markovian Brownian
motion of the harmonic oscillator studied in the preceding
section. In general, the time-dependent force fields account
for electrical qEext (t ) and mechanical Fmec(t ) forces.
The external forces per unit mass are thus defined by
a(t ) = [qEext (t ) + Fmec(t )]/m, and thus the GLE in terms of
its components now reads

ẍ − 	ẏ + ω2x +
∫ t

0
γ (t − t ′) ẋ(t ′) dt ′ − ax(t ) = fx(t ), (99)

ÿ + 	ẋ + ω2y +
∫ t

0
γ (t − t ′) ẏ(t ′) dt ′ − ay(t ) = fy(t ),

(100)

z̈ + ω2z +
∫ t

0
γ (t − t ′) ż(t ′) dt ′ − az(t ) = fz(t ). (101)

The solution of each equation is exactly the same as obtained
in Sec. III, except for the mean values 〈x(t )〉, 〈y(t )〉, 〈z(t )〉,
〈vx(t )〉, 〈vy(t )〉, and 〈vz(t )〉, which are given by

〈x(t )〉 = x0[χ0(t ) + 	2ω2χ2(t )] − y0	ω2H1(t )

+ vx0[H0(t ) − 	2H2(t )] + vy0	H1(t )

+
∫ t

0
H0(t − t ′)ax(t ′)dt ′ − 	2

∫ t

0
H2(t − t ′)ax(t ′)dt ′

+	

∫ t

0
H1(t − t ′)ay(t ′)dt ′, (102)

〈y(t )〉 = y0[χ0(t ) + 	2ω2χ2(t )] + x0	ω2H1(t )

+ vy0[H0(t ) − 	2H2(t )] − vx0	H1(t )

+
∫ t

0
H0(t − t ′)ay(t ′)dt ′ −	2

∫ t

0
H2(t − t ′)ay(t ′)dt ′

−	

∫ t

0
H1(t − t ′)ax(t ′)dt ′, (103)

〈z(t )〉 = z0χ0(t ) + vz0H0(t ) +
∫ t

0
H0(t − t ′)az(t ′)dt ′, (104)

〈vx(t )〉 = x0[−ω2H0(t ) + 	2ω2H2(t )] − y0	ω2Ḣ1(t )

+ vx0[Ḣ0(t ) − 	2Ḣ2(t )] + vy0	Ḣ1(t )

+
∫ t

0
Ḣ0(t − t ′)ax(t ′)dt ′ − 	2

∫ t

0
Ḣ2(t − t ′)

× ax(t ′)dt ′ + 	

∫ t

0
Ḣ1(t − t ′)ay(t ′)dt ′, (105)
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〈vy(t )〉 = y0[−ω2H0(t ) + 	2ω2H2(t )] + x0	ω2Ḣ1(t )

+ vy0[Ḣ0(t ) − 	2Ḣ2(t )] − vx0	Ḣ1(t )

+
∫ t

0
Ḣ0(t − t ′)ay(t ′)dt ′ − 	2

∫ t

0
Ḣ2(t − t ′)

× ay(t ′)dt ′ − 	

∫ t

0
Ḣ1(t − t ′)ax(t ′)dt ′, (106)

〈vz(t )〉 = −ω2z0H0(t ) + vz0Ḣ0(t ) +
∫ t

0
Ḣ0(t − t ′)az(t ′)dt ′.

(107)

Also, the process along the z axis is independent of the
process in the (x, y) plane. Again, we just pay attention to
the planar process. In this case, the conditional probability
density P(R, S) is the same as Eq. (55), but now

R1 = x − 〈x〉
= x − x0[χ0(t ) + 	2ω2χ2(t )]

+ y0	ω2H1(t ) − vx0[H0(t ) − 	2H2(t )] − vy0	H1(t )

−
∫ t

0
H0(t − t ′)ax(t ′)dt ′ + 	2

∫ t

0
H2(t − t ′)ax(t ′)dt ′

−	

∫ t

0
H1(t − t ′)ay(t ′)dt, (108)

R2 = y − 〈y〉
= y − y0[χ0(t ) + 	2ω2χ2(t )]

− x0	ω2H1(t ) − vy0[H0(t ) − 	2H2(t )] + vx0	H1(t )

−
∫ t

0
H0(t − t ′)ay(t ′)dt ′ + 	2

∫ t

0
H2(t − t ′)ay(t ′)dt ′

+	

∫ t

0
H1(t − t ′)ax(t ′)dt ′, (109)

S1 = vx − 〈vx〉
= vx − x0[−ω2H0(t ) + 	2ω2H2(t )]

+ y0	ω2Ḣ1(t ) − vx0[Ḣ0(t ) − 	2Ḣ2(t )] − vy0	Ḣ1(t )

−
∫ t

0
Ḣ0(t − t ′)ax(t ′)dt ′ + 	2

∫ t

0
Ḣ2(t − t ′)ax(t ′)dt ′

−	

∫ t

0
Ḣ1(t − t ′)ay(t ′)dt, (110)

S2 = vx − 〈vx〉
= vy − y0[−ω2H0(t ) + 	2ω2H2(t )]

− x0	ω2Ḣ1(t ) − vy0[Ḣ0(t ) − 	2Ḣ2(t )] + vx0	Ḣ1(t )

−
∫ t

0
H0(t − t ′)ay(t ′)dt ′ + 	2

∫ t

0
H2(t − t ′)ay(t ′)dt ′

+	

∫ t

0
H1(t − t ′)ax(t ′)dt ′. (111)

Also, the functions H0(t ), H1(t ), H2(t ), F , G, H , and I are
exactly the same as those given in Sec. III.

B. Generalized phase-space FPE including both the magnetic
field and time-dependent force fields

To derive the generalized phase-space Fokker-Planck equa-
tion, we again use the method of the characteristic function,
which is explicitly given in Appendix B. The concluding
result is the generalized phase-space FPE for the harmonic
oscillator in the presence of both a constant magnetic field
and time-dependent force fields, which can be written as

∂P

∂t
+ P1(t ) [q × ∇xP]z + P2(t ) [p × ∇xP]z

−Q1(t ) q · ∇uP + Q2(t ) [q × ∇uP]z

+ [ṗ − Q3(t )p] · ∇uP + Q4(t ) [p × ∇uP]z

+ u · ∇xP + Q1(t ) x · ∇uP − P2(t ) I ∇2
x P

= P1(t ) [x × ∇xP]z + P2(t ) [u × ∇xP]z

−R1(t ) [x × ∇uP]z − R3(t ) [u × ∇uP]z

−Q3(t ) ∇u · uP − S1(t ) ∇2
uP − S2(t ) ∇u · ∇xP

+S3(t ) [∇x × ∇uP]z, (112)

where the vectors p and q are defined in Appendix B, and
all the time-dependent coefficients are the same as defined in
Appendix A. Clearly, the additional contributions to Eq. (61)
are given by the second term up to the sixth term in the left-
hand side of Eq. (112). Evidently, in the absence of the time-
dependent force fields, Eq. (112) reduces to Eq. (61).

For a particle in the presence only of both a magnetic
field and time-dependent force fields, the time-dependent
coefficients P1(t ) = P2(t ) = 0, Q1(t ) = R2(t ) = 0, Q2(t ) =
−R1(t ) = 0, Q3(t ) = R4(t ), and Q4 = −R3(t ). Hence,
Eq. (112) reduces to

∂P

∂t
+ [ṗ − F (t )p] · ∇u + G4(t ) [p × ∇uP]z + u · ∇xP

= ∇ · �(t ) uP − [
F (t )G − 1

2
Ġ

] ∇2
uP

− [G + F (t )H + G(t )I − Ḣ ] ∇u · ∇xP

+ [G(t )H − F (t )I + İ] [∇x × ∇uP]z, (113)

which is exactly the same result obtained in [15] (see Eq. (114)
in Ref. [15]).

For a particle bounded by a harmonic potential and
in the presence only of the time-dependent force fields,
we have that P1(t ) = P2(t ) = 0, Q2(t ) = −R1(t ) = 0,
Q4(t ) = −R3(t ) = 0, Q1(t ) = −ω̃2(t ), −Q3(t ) = −S1(t ) =
β̃(t ), S2(t ) = (kB T/ω2)[ω̃2 − ω2], and S3 = 0. Therefore,
Eq. (112) reduces to

∂P

∂t
+ ω̃2(t ) q · ∇uP + [ṗ + β̃(t )p] · ∇uP + u · ∇xP − ω̃2(t ) x · ∇uP

= β̃(t ) ∇u · uP + kB T β̃(t ) ∇2
uP + kB T

ω2
[ω̃2(t ) − ω2]∇u · ∇xP. (114)
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In the absence of time-dependent force fields, p and q are
equal to zero, and therefore Eq. (114) becomes exactly the
same result obtained by Adelman [30], as expected.

V. COMMENTS ON THE METHOD REPORTED IN REF. [14]

In this section, it is necessary to compare the results
obtained in Ref. [14] with those obtained in our present con-
tribution and those reported in previous works. The method
proposed in Ref. [14] to obtain the non-Markovian FPEs
is basically related to the structure of the correlation ma-
trix defined by A(t ). If the matrix is diagonal, then the
non-Markovian FPE is constructed taking into account the
structure of its corresponding Markovian FPE, except by the
time-dependent coefficients. However, if the matrix is not
diagonal, then the non-Markovian FPE is constructed on the
basis of the Markovian FPE plus extra contributions which
are “intuitively” proposed, due to the off-diagonal elements
of matrix A(t ). We proceed to analyze and clarify each case
studied in [14].

A. Generalized velocity-space FPE for a free particle

As studied in Sec. II of Ref. [14], the proposed method to
obtain the generalized velocity-space FPE for a free particle
seems to be fine. This non-Markovian FPE is similar to its
corresponding Markovian one, except by the time-dependent
coefficients. We can check this below.

As written in Ref. [14], the Markovian velocity-space FPE
for a free particle reads

∂P

∂t
= γ0∇ · (uP) + γ0kB T ∇2P. (115)

In Sec. II of Ref. [14], it is shown that the correlation
matrix A(t ) is diagonal with elements A11 = A22 = A33 =
A(t ), where A(t ) = kB T [1 − χ2(t )] and χ (t ) = 1

3kB T 〈u(t ) ·
u0〉, with u(t ) the 3D velocity vector. Due to this fact and
taking into account the structure of the Markovian FPE (115),
the authors construct the non-Markovian FPE as follows:

∂P

∂t
= β(t )∇ · (uP) + H (t )∇2P. (116)

As can be seen, this equation is similar in structure to
Eq. (115), except by the time-dependent coefficients. Once
this is done, the authors show that the non-Markovian
velocity-space FPE reads

∂P

∂t
= − χ̇ (t )

χ (t )
∇ · uP + 1

6
χ2(t )

d

dt
[χ−2(t )A(t )]∇2P,

(117)
where

β(t ) = − χ̇ (t )

χ (t )
, H (t ) = 1

6
χ2(t )

d

dt
[χ−2(t )A(t )], (118)

which is consistent with the generalized velocity-space FPE
obtained by Adelman in [30] (see Eq. (2.11) in Ref. [30]) and
the one derived in [15] (see Eq. (37) given in Ref. [15]).

B. Generalized phase-space FPE for a harmonic oscillator

In this case, the Markovian FPE is given by Eq. (36) in
Sec. III of Ref. [14], and reads

∂P

∂t
= −u · ∂P

∂x
+ ω2x · ∂P

∂u
+ γ0

∂

∂u
· uP + γ0kB T

∂2P

∂u2
.

(119)

However, the correlation matrix A(t ) is not diagonal and,
due to this fact, the proposed non-Markovian phase-space
FPE is now constructed taking into account the same
terms of Eq. (119) plus two extra terms given by ∂2P

∂x2 and
∂
∂u · ∂P

∂x . Therefore, the non-Markovian phase-space FPE is
proposed to have the following structure with time-dependent
coefficients:

∂P

∂t
= −u · ∂P

∂x
+ H1(t )x · ∂P

∂u
+ H2(t )

∂

∂u
· uP

+ H3(t )
∂2P

∂x2
+ H4(t )

∂2P

∂u2
+ H5(t )

∂

∂u
· ∂P

∂x
. (120)

In principle, the Laplacian term ∂2P
∂x2 is due to one diagonal

element of matrix A(t ), and the other one given by ∂
∂u · ∂P

∂x is
due to the off-diagonal elements of the same matrix. In the
same Sec. III of Ref. [14], it can be checked that the time-
dependent diffusion coefficient H3(t ) = 1

6 [Ȧ11 − 2A12] = 0
(see Eqs. (27) and (30) in Ref. [14]). Therefore, the
extra diffusion term H3(t ) ∂2P

∂x2 does not contribute in the
non-Markovian phase-space FPE (120). After some algebra,
the authors conclude that the non-Markovian phase-space
FPE is given by (see Eq. (47) in Ref. [14])

∂P

∂t
= −u · ∂P

∂x
+ ω̃2(t )x · ∂P

∂u
+ β̃(t )

∂

∂u
· uP

+ 1

6
[Ȧ22 + 2ω̃2(t )A12 + 2β̃(t )A22]

∂2P

∂u2

+ 1

3
[Ȧ12 + ω̃2(t )A11 + β̃(t )A22 − A22]

∂

∂u
· ∂P

∂x
.

(121)

The authors say that this equation was derived earlier in
Ref. [31] using the characteristic function method. In reality,
it was derived by Adelman [30] 10 years before the one
reported in Ref. [31]. The equation derived in [31] is precisely
Eq. (7) reported in Sec. II of our present contribution using
the characteristic function method.

Some important details that we would like to comment on
here are the following: the generalized phase-space FPE for
the harmonic oscillator derived in [31], which is the same
as Eq. (7) of our present contribution, is exactly the same as
derived by Adelman [30], in 3D. However, in Eq. (121), the
authors of Ref. [14] did not verify that the sum of the time-
dependent coefficients 1

6 [Ȧ22 + 2ω̃2(t )A12 + 2β̃(t )A22] must
be equal to friction function β̃(t ) given by Eq. (8) in Sec. II
of our current work. Nor did they verify that the sum 1

3 [Ȧ12 +
ω̃2(t )A11 + β̃(t )A22 − A22] must be equal to [ω̃2 − ω2], where
ω̃(t ) is given by Eq. (9) in Sec. II of this work.

We must recall that in Sec. III C of our present contribution,
we have shown that in the absence of the magnetic field, the
generalized phase-space FPE (61) reduces to Eq. (83), which
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in turn is exactly the same as Eq. (13) given in Sec. II of this
work and also derived by Adelman [30].

C. Generalized velocity-space FPE for a free particle
in a magnetic field

As shown in Sec. IV of Ref. [14], the Markovian velocity-
space FPE for a free particle in a magnetic is given by

∂P

∂t
= γ0

[
∂uxP

∂ux
+ ∂uyP

∂uy

]
− 	

[
∂uyP

∂ux
− ∂uxP

∂uy

]

+ γ0kB T

[
∂2P

∂u2
x

+ ∂2P

∂u2
y

]
. (122)

Because the correlation matrix A(t ) is diagonal, the non-
Markovian velocity-space FPE is constructed in a similar way
but with time-dependent coefficients, that is,

∂P

∂t
= β1(t )

[
∂uxP

∂ux
+ ∂uyP

∂uy

]
− β2(t )

[
∂uyP

∂ux
− ∂uxP

∂uy

]

+ H (t )

[
∂2P

∂u2
x

+ ∂2P

∂u2
y

]
, (123)

which is the same given by Eq. (79) in [14]. This equation
was verified in the Markovian limit, however, curiously it was
not compared with the non-Markovian FPE (31) derived in
Ref. [15], where the method of characteristic function is used.
Neither, in the absence of the magnetic field, did the authors
verify the consistence of Eq. (123) with the case of a free
particle studied by the same authors in Sec. II of Ref. [14].

It must be commented that in the Markovian equation
(122), the cross derivatives ( ∂uyP

∂ux
− ∂uxP

∂uy
), which is the same

as −[u × ∇uP]z, arise as a consequence of the magnetic field.

D. Generalized phase-space FPE for a harmonic
oscillator in a magnetic field

In this section, we compare the generalized phase-space
FPE for a harmonic oscillator in a magnetic field proposed in
Ref. [14], with the one given by Eq. (61) derived in our present
contribution. Notable differences between both equations will
be shown below. In Sec. V of Ref. [14], the authors show that
the correlation matrix A(t ) is clearly not diagonal and the pro-
posed generalized phase-space FPE contains the Markovian
terms plus extra contributions coming from the diagonal and
off-diagonal elements of matrix A(t ). Such a non-Markovian
FPE proposed by the authors in [14] is given by (see Eq. (117)
in Ref. [14])

∂P

∂t
= −∂uxP

∂x
− ∂uyP

∂y
+ H1(t )

[
x

∂P

∂ux
+ y

∂P

∂uy

]
+ H2(t )

[
∂uxP

∂ux
+ ∂uyP

∂uy

]
− H3(t )

[
∂uyP

∂ux
+ ∂uyP

∂uy

]

+ H4(t )

[
∂2P

∂x2
+ ∂2P

∂y2

]
+ H5(t )

[
∂2P

∂u2
x

+ ∂2P

∂u2
y

]

+ H6(t )

[
∂

∂x

∂P

∂ux
+ ∂

∂y

∂P

∂uy

]
+H7(t )

[
∂

∂x

∂P

∂uy
+ ∂

∂y

∂P

∂ux

]
.

(124)

Upon the comparison of this Eq. (124) with our result given
by Eq. (61) of the present contribution, we first note the fol-
lowing: the first two terms in the right-hand side of Eq. (124)
are the same as

−∂uxP

∂x
− ∂uyP

∂y
= −u · ∇xP. (125)

The sum of the derivatives which multiplies H1(t ) reads

x
∂P

∂ux
+ y

∂P

∂uy
= x · ∇xP. (126)

The sum which multiplies H2(t ) is the same as

∂uxP

∂ux
+ ∂uyP

∂uy
= ∇u · uP. (127)

Also, the Laplacian that multiplies H4(t ) and the one that
multiplies H5(t ) are the same as

∂2P

∂x2
+ ∂2P

∂y2
= ∇2

x P,
∂2P

∂u2
x

+ ∂2P

∂u2
y

= ∇2
uP. (128)

The sum which multiplies H6(t ) reads

∂

∂x

∂P

∂ux
+ ∂

∂y

∂P

∂uy
= ∇u · ∇xP = ∇x · ∇uP. (129)

However, an important point that has to be noted in Eq. (124)
is that the sum ∂uyP

∂ux
+ ∂uyP

∂uy
which multiplies H3(t ), in principle

must be a difference, not a sum, and also has to be the
difference of cross derivatives because it must come from
the Markovian FPE [see the second term in above Eq. (122)]
due to the presence of the magnetic field. Thus, the cross
derivatives must be

∂uyP

∂ux
− ∂uxP

∂uy
= −[u × ∇uP]z, (130)

not as proposed by the authors. In a similar way, the sum of
the cross derivatives, ∂

∂x
∂P
∂uy

+ ∂
∂y

∂P
∂ux

, which multiplies H7(t )
must also be a difference, not a sum, that is,

∂

∂x

∂P

∂uy
− ∂

∂y

∂P

∂ux
= [∇x × ∇uP]z, (131)

which also must arise due to the magnetic field effects.
As can be seen only two cross derivatives due to the mag-

netic field effects have been proposed in Eq. (124), namely,
the cross derivatives which multiply H3(t ) and those which
multiply H7(t ). The questions are now the following: Are
those the only two cross derivatives which must appear in
the non-Markovian FPE (124), due to the presence of the
magnetic field? How many and which other cross derivatives
must appear in Eq. (124)?

Upon the comparison of Eq. (124) with Eq. (61) given in
our work, we can note the following:

(i) In the first place, the two cross derivatives [u × ∇uP]z

given by Eq. (130) and [∇x × ∇uP]z given by Eq. (131)
must be the correct cross derivatives in Eq. (124), not
as written by the authors. Furthermore, in Eq. (61), there
are three extra cross derivatives given by P1(t ) [x × ∇xP]z,
P2(t ) [u × ∇xP]z, and R1(t ) [x × ∇uP]z, which do not appear
in Eq. (124). With the method of characteristic function, we
are showing that these extra terms arise in a natural way due
precisely to the presence of the magnetic field. Obviously,
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these terms disappear when the magnetic field is not taken
into account, as must be. In the method proposed in [14],
there is no way to know a priori which and how many cross
derivatives must appear.

(ii) The other notable difference between Eqs. (61) and
(124) is the following: in Eq. (124), the time-dependent dif-
fusion coefficient H4(t ) = 1

2 [Ȧ′
11 − 2A′

12] = 0. This fact can
be corroborated according to Eqs. (119) and (122) given in
Ref. [14], and therefore the diffusion term H4(t )[ ∂2P

∂x2 + ∂2P
∂y2 ] =

H4(t )∇2
x P given in Eq. (124) does not appear. This fact was

not explicitly revealed in Sec. V of Ref. [14].
In our present contribution, we have shown that the time-

dependent diffusion coefficient P2(t ) I is clearly different
from zero. Furthermore, it accounts for the coupling effect
between both the magnetic field and harmonic oscillator.
This effect must appear due to the rotational character of
the magnetic field and the nature of the harmonic oscillator.
Therefore, on the derivation of the generalized phase-space
FPE for a harmonic oscillator in the presence of the magnetic
field by means of the characteristic function method, the
diffusion term P2(t ) I∇2

x P is, in general, different from zero,
contrary to what happens in Eq. (124). In conclusion, due
to the aforementioned notable differences, the method of the
characteristic function provides the accurate solution of the
problem.

VI. CONCLUDING REMARKS

Using the characteristic function method, we have been
able to derive the generalized phase-space FPE for a
charged harmonic oscillator across a magnetic field and time-
dependent force fields, as given by Eq. (112). In the absence
of time-dependent force fields, the non-Markovian FPE is
exactly given by Eq. (61). This equation has been compared
with previous results reported in Refs. [15,30,31], showing a
perfect consistence in each case.

However, when Eq. (61) is compared with Eq. (124)
(which is the same Eq. (117) given in Ref. [14]), we
have found notable differences with the method proposed
in Ref. [14]. The lacking of additional cross derivatives in
Eq. (124) is due to the fact that the correlation matrix A(t )
obtained in Sec. V of Ref. [14] does not a priori guaran-
tee which and how many cross derivatives must appear in
the non-Markovian FPE (124). We emphasize that the cross
derivatives arise due to the effects of the magnetic field, and
when the characteristic function method is used they arise in
a natural way as precisely shown in our work.

The other crucial and relevant difference is also the lacking
of the diffusion term ∇2

x P in Eq. (124); however, in Eq. (61), it
is taken into account. In fact, it is multiplied by the generalized
diffusion coefficient P2(t ) I which arises in a natural way, and
shows the existence of a coupling effect between both the
magnetic field and harmonic oscillator.

For these reasons, we can conclude that the method of
the characteristic function provides an effective and accurate
theoretical approach of how to obtain the non-Markovian
Fokker-Planck equations when a magnetic field is taken into
account, compared with the method proposed in Ref. [14].

It must be pointed out that if the fluctuation-dissipation
relation of the second kind given by Eq. (15) is assumed to
be valid, then the GLE (14) becomes stationary in the large
time limit [8]. For a classical derivation of the fluctuation-
dissipation relation for macroscopic non-Markovian dynamics
in the presence of time-dependent force fields, without the
presence of a magnetic field, we can refer to the paper by
Grabert et al. [41]. On the other hand, in our theoretical de-
scription, the solution of the generalized phase-space FPE (61)
is given by the phase-space conditional probability density
(55) for all time t > 0. In principle, in the large time limit,
this probability density must converge to its corresponding
stationary probability density under the condition that the
time-dependent quantities F , G, H , and I given, respectively,
by Eqs. (49), (50), (51), (52) are also convergent, in this
limiting case. This can be achieved for an appropriate election
of the friction memory kernel, which must be symmetric and
well behaved, and its Laplace transform must exist. Therefore,
the stationary probability density must also be the solution of
the generalized FPE for which ∂Pst

∂t = 0. Under these condi-
tions, we can guarantee reliable results even in the stationary
state. This is indeed the case for an exponentially correlated
memory kernel (Ornstein-Uhlenbeck process), which is a sta-
tionary stochastic process. If the friction memory kernel does
not satisfy these properties, the proposal cannot, in general,
guarantee reliable results.

Finally, our theoretical results can be used to study others
non-Markovian fluctuation relations and the non-Markovian
Crooks fluctuation relation for generalized electrical and me-
chanical works. The topics are in progress.
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APPENDIX A: GENERALIZED PHASE-SPACE FPE FOR A
HARMONIC OSCILLATOR IN A MAGNETIC FIELD

In this Appendix, we give the algebraic steps to derive
the non-Markovian phase-space Fokker-Planck equation for
a Brownian particle in a harmonic potential. We do this in
terms of the characteristic function in the 2D case. Taking
into account the solutions given in Sec. III, the characteristic
function reads

C(η, t ) = exp

⎡⎣ 4∑
i=1

i〈ξi〉ηi − 1

2

4∑
i, j=1

σi jηiη j

⎤⎦, (A1)

where η = (η1, η2, η3, η4), and we define the vector ξ =
(ξ1, ξ2, ξ3, ξ4) = (x, y, vx, vy). Accordingly, the characteristic
function can also be written as C(η, t ) = C1(η, t )C2(η, t ),
where

C1(η, t ) = e−(I/2)[η1η4−η2η3]C̃1(η1, η3), (A2)

C2(η, t ) = e−(I/2)[η1η4−η2η3]C̃2(η2, η4), (A3)
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with

C̃1(η1, η3) = exp
{
i〈x〉η1 + i〈vx〉η3

− 1
2

[
Fη2

1 + 2Hη1η3 + Gη2
3

]}
, (A4)

C̃2(η2, η4) = exp
{
i〈y〉η2 + i〈vy〉η4

− 1
2

[
Fη2

2 + 2Hη2η4 + Gη2
4

]}
, (A5)

with F , G, H , and I the elements of matrix σ(t ), given by
Eq. (53). The CPD given by Eq. (44) can also be obtained from
the inverse Fourier transform of the characteristic function
(A1) as follows:

P(R, S) = 1

(2π )4

∫
· · ·

∫
C(η, t ) e−iη·ξ dη, (A6)

where the integrations limits are taken from −∞ to +∞ (not
written). Also,

∂P

∂t
= 1

(2π )4

∫
· · ·

∫ (
C1

∂C2

∂t
+ C2

∂C1

∂t

)
e−iη·ξ dη. (A7)

From Eqs. (A2) and (A3), we get

∂C1

∂t
= − İ

2
[η1η4 − η2η3]C1 + e−(I/2)[η1η4−η2η3] ∂C̃1

∂t
, (A8)

∂C2

∂t
= − İ

2
[η1η4 − η2η3]C2 + e−(I/2)[η1η4−η2η3] ∂C̃2

∂t
. (A9)

But,

∂C̃1

∂t
= i〈vx〉η1C̃1 + i〈v̇x〉η3C̃1

− 1

2

[
Ḟη2

1 + 2Ḣη1η3 + Ġη2
3

]
C̃1, (A10)

∂C̃2

∂t
= i〈vy〉η2C̃2 + i〈v̇y〉η4C̃2

− 1

2

[
Ḟη2

2 + 2Ḣη2η4 + Ġη2
4

]
C̃2. (A11)

If we define Ĉ1 and Ĉ2 as

Ĉ1 ≡ e−(I/2)[η1η4−η2η3] ∂C̃1

∂t
= i〈vx〉η1C1 + i〈v̇x〉η3C1

− 1

2

[
Ḟη2

1 + 2Ḣη1η3 + Ġη2
3

]
C1, (A12)

Ĉ2 ≡ e−(I/2)[η1η4−η2η3] ∂C̃2

∂t
= i〈vy〉η2C2 + i〈v̇y〉η4C2

− 1

2

[
Ḟη2

2 + 2Ḣη2η4 + Ġη2
4

]
C2, (A13)

then

C2
∂C1

∂t
= − İ

2
[η1η4 − η2η3]C1C2 + Ĉ1C2, (A14)

C1
∂C2

∂t
= − İ

2
[η1η4 − η2η3]C1C2 + C1Ĉ2. (A15)

Also, from Eqs. (A4) and (A5), we get

1

C̃1

∂C̃1

∂η1
= i〈x〉 − (Fη1 + Hη3), (A16)

1

C̃1

∂C̃1

∂η3
= i〈vx〉 − (Hη1 + Gη3), (A17)

1

C̃2

∂C̃2

∂η2
= i〈y〉 − (Fη2 + Hη4), (A18)

1

C̃2

∂C̃2

∂η4
= i〈vy〉 − (Hη2 + Gη4). (A19)

If we now define the functions of time,

A ≡ A(t ) = χ0(t ) + 	2ω2χ2(t ), (A20)

B ≡ B(t ) = 	ω2H1(t ), (A21)

C ≡ C(t ) = H0(t ) − 	2H2(t ), (A22)

D ≡ D(t ) = 	H1(t ), (A23)

we can write the mean values of Sec. III as

〈x(t )〉 = A(t )x0 − B(t )y0 + C(t )vx0 + D(t )vy0, (A24)

〈vx(t )〉 = Ȧ(t )x0 − Ḃ(t )y0 + Ċ(t )vx0 + Ḋ(t )vy0, (A25)

〈v̇x(t )〉 = Ä(t )x0 − B̈(t )y0 + C̈(t )vx0 + D̈(t )vy0, (A26)

〈y(t )〉 = A(t )y0 + B(t )x0 + C(t )vy0 − D(t )vx0, (A27)

〈vy(t )〉 = Ȧ(t )y0 + Ḃ(t )x0 + Ċ(t )vy0 − Ḋ(t )vx0, (A28)

〈v̇y(t )〉 = Ä(t )y0 + B̈(t )x0 + C̈(t )vy0 − D̈(t )vx0. (A29)

Upon substitution of 〈x〉, 〈vx〉, 〈y〉, and 〈vy〉 into Eqs. (A16)–
(A19), we obtain a system of four equations for the initial
conditions ix0, iy0, ivx0, and ivy0, and the corresponding
solution can be written as

ix0 = 1

�m
[Ââx(t ) + Ĉĉx(t ) − B̂b̂x(t ) − D̂d̂x(t )], (A30)

iy0 = 1

�m
[−Âây(t ) + Ĉĉy(t ) − B̂b̂y(t ) − D̂d̂y(t )], (A31)

ivx0 = 1

�m

[
Ââvx (t ) − Ĉĉvx (t ) + B̂b̂vx (t ) − D̂d̂vx (t )

]
, (A32)

ivy0 = 1

�m

[
Ââvy (t ) + Ĉĉvy (t ) + B̂b̂vy (t ) + D̂d̂vy (t )

]
, (A33)

where

Â = 1

C̃1

∂C̃1

∂η1
+ (Fη1 + Hη3),

B̂ = 1

C̃1

∂C̃1

∂η3
+ (Hη1 + Gη3),

(A34)

Ĉ = 1

C̃2

∂C̃2

∂η2
+ (Fη2 + Hη4),

D̂ = 1

C̃2

∂C̃2

∂η4
+ (Hη2 + Gη4),

with the determinant

�m = (A2 + B2)(Ċ2 + Ḋ2) + (C2 + D2)(Ȧ2 + Ḃ2)

− 2(AC − BD)(ȦĊ − ḂḊ)

− 2(AD + BC)(ȦḊ + ḂĊ), (A35)
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and

âx(t ) = A(Ċ2 + Ḋ2) − C(ȦĊ − ḂḊ) − D(ȦḊ + ḂĊ),

ĉx(t ) = B(Ċ2 + Ḋ2) + D(ȦĊ − ḂḊ) − C(ȦḊ + ḂĊ),

b̂x(t ) = B(CḊ − ĊD) + C(AĊ − ȦC) + D(AḊ − ȦD),

d̂x(t ) = B(CĊ + DḊ) − C(AḊ + CḂ) + D(AĊ − DḂ), (A36)

ây(t ) = B(Ċ2 + Ḋ2) + D(ȦĊ − ḂḊ) − C(ȦḊ + ḂĊ),

ĉy(t ) = A(Ċ2 + Ḋ2) − C(ȦĊ − ḂḊ) − D(ȦḊ + ḂĊ),

b̂y(t ) = A(CḊ − ĊD) − C(BĊ − ḂC) − D(BḊ − ḂD),

d̂y(t ) = A(CĊ + DḊ) + C(BḊ − CȦ) − D(BĊ + DȦ), (A37)

âvx (t ) = C(Ȧ2 + Ḃ2) − A(ȦĊ − ḂḊ) − B(ȦḊ + ḂĊ),

ĉvx (t ) = D(Ȧ2 + Ḃ2) + B(ȦĊ − ḂḊ) − A(ȦḊ + ḂĊ),

b̂vx (t ) = A(AĊ − ȦC) + B(BĊ − ḂC) − D(AḂ − ȦB),

d̂vx (t ) = A(AḊ + CḂ) + B(BḊ − CȦ) − D(AȦ + BḂ), (A38)

âvy (t ) = D(Ȧ2 + Ḃ2) + B(ȦĊ − ḂḊ) − A(ȦḊ + ḂĊ),

ĉvy (t ) = C(Ȧ2 + Ḃ2) − A(ȦĊ − ḂḊ) − B(ȦḊ + ḂĊ),

b̂vy (t ) = A(AḊ − ȦD) + B(BḊ − ḂD) + C(AḂ − ȦB),

d̂vy (t ) = A(AĊ − ḂD) + B(BĊ + DȦ) − C(AȦ + BḂ). (A39)

It can be checked that âx(t ) = ĉy(t ), ây(t ) = ĉx(t ), b̂x(t ) = d̂y(t ), d̂x(t ) = −b̂y(t ), âvx (t ) = ĉvy (t ), âvy (t ) = ĉvx (t ), b̂vx (t ) = d̂vy (t ),
and b̂vy (t ) = d̂vx (t ).

After a very long and careful algebra, we arrive at the generalized phase-space Fokker-Planck equation for a harmonic
oscillator in a magnetic field, which we write as

∂P

∂t
+

(
vx

∂P

∂x
+ vy

∂P

∂y

)
+ Q1(t )

(
x

∂P

∂vx
+ y

∂P

∂vy

)
− P2(t )I

(
∂2P

∂x2
+ ∂2P

∂y2

)
= P1(t )

(
x
∂P

∂y
− y

∂P

∂x

)
+ P2(t )

(
vx

∂P

∂y
− vy

∂P

∂x

)
− R1(t )

(
x

∂P

∂vy
− y

∂P

∂vx

)
− R3(t )

(
vx

∂P

∂vy
− vy

∂P

∂vx

)

−Q3(t )

(
∂vxP

∂vx
+ ∂vyP

∂vy

)
− S1(t )

(
∂2P

∂v2
x

+ ∂2P

∂v2
y

)
− S2(t )

(
∂2P

∂x∂vx
+ ∂2P

∂y∂vy

)
+ S3(t )

(
∂2P

∂x∂vy
− ∂2P

∂y∂vx

)
, (A40)

where the time-dependent coefficients are given by

S1(t ) = Q1(t )H − Q2(t )I + Q3(t )G − 1

2
Ġ, (A41)

S2(t ) = G + [Q4(t ) − P1(t )]I + Q1(t )F + Q3(t )H − Ḣ ,

(A42)

S3(t ) = Q2(t )F − P2(t )G + [Q4(t ) − P1(t )]H

−Q3(t )I + İ, (A43)

P1(t ) = 1

�m

[
Ȧĉx(t ) − Ḃĉy(t ) − Ċĉvx (t ) + Ḋĉvy (t )

]
,

P2(t ) = 1

�m

[−Ȧd̂x(t ) + Ḃd̂y(t ) − Ċd̂vx (t ) + Ḋd̂vy (t )
]
,

P3(t ) = 1

�m

[
Ḃâx(t ) − Ȧây(t ) − Ḋâvx (t ) + Ċâvy (t )

]
,

P4(t ) = 1

�m

[−Ḃb̂x(t ) − Ȧb̂y(t ) − Ḋb̂vx (t ) + Ċb̂vy (t )
]
,

Q1(t ) = 1

�m

[
Äâx(t ) + B̈ây(t ) + C̈âvx (t ) + D̈âvy (t )

]
,

Q2(t ) = 1

�m

[
Äĉx(t ) − B̈ĉy(t ) − C̈ĉvx (t ) + D̈ĉvy (t )

]
,

Q3(t ) = 1

�m

[−Äb̂x(t ) + B̈b̂y(t ) + C̈b̂vx (t ) + D̈b̂vy (t )
]
,

Q4(t ) = 1

�m

[−Äd̂x(t ) + B̈d̂y(t ) − C̈d̂vx (t ) + D̈d̂vy (t )
]
,

R1(t ) = 1

�m

[
B̈âx(t ) − Äây(t ) − D̈âvx (t ) + C̈âvy (t )

]
,

R2(t ) = 1

�m

[
B̈ĉx(t ) + Äĉy(t ) + D̈ĉvx (t ) + C̈ĉvy (t )

]
,
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R3(t ) = 1

�m

[−B̈b̂x(t ) − Äb̂y(t ) − D̈b̂vx (t ) + C̈b̂vy (t )
]
,

R4(t ) = 1

�m

[−B̈d̂x(t ) − Äd̂y(t ) + D̈d̂vx (t ) + C̈d̂vy (t )
]
.

(A44)

It also can be checked that P1(t ) = −P3(t ), P2(t ) =
−P4(t ), Q1(t ) = R2(t ), Q2(t ) = −R1(t ), Q3(t ) = R4(t ),
and Q4(t ) = −R3(t ).

APPENDIX B: GENERALIZED PHASE-SPACE FPE FOR A
HARMONIC OSCILLATOR IN A MAGNETIC FIELD

AND TIME-DEPENDENT FORCE FIELDS

To achieve the goal, we again begin with the characteristic
function, which in this case can be written as C(η, t ) =
C1(η, t )C2(η, t ), where

C1(η, t ) = eiqxη1+ipxη3C1(η1, η3), (B1)

C2(η, t ) = eiqyη2+ipyη4C2(η2, η4), (B2)

with C1(η1, η3) and C2(η2, η4) exactly the same as Eqs. (A2)
and (A3), respectively, and qx, qy, px, and py come from the
solutions given by Eqs. (102), (103), (105), and (106), such
that

qx =
∫ t

0
[H0(t − t ′) − 	2H2(t − t ′)]ax(t ′)dt ′

+	

∫ t

0
H1(t − t ′)ay(t ′)dt ′, (B3)

qy =
∫ t

0
[H0(t − t ′) − 	2H2(t − t ′)]ay(t ′)dt ′

−	

∫ t

0
H1(t − t ′)ax(t ′)dt ′, (B4)

px =
∫ t

0
[Ḣ0(t − t ′) − 	2Ḣ2(t − t ′)]ax(t ′)dt ′

+	

∫ t

0
Ḣ1(t − t ′)ay(t ′)dt ′, (B5)

py =
∫ t

0
[Ḣ0(t − t ′) − 	2Ḣ2(t − t ′)]ay(t ′)dt ′

−	

∫ t

0
Ḣ1(t − t ′)ax(t ′)dt ′, (B6)

where we note that px = q̇x and py = q̇y. Now,

∂P

∂t
= 1

(2π )4

∫
· · ·

∫ (
C1

∂C2

∂t
+ C2

∂C1

∂t

)
e−iη·ξ dη,

(B7)

where

C2
∂C1

∂t
= (iq̇xη1 + i ṗxη3)C + eiqxη1+ipxη3 C2

∂C1

∂t
, (B8)

C1
∂C2

∂t
= (iq̇yη2 + i ṗyη4)C + eiqyη1+ipyη3 C1

∂C2

∂t
. (B9)

If we define q̂x = qxη1 + pxη3, q̂y = qyη2 + pyη4, and use
Eqs. (B1) and (B2), we get

C2
∂C1

∂t
= (iq̇xη1 + i ṗxη3)C + eiq̂xη1+i p̂xη3 C2

∂C1

∂t
, (B10)

C1
∂C2

∂t
= (iq̇yη2 + i ṗyη4)C + eiq̂yη1+i p̂yη3 C1

∂C2

∂t
. (B11)

However, according to Eqs. (A14) and (A15), we have

eiq̂x+iq̂yC2
∂C1

∂t
= − İ

2
[η1η4 − η2η3]C + eiq̂x+iq̂yĈ1C2, (B12)

eiq̂x+iq̂yC1
∂C2

∂t
= − İ

2
[η1η4 − η2η3]C + eiq̂x+iq̂yĈ2C1. (B13)

Following similar algebraic steps given in Appendix A and
after a very long algebra, it can be concluded that the
non-Markovian phase-space Fokker-Planck equation for a
harmonic oscillator in a constant magnetic field and time-
dependent force fields can be written as

∂P

∂t
+

(
ṗx

∂P

∂vx
+ ṗy

∂P

∂vy

)
+ P1(t )

(
qx

∂P

∂y
− qy

∂P

∂x

)
−Q1(t )

(
qx

∂P

∂x
+ qy

∂P

∂y

)
+ P2(t )

(
px

∂P

∂y
− py

∂P

∂x

)
+Q2(t )

(
qx

∂P

∂vy
− qy

∂P

∂vx

)
− Q3(t )

(
px

∂P

∂vx
+ py

∂P

∂vy

)
+Q4(t )

(
px

∂P

∂vy
− py

∂P

∂vx

)
+

(
vx

∂P

∂x
+ vy

∂P

∂y

)
+Q1(t )

(
x

∂P

∂vx
+ y

∂P

∂vy

)
+ P2(t )I

(
∂2P

∂x2
+ ∂2P

∂y2

)
= P1(t )

(
x
∂P

∂y
− y

∂P

∂x

)
+ P2(t )

(
vx

∂P

∂y
− vy

∂P

∂x

)
−R1(t )

(
x

∂P

∂vy
− y

∂P

∂vx

)
− R3(t )

(
vx

∂P

∂vy
− vy

∂P

∂vx

)

−Q3(t )

(
∂vxP

∂vx
+ ∂vyP

∂vy

)
− S1(t )

(
∂2P

∂v2
x

+ ∂2P

∂v2
y

)

−S2(t )

(
∂2P

∂x∂vx
+ ∂2P

∂y∂vy

)
+ S3(t )

(
∂2P

∂x∂vy
− ∂2P

∂y∂vx

)
.

(B14)
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