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The minimum vertex cover (Min-VC) problem is a well-known NP-hard problem. Earlier studies illustrate that
the problem defined over the Erdös-Rényi random graph with a mean degree c exhibits computational difficulty
in searching the Min-VC set above a critical point c = e = 2.718 . . .. Here, we address how this difficulty is
influenced by the mesoscopic structures of graphs. For this, we evaluate the critical condition of difficulty for the
stochastic block model. We perform a detailed examination of the specific cases of two equal-size communities
characterized by in and out degrees, which are denoted by cin and cout , respectively. Our analysis based on the
cavity method indicates that the solution search once becomes difficult when cin + cout exceeds e from below, but
becomes easy again when cout is sufficiently larger than cin in the region cout > e. Experiments based on various
search algorithms support the theoretical prediction.
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I. INTRODUCTION

The minimum vertex cover problem (Min-VCP) is a well-
known combinatorial optimization problem. Given a graph,
the task of Min-VCP is to obtain a vertex set of minimum
size, such that every edge in the graph is connected to at least
one vertex in the set. Despite the simplicity of its expression,
this problem is related to many real-world problems including
monitoring Internet traffic [1], preventing denial-of-service
attacks [2], creating immunization strategies in networks [3],
solving the placement problem [4], and dealing with data
aggregation [5]. In addition, Min-VCP is considered a repre-
sentative computationally difficult problem that belongs to the
class NP-hard. This means that, in the worst case, all known
algorithms require an exponentially long time with respect to
the number of vertices not only to find a solution but also to
verify its validity.

Conventional theory in computer science determines the
computational difficulty mainly in the worst case. However,
characterizing the difficulty for a typical case is also essential
for various practical situations. Recent studies in statistical
mechanics carried out the typical case analysis of Min-VCP
for the Erdös-Rényi (ER) random graph ensemble [6–8].
Based on the analysis using the replica and cavity methods,
these studies reported that searching for the correct solution
typically becomes computationally difficult when the mean
degree c exceeds e = 2.718 . . ., while the solution can be
obtained easily for c < e. The ER model (ERM) is simple
and suitable as the initial step to analyze a typical case.
Nonetheless, extending the result to more general ensembles
is required since the graphs in real world exhibit several
mesoscopic structures, which are absent in ERM.

Based on the above perspective, this study addresses how
the critical condition of computational difficulty is influenced
when nontrivial structures are introduced into graphs. As a
simple but nontrivial example, we examine the Min-VCP
defined over the stochastic block model (SBM), which is a
generalization of ERM often employed for the community
detection problem [9]. Particularly focusing on the equal size

two community cases, which can be characterized by two
parameters, the mean in and out degrees, denoted by cin

and cout, respectively, we will show that the solution search
once becomes difficult when cin + cout exceeds e from below,
but becomes easy again when cout is sufficiently larger than
cin in the region cout > e. This indicates that mesoscopic
structures such as “communities” in graphs strongly influence
the computational difficulty.

The remainder of this paper is organized as follows. In
the next section, we formulate the problem. In section III,
we analyze the Min-VCP defined over SBM using the cavity
method, which yields the critical condition of the compu-
tational difficulty as a function of cin and cout in typical
cases. The theoretical prediction is then tested by numerical
experiments in section IV. The final section is devoted to the
summary of our results.

II. DEFINITIONS

A. Minimum vertex cover problem

We consider a graph G with a set of N vertices V =
{1, 2, ..., N} and a set of edges E . A vertex cover (VC) VVC

of the graph G is a subset of the vertices V of the graph G
which includes at least one vertex of every edge in E . Then,
Min-VCP is the problem of finding VVC such that the number
of elements in the VC is minimized.

Min-VCP is a well-known NP-hard problem. However,
if the graph is bipartite, this problem is equivalent to the
maximum matching problem, which belongs to the class P,
according to König’s theorem [10]. This indicates that the
computational difficulty can vary depending on the graph
structure of the problem. Our main purpose is to clarify how
this change is characterized for the typical case.

B. Random graph models

ERM is a random graph model constructed by connect-
ing every pair of vertices (i, j) ∈ V × V independently with
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probability p ∈ [0, 1]. The degree distribution of ERM
asymptotically converges to the Poisson distribution P(d ) =
e−cck/k!, where c := N p is the mean degree and p is set
such that c is O(1). Therefore, ERM is also called a Poisson-
distributed graph.

On the other hand, SBM is a random graph model gen-
eralized from ERM to describe a community (or cluster)
structure. For generating a sample of SBM, a hidden label zi ∈
{1, . . . , K} (i = 1, 2, . . . , N ) is first assigned to each of the
N vertices with a categorical distribution π = {π1, π2 ..., πK }.
Given a set of the community labels {zi}, every pair of vertices
(i, j) ∈ V × V is connected independently with probability
�zi,z j , where � ∈ [0, 1]K×K is an affinity matrix with the
property �z,z′ = �z′,z. Then, in the large system limit N →
∞, which we will focus on below, the probability that a
node of community z has d connections to community z′
converges to

Pz,z′ (d ) := e−cz,z′
cd

z,z′

d!
, (1)

cz,z′ := lim
N→∞

Nπz′�z,z′ , (2)

where cz,z′ is the mean degree from community z to commu-
nity z′, and is assumed to be O(1).

By controlling π and �, one can implement various com-
munity structures in SBM. As a particular case, we con-
sider the SBM with πz = 1/K and �z,z′ = {Kcin/N z = z′

Kcout/N z �= z′ with
cin, cout ∼ O(1), namely, every vertex is assigned to each com-
munity uniformly. In this case, the mean degrees of intracom-
munity connections and intercommunity connections con-
verge to cin and cout, respectively, as N tends to infinity. This
is called the symmetric stochastic block model (SSBM) [9].

III. ANALYTICAL FRAMEWORK

This section introduces the analytical framework used in
our study.

A. Statistical mechanical formulation

Our analysis is based on the description of Min-VCP in
terms of statistical mechanics [6]. First, for a vertex cover
VVC ⊂ V of a graph G = (V, E ), we assign binary variables
x = {xi}i∈V to each vertex as follows.

xi :=
{

1 vi ∈ VVC

0 vi /∈ VVC.
(3)

This enables us to express the size of VVC simply as

H (x) :=
∑
i∈V

xi. (4)

On the other hand, the constraint that every edge must be
connected to at least one element of VVC is expressed by

�(x) :=
∏

(i, j)∈E

(1 − (1 − xi )(1 − x j )), (5)

which returns unity if the constraint is satisfied and vanishes,
otherwise. Combining these leads to the Boltzmann distribu-
tion,

P(x) = 1

Z (β )
e−βH (x)�(x), (6)

Z (β ) =
∑

x

e−βH (x)�(x), (7)

which yields the uniform distribution of the Min-VC sets in
the limit of β → ∞.

Based on this formulation, the internal energy per variable
can be evaluated as

ν(β ) = 1

N

∑
x

P(x)H (x) = − ∂

∂β

1

N
ln Z (β ). (8)

This is reduced to the ratio of the covered vertices of the Min-
VC set as

xc = 1

N
min
Vvc

{|Vvc|} = lim
β→∞

ν(β ) (9)

in the limit of β → ∞.

B. Cavity method

We denote by ∂i and x∂i the set of nearest neighbors of a
vertex i and that of variables indexed by the neighbors, re-
spectively. In addition, we introduce a distribution p∂i→i(x∂i )
as

p∂i→i(x∂i ) = 1

Z\i

∑
x\x∂i

e−β
∑

k �=i xk
∏
k,l �=i

(1 − (1 − xk )(1 − xl )),

(10)

where A \ B generally indicates exclusion of subset B from
set A, and Z\i is the normalization constant. This distribution
stands for the joint distribution of x∂i for the i-cavity system
that is defined by excluding vertex i from the original system.
We call p∂i→i(x∂i ) the joint cavity distribution. For any vertex
i of general graphs, the following identity holds between
the marginal distribution of variable xi and the joint cavity
distribution p∂i→i(x∂i ).

pi(xi ) =
∑
x\{xi}

P(x),

∝
∑
x\{xi}

e−βxi
∏
j∈∂i

(1 − (1 − xi )(1 − x j ))

× e−β
∑

k �=i xk
∏
k,l �=i

(1 − (1 − xk )(1 − xl ))

∝
∑
x\{xi}

e−βxi
∏
j∈∂i

(1 − (1 − xi )(1 − x j ))p∂i→i(x∂i ).

(11)

Evaluating p∂i→i(x∂i ) is nontrivial for general graphs.
However, when G does not contain any cycles, it is decom-
posed as

p∂i→i(x∂i ) =
∏
j∈∂i

p j→i(x j ), (12)
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where p j→i(x j ) represents the marginal distribution of x j in
the i-cavity system, since the exclusion of vertex i makes the
components of x∂i statistically independent of one another.
This offers simplified expressions for the distributions as

pi(xi = 1) = e−β

e−β + ∏
j∈∂i p j→i(x j = 1)

, (13)

pi(xi = 0) = 1 − pi(xi = 1). (14)

Further, by considering the process of adding vertex j
to the j-cavity system and excluding vertex i ∈ ∂ j, we can
efficiently compute the marginal cavity distribution pj→i(x j )
using a message passing algorithm as

p j→i(x j = 1) = e−β

e−β + ∏
k∈∂ j\i pk→ j (xk = 1)

, (15)

p j→i(x j = 0) = 1 − p j→i(x j = 1). (16)

This procedure for evaluating the marginal distributions pi(xi )
by efficiently computing the cavity distributions pj→i(x j ) for
cycle-free graphs is often termed belief propagation (BP) [11].

Two issues should be noted here. The first one is about
the treatment of graphs containing cycles. When graphs con-
tain cycles, Eq. (12) does not hold, and therefore, BP does
not yield an exact assessment of the marginal distributions.
However, it can still be employed as an approximate algorithm
since Eq. (15) is performable even if there are cycles. In partic-
ular, such treatment is expected to offer a good approximation
of an accurate solution for large sparse random graphs such as
ERM and SBM since the typical length of cycles for these
graphs diverges as O(ln N ), and therefore, their influence
becomes negligible as N tends to infinity. This motivates us to
employ BP for searching the Min-VC set, which corresponds
to the Bethe-Peierls approximation known in physics.

The second point to note is that, in the limit of β → ∞, the
marginal and cavity distributions can be expressed in simpler
forms as

pi(xi = 1) =

⎧⎪⎨
⎪⎩

0
∑

j∈∂i u j→i = 0
1
2

∑
j∈∂i u j→i = 1

1
∑

j∈∂i u j→i > 1

, (17)

p j→i(x j = 1) =

⎧⎪⎨
⎪⎩

0
∑

k∈∂ j\i uk→ j = 0
1
2

∑
k∈∂ j\i uk→ j = 1

1
∑

k∈∂ j\i uk→ j > 1

, (18)

using binary messages {u j→i} that are determined by a
reduced expression of BP,

u j→i =
{

1
∑

k∈∂ j\i uk→ j = 0

0
∑

k∈∂ j\i uk→ j � 1
. (19)

This procedure is referred to as warning propagation (WP).
A comprehensive graphical explanation for WP is given in
[7]. After determining the messages by WP, the cover ratio is
evaluated as

xc = 1

N

N∑
i=1

pi(xi = 1). (20)

C. Density evolution

So far, we have investigated how to obtain the Min-VC set
for a given single sample of graphs. However, ignoring the
influence of cycles in graphs, which is expected to be valid for
N → ∞ in ERM and SBM, makes it possible to characterize
the typical properties of graph ensembles using the densities
of messages. In addition, in the limit of β → ∞, the densities
are expressed in particularly simple forms as

Rz,z′ (u) := (1 − ρz,z′ )δ(u) + ρz,z′δ(u − 1), (21)

where z and z′ denote the labels of communities and ρz,z′ ∈
[0, 1] is the probability that the binary message u j→i sent from
node j of community z to i of z′ takes the value of unity.

For ERM, which corresponds to the single community case
(K = 1), Ref. [8] showed that ρz,z = W (c)/c, where W (·)
is the Lambert-W function. On the other hand, in the case
of SBM, handling WP as the elementary process provides a
set of self-consistent equations to determine Pz(u) under the
locally treelike assumption, which is often termed the density
evolution (DE), as

ρz,z′ =
∑

d1,...,dK

⎛
⎝ ∏

z′′ �=z′
Pz,z′′ (dz′′ )

⎞
⎠Qz,z′ (dz′ )

×
K∏

z′′=1

(1 − ρz′′,z )dz′′

= exp

(
−

K∑
z′′=1

cz,z′′ρz′′,z

)
, (22)

where Qz,z′ (d ) = (d + 1)Pz,z′ (d + 1)/
∑∞

d ′=0 d ′Pz,z′ (d ′) is the
probability that when an edge is randomly chosen, a terminal
node i of z has remaining degree d . Note that Eq. (22) is
independent of z′. Thus for the simplicity of notation, we
hereafter denote ρz,z′ as ρz.

Similarly, we express the densities of marginal probabili-
ties as

Rz(p) = ν (0)
z δ(p) + ν

( 1
2 )

z δ
(
p − 1

2

) + ν (1)
z δ(p − 1), (23)

where ν
(p)
z ∈ [0, 1] for p ∈ {0, 1

2 , 1} is the probability that
pi(xi = 1) = p holds for a randomly chosen node i of com-
munity z.

After determining ρz from Eq. (22), ν
(p)
z in Eq. (23) is

evaluated as

ν (0)
z =

∑
d1,...,dK

(
K∏

z′=1

Pz,z′ (dz′ )

)
K∏

z′=1

(1 − ρz′ )dz′ = ρz, (24)

ν
( 1

2 )
z =

∑
d1,...,dK

(
K∏

z′=1

Pz,z′ (dz′ )

)
K∑

z′=1

dz′ (1 − ρz′ )dz′ −1ρz′

×
∏
z′′ �=z

(1 − ρz′′ )dz′′

=
K∑

z′=1

cz,z′ρzρz′ , (25)

ν (1)
z = 1 − ν (0)

z − ν
( 1

2 )
z . (26)
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This yields the typical cover ratio for SBM as

xc = E

[
1

N
min
VVC

{|VVC |}
]

=
K∑

z=1

πz

(
ν (1)

z + 1

2
ν

( 1
2 )

z

)
, (27)

where E[·] stands for the average with respect to the distribu-
tion of graphs of SBM. Equations (22) and (27) constitute the
first contribution of this study.

D. Stability analysis

In this subsection, we examine the critical points at which
the stability of the fixed point solution of WP is broken using
two analytical methods. In the following, we assume that the
update scheme for WP is a random sequential update, where
one directed edge j → i is picked up uniformly in a given
graph at every time step and the binary message on it is
updated according to Eq. (19).

1. Linear stability analysis for DE

We denote ρz at the t th step in DE by ρ (t )
z . We now consider

the process of picking up directed edge j → i at random from
SBM at step t of WP. In this process, the probability that the
binary message uj→i sent from node j of community z to i of
z′ takes the value of unity at the next step t + 1 is evaluated as

qz,z′ =
∑

d1,...,dK

⎛
⎝ ∏

z′′ �=z′
Pz,z′′ (dz′′ )

⎞
⎠Qz,z′ (dz′ )

K∏
z′′=1

(
1 − ρ

(t )
z′′

)dz′′

=
K∏

z′′=1

exp
( − cz,z′′ρ

(t )
z′′

)
. (28)

Since Eq. (28) is independent of z′, we hereafter denote qz,z′

as qz.
In SBM, the probability qz becomes independent of the

value of message u j→i at step t as the size of graphs tends
to infinity. This indicates that the difference between ρ (t+1)

z

and ρ (t )
z is expressed as

ρ (t+1)
z − ρ (t )

z 
 1

Mz

(
−Mzρ

(t )
z

M
(1 − qz ) + Mz(1 − ρ (t )

z )

M
qz

)

= 1

M

( − ρ (t )
z (1 − qz ) + (

1 − ρ (t )
z

)
qz

)
, (29)

where Mz := Nπz
∑K

z′=1 cz,z′ is the number of messages that
are sent from the nodes of community z and M := ∑K

z=1 Mz

is the number of all messages. As M → ∞, Eq. (29) can
be treated as a set of ordinary differential equations with the
rescaled time τ = t/M(dτ = dt/M = 1/M ) as

dρz

dτ
= −ρz(1 − qz ) + (1 − ρz )qz

= −ρz + qz. (30)

This makes it possible to examine the linear stability of DE of
WP for SBM numerically. This is the second contribution of
this study.

Specifically for the case of SSBM with two communities,
Eq. (30) can be expanded as

dρ

dτ



(−ρ1 + exp(−cinρ1 − coutρ2)

−ρ2 + exp(−cinρ2 − coutρ1)

)
, (31)

where ρ = (ρ1, ρ2)� and � denotes the operation of
matrix/vector transpose. The Jacobian J is then given as

J = −I − A, (32)

A=
(

cin exp(−cinρ1 − coutρ2) cout exp(−cinρ2 − coutρ1)

cout exp(−cinρ1 − coutρ2) cin exp(−cinρ2 − coutρ1)

)
,

(33)

where I is the identity matrix. Therefore, the linear stability
around a fixed point solution ρ̂ of Eq. (22) can be assessed by
examining J at ρ̂. If all eigenvalues of J at ρ̂ are smaller than
zero, the solution is linearly stable with respect to DE.

2. Bug proliferation analysis for WP

DE macroscopically characterizes the solution of WP.
However, even if DE converges to a stationary density, it does
not necessarily imply the convergence of messages to a fixed
point since the messages can continue to move while keeping
the density stationary. In ERM, earlier studies [6–8], reported
that the cover ratio evaluated by WP coincides with that by
other methods for c < e, but does not for c > e. This transition
is accompanied by the instability of the fixed point of WP,
which is regarded as a consequence of the replica symmetry
breaking [6–8]. To examine the possibility of such a transition
for SBM, we generalize a method termed the bug proliferation
analysis that was introduced for ERM in [8].

The analysis starts with the assumption that messages are
at a fixed point of WP. At the fixed point, we flip one message
u j→i to the other value, called a bug, and examine whether the
bugs proliferate or die out during iterations of WP.

Let us suppose that an incoming message uj→i sent from
node j of community z′′ to i of z′ is flipped. Then, the outgoing
messages ui→k from i to k ∈ ∂i\{ j} change to the other values
if and only if all incoming messages from h ∈ ∂i\{ j, k} to i
are zeros (Fig. 1).

Since node i is selected randomly from z′, the expected
number of the messages incoming to z that are flipped by
Eq. (19) due to a bug incoming from z′′ to z′ is evaluated as

sz,z′,z′′ =
∑

d1,...,dK

⎛
⎝ ∏

z∗ �=z′
Pz,z∗ (dz∗ )

⎞
⎠Qz,z′ (dz′ )

× dz′

⎛
⎝ ∏

z∗ �=z′
(1 − ρz∗ )dz∗

⎞
⎠(1 − ρz′ )dz′−1

= cz,z′

K∏
z∗=1

exp(−cz,z∗ρz∗ ). (34)

Since Eq. (34) is independent of z′′, we hereafter denote sz,z′,z′′

as sz,z′ .
Next, we denote as p(t )

z (bz ) the probability that there are bz

bugs incoming to community z at the t th step of the random
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(a) (b)

FIG. 1. When uj→i = 1 is sent from node j of community z′′ to
i of z′, every outgoing message ui→k from i to k ∈ ∂i \ { j} is set to
zero. Therefore, if an incoming message uj→i is flipped from one
to zero [(a) → (b)], each outgoing message ui→k becomes a new
bug if its value is changed to one by Eq. (19), that is, all incoming
messages uh→i from h ∈ ∂i \ { j, k} to i are zeros. On the other hand,
if an incoming message uj→i is flipped from zero to one [(b) → (a)],
ui→k becomes a new bug if its original value is one. This condition is
equivalent to the previous one.

sequential updates of WP. This probability is updated as

p(t+1)
z (bz ) = p(t )

z (bz ) − bz

M
p(t )

z (bz ) + bz + 1

M
p(t )

z (bz + 1)

− sz,zbz

M
p(t )

z (bz ) + sz,z(bz − 1)

M
p(t )

z (bz − 1)

−
∑
z′ �=z

∞∑
bz′ =0

sz,z′bz′

M
p(t )

z′ (bz′ )p(t )
z (bz )

+
∑
z′ �=z

∞∑
bz′ =0

sz,z′bz′

M
p(t )

z′ (bz′ )p(t )
z (bz − 1). (35)

The second and third terms mean that a bug in the community
z is selected for each step, and is fixed. The second term
indicates that when a bug in the community z with bz bugs
is selected with the probability bz/M and is fixed, the number
of bugs in community z is no longer bz. On the other hand, the
third term corresponds to the case that the number of bug s
in community z varies from bz + 1 to bz. Similarly, the fourth
to seventh terms correspond to the case when a child of bugs
which creates a new bug in the community z is selected.

Similar to Eq. (30), in the limit M → ∞, this can be
rewritten as ordinal differential equation with the rescaled
time τ = t/M as

d

dτ
pz(bz ) = −bz pz(bz ) + (bz + 1)pz(bz + 1)

− sz,zbz pz(bz ) + sz,z(bz − 1)pz(bz − 1)

−
∑
z′ �=z

∞∑
bz′ =0

sz,z′bz′ pz′ (bz′ )pz(bz )

+
∑
z′ �=z

∞∑
bz′ =0

sz,z′bz′ pz′ (bz′ )pz(bz − 1). (36)

Let us denote the average of bz at time τ as bz :=∑∞
bz=0 bz pz(bz ). Equation (36) indicates that bz obeys an

ordinary differential equation,

d

dτ
bz = −b2

z + bz(bz − 1) − sz,zb2
z + sz,zbz(bz + 1)

−
∑
z′ �=z

sz,z′bz′bz +
∑
z′ �=z

sz,z′bz′ (bz + 1)

= −bz +
K∑

z′=1

sz,z′bz′ , (37)

which is the generalization of the bug proliferation analysis
proposed for ERM in [8] to SBM. This is the third contribution
of this study.

In the case of SSBM with two communities, Eq. (37) is
expressed in a simple form as

d

dτ
b = (−I + A) · b, (38)

where b = (b1, b2)� and A is introduced at Eq. (33). The
corresponding Jacobian is then given by −I + A. Unless every
eigenvalue of −I + A at ρ̂ has values smaller than zero, the
fixed point of WP is unstable.

IV. NUMERICAL RESULTS

In this section, we compare the analysis in Sec. III with
the results of numerical experiments for SSBM with two
communities.

A. Stability analysis for SSBM with two communities

Figures 2 and 3 plot the phase planes of Eq. (31) for
SSBM with two communities, where fixed points are denoted
by markers. The shape is determined by its stabilities, which
are evaluated from the eigenvalues of −I − A [Eq. (32)] and
−I + A [Eq. (38)]. The former corresponds to the stability
of the macroscopic variables ρ = (ρ1, ρ2)� while the latter

FIG. 2. The phase planes of Eq. (31) for SSBM with two com-
munities. The mean degree of intracommunity is fixed as cin = 0.
Left and right panels correspond to the cases of cout = 1 and 3,
respectively. Solid curves are nullclines of the system, and each
marker represents its fixed points. The color of these points indicate
the stability evaluated by −I − A [Eq. (32)], that is, the linear
stability of ρ = (ρ1, ρ2)�. The difference of the markers indicates
the stability assessed by −I + A [Eq. (32)], that is, the microscopic
stability with respect to WP.
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corresponds to the stability of the microscopic variables
{u j→i}, respectively.

Due to the underlying symmetry, DE of the two-
community SSBM always has a symmetric fixed point of
ρ1 = ρ2 = ρ, which is the unique and stable solution when
cin + cout is sufficiently small. In the following, the stability
analysis of this solution can be carried out analytically while
that for other solutions is performed numerically.

In the case of cin = 0 (Fig. 2), at first the symmetric
fixed point is the unique and stable solution of Eq. (22).
However, as cout increases, a bifurcation occurs, which yields
two stable and one unstable fixed points. The stable points
assign a value of one to most of the binary messages sent
across the two communities. This indicates that either of the
two communities is covered more when the bipartite structure
becomes sufficiently strong by increasing cout.

The behavior for the case of cin = 1 (Fig. 3) is somewhat
different from that of cin = 0. Although the symmetric fixed
point is the unique and stable solution when cin + cout is
sufficiently small (Fig. 3, top left), its stability is lost micro-
scopically (Fig. 3, top right) at cout = e − cin = e − 1. As cout

grows further, this fixed point bifurcates two macroscopically
stable and one macroscopically unstable fixed points (Fig. 3,
bottom left) when the largest eigenvalue of −I − A van-
ishes. However, the resulting two macroscopically stable fixed
points are still unstable microscopically, which indicates that
the messages continue to move while keeping the macroscopic
distribution stationary. Interestingly, as cout grows further, the
macroscopically stable fixed points become microscopically
stable as well (Fig. 3, bottom right) at a certain critical point
which is larger than e. This behavior can be interpreted to be
a consequence of the emergence of strong bipartite structure

FIG. 3. The phase planes of Eq. (31) for SSBM with two com-
munities. The mean degree of intracommunity is fixed as cin = 1.
Top left, top right, bottom left, and bottom right panels correspond
to the cases of cout = 1, 4, 7, and 10, respectively. The description of
this figure is the same as in Fig. 2.

FIG. 4. The convergence probability of WP for SSBM with two
communities as a function of cin and cout . The red dashed and green
solid lines are obtained by conditions that the largest eigenvalues of
−I + A of Eq. (38) at the macroscopically stable fixed points and
−I − A of Eq. (32) at the symmetric fixed point of ρ1 = ρ2 vanish,
respectively.

created in SBM. As mentioned in Sec II A, Min-VCP belongs
to the class P for bipartite graphs.

To confirm these theoretical predictions, we assessed the
probability that the sequential random update of WP con-
verges. This probability is calculated according to a method
of [8]. Namely, we assessed the fraction of 100 randomly
generated graphs with 5000 vertices, for which at least 99% of
the messages are converged after 100 sequential updates. The
result, in conjunction with the boundary at which the largest
eigenvalue of −I + A of Eq. (38) vanishes (red dashed line),
is plotted in Fig. 4, which is quite consistent with the above
mentioned scenario.

In ERM, it is reported that the instability of WP is asso-
ciated with the core percolation [12–14]. To examine how
this association is relevant in SBM, we plot the ratio of the

FIG. 5. Core percolation. The ratio of the vertices that belong to
the core for SSBM with two communities. The values are evaluated
from 100 sample graphs with N = 2500.
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FIG. 6. The cover ratios of Min-VC for SSBM with two communities as a function of cout. Left and right panels correspond to the cases
of cin = 0 and 1, respectively. Each point indicates the sample average obtained by the corresponding algorithm. Black solid curves represent
the replica-symmetric solution obtained by Eq. (27). Gray dotted vertical lines are placed at the point of cin + cout = e. Black vertical lines are
placed at the point where the largest eigenvalue of −I + A of Eq. (38) vanishes.

vertices that belong to the core in Fig. 5. This figure shows
that although the critical condition of the core percolation is
in accordance with that of the first transition at cin + cout =
e, it is not relevant to the second (reentrant) transition that
appears in the region of cout > e. This indicates that the core
percolation is not the sole cause for the emergence of the
computational difficulty, and the mesoscopic structures of
graphs strongly influence it.

B. Experimental validation

We performed WP on 100 instances of SSBM with N =
5000 vertices. In the experiments, we set the maximum
number of updates for WP to 100 × 2M times, where M is
the number of edges. After WP converged or the number of
updates reached the maximum, we calculated the cover ratio
xc using Eq. (20). This is plotted in Fig. 6 along with the
analytical result (solid curve).

FIG. 7. The heat map of Hamming distance matrix for 1024 Min-VC samples given by SA for SSBM with two communities of N = 256.
Intradegree cin is fixed to 1. Left, center, and right panels correspond to the cases of cout = 1, 4, and 8, respectively. The arrangement is
determined by Ward’s method and its hierarchical structure is indicated by the dendrogram.
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FIG. 8. The landscape of 512 Min-VC samples given by SA for SSBM with two communities of N = 256. Intra-degree cin is fixed to
1. Left, center, and right panels correspond to the cases of cout = 1, 4, and 8, respectively. Each solution is mapped from {0, 1}N to R2 by
curvilinear component analysis.

We also tested other algorithms to obtain xc namely, the
hybrid algorithm with greedy leaf removal and maximum
degree decimation (GLR + MDD) [6], simulated annealing
(SA) [15,16], WP, WP decimation (WPD) [6], and WP-based
linear-time-and-space algorithm (linearWPD) [17].

In the case of cin = 0, the results obtained from each
algorithm are in agreement for cout < e. However, for cout > e,
the result obtained by the GLR + MDD algorithm starts to
deviate from the results of other algorithms. This can be
understood as a consequence of the core percolation which
occurs at cout = e.

On the other hand, in the case of cin = 1, when 1 + cout >

e, the results from the GLR + MDD algorithm as well as those
from the WP-based algorithms start to deviate from the result
of the SA algorithm, which is regarded as the ground truth.
It might be worthwhile to note that the result of WP, which
is lower than the “ground truth” in a certain region, does
not necessarily mean the value of xc achieved by actual VCs
because of degenerate beliefs pi(xi = 1) = pi(xi = 0) = 1/2.
For obtaining a VC based on the result of WP, a certain proce-
dure of decimation is necessary for resolving the degeneracy.
The results of the two WP-based algorithms (WPD and linear
WPD), which are obtained by performing decimation after
beliefs are evaluated by WP, consistently yield higher values
of xc than that of SA. However, when cout grows further, the
results of the WP-based algorithms agree with the result of
SA again, supporting the existence of the reentrant transition
predicted above.

C. Visualization

Two visualization methods are used to explain the above
results graphically. First, we use the Ward’s method [18],
which is one of the hierarchical clustering methods. This
method was applied to the solutions for Min-VCP in earlier
studies [7]. We sampled 1024 solutions by SA and clustered
them by Hamming distance. Figure 7 plots the dendrogram
and heat map of the distance matrix. As cout increases, a
hierarchical structure comes out in the solution space, but the
solutions are eventually aggregated into two points.

We also use the curvilinear component analysis (CCA)
[19], which is one of the nonlinear dimensionality reduction
algorithms. The papers [20,21] applied CCA to the solutions
of modularity maximization problem. In the current study, we

applied CCA to the solutions of Min-VCP. Figure 8 plots
the landscape, where we can more visually confirm how
the characteristic features of the solution space vary as cout

increases.

V. SUMMARY

This study analyzed the typical property of the Min-VCP
on SBM using the cavity method. In particular, we exam-
ined the critical condition of the computational difficulty for
searching for Min-VC sets by the linear stability and bug
proliferation analyses for WP. We also performed numerical
experiments for SSBM with two communities by various
algorithms, which supported predictions obtained by the the-
oretical analysis.

Min-VC sets are easily found by WP-based algorithms
when the total mean degree cin + cout is relatively small. How-
ever, it becomes difficult when cin + cout exceeds e = 2.718....
This transition is regarded as a consequence of the replica
symmetry breaking caused by the core-percolation transition,
which is also observed in ERM. However, when cout becomes
sufficiently larger than cin in the region of cout > e, the so-
lution search by WP-based algorithms becomes easy again.
The Min-VCP on a bipartite graph is known to be equivalent
to the maximum matching problem that belongs to class P
by the König’s theorem. The reentrant behavior from the
computationally difficult to easy phases presumably reflects
this fact. We confirmed this by evaluating the convergence
probability of WP and various numerical experiments. These
indicate that mesoscopic structures such as “communities”
strongly influence the computational difficulty for finding
solutions of problems defined on graphs.

Future research scope includes extension of the current
analysis to the hypergraphs, which corresponds to hitting set
problem [22–24], further investigation of RSB using survey
propagation [8,25], and validation of the bug analysis [26].
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