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Nonlinear dynamics of laser-generated ion-plasma gratings: A unified description
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Laser-generated plasma gratings are dynamic optical elements for the manipulation of coherent light at high
intensities, beyond the damage threshold of solid-state-based materials. Their formation, evolution, and final
collapse require a detailed understanding. In this paper, we present a model to explain the nonlinear dynamics
of high-amplitude plasma gratings in the spatially periodic ponderomotive potential generated by two identical
counterpropagating lasers. Both fluid and kinetic aspects of the grating dynamics are analyzed. It is shown that
the adiabatic electron compression plays a crucial role as the electron pressure may reflect the ions from the
grating and induce the grating to break in an X-type manner. A single parameter is found to determine the
behavior of the grating and distinguish three fundamentally different regimes for the ion dynamics: completely
reflecting, partially reflecting or passing, and crossing. Criteria for saturation and lifetime of the grating as well
as the effect of finite ion temperature are presented.
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I. INTRODUCTION

Plasma optical elements are gaining increasing importance
for the manipulation of coherent light from high-power lasers.
This is due to the much higher fluences plasmas can support
compared to solid-state optical devices. However, plasmas are
dynamic entities with a finite lifetime. It is therefore important
to understand in detail the generation, transient phase, and
saturation mechanisms of plasma-based optical elements.

Generating quasineutral gratings by intersecting laser
pulses in underdense plasmas or at the plasma surface
has been proposed, leading to many interesting applications
[1–16], e.g., photonic crystals [11], polarizers and waveplates
[13], holograms [10], surface plasma wave excitation [7], etc.
These gratings are particularly interesting in that they can ma-
nipulate intense lasers up to picosecond duration. Multidimen-
sional particle-in-cell (PIC) simulations predict the existence
of gratings, and they have been indirectly observed in exper-
iments of strong-coupling stimulated Brillouin scattering (sc-
SBS) amplification [17–20]. However, at present an in-depth
understanding of the growth and saturation of plasma gratings,
supported by an analytical model, is still lacking. While early
studies identified the important role of ion nonlinearities and
X-type wave-breaking in the saturation of the ion fluctuations,
simplified model equations were used and the existence of
a driver was not considered [4,21–23]. More recent studies
have emphasized the importance of the driver on the electrons
while imposing quasineutrality for the plasma fluctuations and
ballistic ions, and including electron temperature effects in an
isothermal way [2,11–13]. The isothermal electron response
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is appropriate in the limit where the transient gratings are
ion-acoustic waves that can be driven to large amplitude either
resonantly [6,8,9,24,25] or nonresonantly [26,27].

However, these approaches are not appropriate when con-
sidering quasineutral gratings exhibiting large density fluc-
tuations, potentially larger than the critical density nc =
meω

2/(4πe2) (for the driving laser frequency ω), accessible
at moderately high laser intensities over short (100 fs to 10
ps) timescales. In this paper, we develop a fully nonlinear
model for such quasineutral (ion) gratings. Our analysis shows
that, using an adiabatic model for the electron response in
ion modes, it is possible to obtain a unified description of
ion gratings for arbitrary electron temperatures and grating
amplitudes. This description identifies a single parameter μ,
which measures the ratio of the (initial) electron temperature
to the ponderomotive potential, as fully characterizing the ion
grating. This model allows us to deduce clear criteria for the
saturation and breaking of the grating as well as to predict the
peak density value and size of the gratings.

II. THE MODEL

The nonlinear two-fluid equations including the pondero-
motive potential and neglecting the electron inertia are
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The ponderomotive potential φp = 1
2

mec2

e a2
0 cos(2kx) is

generated by two identical counterpropagating lasers. Here k
is the laser wave vector in the plasma k = ω0

c

√
1 − n0/nc with

n0 the unperturbed plasma density, and a0 = eE/(mecω0)
is the normalized laser field amplitude. Adiabatic heating
implies pn−γ

e = cst , with p = neTe the electron pressure; here
γ = 3 is the adiabatic index for one degree of freedom. We
then define the thermal potential as φth = 3

2
Te0
e ( ne

n0
)2, where

Te0 is the initial electron temperature, and Eq. (1a) reduces to
the equation on the electrostatic potential φ = φp + φth. Upon
normalizing with xunit = 1

2k , tunit =
√

1
2

Zme
mi

(kv0)−1, vunit =√
1
2
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v0, and nunit = n0, Eqs. (1) reduce to
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There exist two governing parameters in this model. The
first is ν = ω2

p0/(2k2v2
0 ) (with v0 = a0 c the electron quiver

velocity in the nonrelativistic laser field and ωp0 the ini-
tial electron plasma frequency), which defines the transition
from electron (ν < 1) to ion (ν > 1) gratings. Throughout
this work, we focus on quasineutral ion gratings for which
ν � 1 [note also that the regime ν < 1 (superradiant regime
[28–31]) would require considering the electron inertia]. The
second parameter is μ = 3Te0/(mev

2
0 ), and it is the most

important parameter for this study as it completely describes
the dynamics of ion gratings. Lastly, we should stress that
ensuring large-amplitude ion gratings requires us to operate
in the so-called strong-coupling regime of stimulated Bril-
louin scattering. This requires (v0/vth)2 > 4k0csωp/ω

2
p0 [21],

correspondingly μ < μtr = [2a2
0

me
mi

( nc
n0

)2(1 − n0
nc

)]−1/3. In all
situations of interest, we are in this regime.

III. SOLUTION AND COMPARISON WITH
KINETIC SIMULATIONS

The set of Eqs. (2) was solved for a large range of pa-
rameters μ and ν > 1 and systematically compared to PIC
simulations. Notice that the dominant parameter is μ and
the system is only weakly dependent on ν, as we verified
numerically. The main result of this comparison is that the
fluid model allows us to predict with very good accuracy
the initial formation, peak value, and size of the grating.
However, kinetic simulations are mandatory to describe the
long-time evolution and allow us to identify different regimes
and the relevant timescales. In the following, the fluid model
is compared to kinetic simulations for a representative case:
μ = 1.5 and ν = 59.5. In the PIC simulations, the laser
wavelength (λ0) and laser intensity are such that Iλ2

0 = 5 ×
1015 W/cm2 μm2 (a0 � 0.06) and Te0 = 920 eV, correspond-
ing to μ = 1.5. Two identical laser pulses, constant in time but
with a slowly linearly growing front of 10πω−1

p0 , cross inside
the plasma. The unperturbed plasma density is n0 = 0.3nc,
which corresponds to ν = 59.5. The ion temperature is set to
Ti0 = 1 eV, and since for these parameters the strong-coupling
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FIG. 1. Comparison of the fluid model with kinetic simulations.
Parts (a) and (b) show the ion velocity and density profiles for t =
500 and 800 fs, respectively, for μ = 1.5 and ν = 59.5. Displayed
are the ion density (green broken line) as well as the electron density
(yellow broken line). Parts (c), (d), and (e) present kinetic results for
the times t = 500, 800, and 1300 fs, respectively. Also shown (red
line) is the electron temperature Te superimposed on the longitudinal
phase space.

threshold is μtr � 32, we are well into the sc-SBS regime,
so that in the initial stage the thermal potential is much smaller
than the ponderomotive potential and can be neglected. The
SMILEI [32] code is used for the 1D3V PIC simulation. The
cell size is λ0/256, and 50 particles per cell are used with a
mass ratio of mi/me = 1836 and Z = 1. The plasma profile is
a 6λ0 plateau with 2λ0 vacuum at each side. The plasma length
is shorter than the sc-SBS growth length cγ −1

sc � 24.4 μm.
Therefore, there is little energy exchange between the lasers
[33,34].

The simulation comparison is shown in Fig. 1, where, as
the ponderomotive potential is static and periodic along the
x-axis, only one period is shown. Let us consider first the fluid
case. The ion velocity grows and steepens under the effect
of the ponderomotive potential φp, leading to the accumu-
lation of ions and electrons toward the potential trough [see
Fig. 1(a)]. The thermal potential φth = 3

2
Te0
e ( ne

n0
)2 (not shown

here) also grows quickly as the electron density increases
in the grating. The combined potential, φ = φp + φth, then
stops the ions moving toward the center of the grating, and a
velocity plateau forms for the ions. According to the adiabatic
law, the electron temperature rises to ∼2.0 keV at this stage.
The ions keep accumulating at the two edges of the grating,
generating two localized spikes in the ion density [Fig. 1(b)]
stopped by the potential barrier, miv

2
i < e	φ. In the spikes,
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the plasma is non-neutral and the electron density at the
center of the grating has reached its maximum value. The
same two phases appear in the kinetic approach, Figs. 1(c)
and 1(d). The electron phase space and the local temperature
are plotted in the bottom row (red dashed line). Indeed, the
electron temperature in the grating [Fig. 1(c)] increases from
the initial value, 920 eV, to about 2 keV. The fluid model, for
time that corresponds to its range of validity, reproduces very
well the grating dynamics. For longer timescales, the kinetic
approach allows us to identify the saturation mechanisms and
the subsequent dynamics of the gratings. As seen in Fig. 1(e),
the fastest ions are completely reflected, leading to an X-
like ion phase space that corresponds to the X-type wave-
breaking widely observed in previous works [4,21–23,35].
Subsequently, the reflected ions induce the grating to expand,
and the plasma density in the grating starts to decrease. The
electron temperature now decreases as the grating stretches,
until it is compressed again by the ponderomotive potential.
The net effect of this whole process, compression and stretch-
ing of the plasma, leads to the ejection of a small amount
of ions in opposite directions that have little effect on the
plasma grating maximum, as will be discussed later. Notice
that as long as ZTe/Ti > 1, the following analysis holds, i.e.,
the model fluid equations can be used in order to predict the
peak value and size of the generated gratings. Including a
larger ion temperature has the effect of simply smoothing the
local non-neutral ion density peaks.

IV. REGIMES OF ION DYNAMICS

The ion kinetic response governs the grating lifetime and
the subsequent peaks in the grating. Depending on the param-
eter μ, one can identify three different regimes for the plasma
gratings as a function of the ion energy with respect to the
ponderomotive potential resulting from the electron pressure.
An understanding of these regimes and an approximate value
for the transition can be obtained as follows. From the model
equations, one can estimate the maximum kinetic energy
acquired by the ions to be of the order of Pm ∼ miv

2
unit ∼

mev
2
0

2 . If this kinetic energy is less than the total potential
barrier encountered by the ions, they will be reflected and
the steepening will stop. This condition corresponds to Pm <

e	φ, where e	φ = eφmax − eφ(Pm), with φmax the maximum
total potential and φ(Pm) the value of the potential at the
position where the ions have their maximum energy. The
contribution of the thermal potential to the barrier can be
approximated by its maximum value e[φth − φth(Pm)] ∼ eφth,
due to the adiabatic heating. Only if it is larger than the
absolute value of the ponderomotive potential (mev

2
0/2) will

the barrier be positive and will reflection occur, stopping
the density growth. In dimensionless units, this corresponds
to the condition 1 < μ(n2

e/n2
0). If μ � 1, a relatively small

compression will be enough to induce ion reflection and result
in X-type wave-breaking. By contrast, if μ � 1, the cold limit
holds where all the available particles are compressed at the
center of the ponderomotive potential and eventually cross
each other. The transition is thus expected to be at μ ∼ 1. A
more precise limiting value is obtained by kinetic simulations
at μ = 0.25. We can identify three regimes. For μ > 0.25,
there is always complete reflection (R-regime) of the ions:
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FIG. 2. Three different regimes of the plasma grating: R-regime
for Te0 = 153.3 eV, μ = 0.25 (a); T -regime for Te0 = 12.3 eV, μ =
0.02 (b); and C-regime for Te0 = 0 (c) at t = 800 fs. Other parame-
ters are the same as in Fig. 1. The labels C and R denote crossing and
reflecting particles in the phase space.

as illustrated in Fig. 2(a), the fastest ions are reflected by
the potential barrier, and the density and temperature reach
a plateau with a finite lifetime. The opposite extreme situation
is found for μ < 0.001, illustrated in Fig. 2(c). In this case, the
potential is never large enough to reflect the bulk of the ions
that just oscillate in the potential well of the ponderomotive
force, crossing each other at the bottom. Only a very few
slow particles get reflected, and they do not contribute to
the subsequent dynamics. As a result, the density reaches
a very large value, but after the particles cross (C-regime),
the density subsequently drops. For 0.25 > μ > 0.001, one
encounters a transition regime (T -regime) where the fastest
ions are first reflected, but at later times, when the potential
decreases, ions are still fast enough to cross the new potential
barrier. This intermediate situation is shown in Fig. 2(b).
One can observe reflected particles (labeled R) and crossing
particles (labeled C, at the position x/λ0 = 5) that still have
enough energy to overcome the potential barrier and on a
longer timescale flatten the peak.

V. GROWTH TO PEAK VALUE

The typical time of grating formation as deduced from
the fluid equations and confirmed by PIC simulations scales
with tunit ∝ 1/a0 and is given by τform = 1.5tunit = 465 fs in
our simulations. This value depends weakly on the plasma
grating regime, slightly increasing as μ decreases, as shown
in Figs. 3(a)–3(c). The subsequent evolution instead depends
strongly on the value of μ. In the R-regime the grating
periodicity is regular: the lifetime and the regeneration time
is of the same order as the formation time. As μ decreases
and the system enters the T -regime, the value of the first
peak increases, but, as seen in Figs. 3(b) and 3(c), subsequent
peaks form later in time and have a lower density value,
while the electrons undergo some heating. In the C-regime,
the time for the regeneration of the peak is simply due to the
bouncing motion of the ions after crossing at the bottom of the
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FIG. 3. Temporal evolution of the electron density at the center
of the simulation box (over three wavelengths) for μ = 1.0 (a),
μ = 0.1 (b), and μ = 0.02 (c). Part (d) shows the effect of the ion
temperature with Te0 = Ti0 = 200 eV, μ = 0.3.

potential well. By approximating the well by a parabola, this
is simply given by 1/ωB = 2πtunit = 1953 fs. A more precise
value can be obtained by PIC simulations for the case μ = 0
as 1250 fs. To increase the lifetime of gratings, finite ion
temperature effects can be considered. This will influence the
ion reflection and crossing. Nevertheless, even with finite ion
temperatures, the three regimes mentioned above still exist.
The result with finite ion temperature (in the R-regime) is to
diminish the central density peak but increase the lifetime, as
shown, for example, in Fig. 3(d). In this figure, the electron
temperature is taken equal to Te0 = 200 eV, i.e., μ = 0.3.
Finite ion temperature plays the role of a larger μ-value:
as we can see, the peak density is analogous to the case
(a) (μ = 1 but Ti0 = 0), but the lifetime of the grating is
increased. An appropriate choice of parameters can even lead
to a quasisteady state of the density peak.

VI. DISCUSSION

The solution of the fluid equations and the existence
of the three regimes are summarized in Fig. 4, where we
plot the grating peak density for a given set of I and Te0 and
the minimum grating width d as a function of the density
of the plateau. Equipotential lines in the figures correspond
to values of I and Te0 leading to the same μ and allow us
to identify the regions of transition among different kinetic
regimes. In general, the plateau size is a fraction of the laser
wavelength and goes to zero as μ decreases and the peak den-
sity increases. It is now straightforward to obtain the grating
peak density for a given set of I and Te0. For example, if we
consider a0 = 0.02 and Te0 = 10 eV we find a peak density
of ne/nc = 0.98, to be compared with ne/nc = 1.1 reported in
Ref. [11] as a result of a full PIC 2D simulation. If the initial
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FIG. 4. Plateau density as a function of the electron temperature
and the laser intensity; note that μ ∝ Te0/I . The three broken lines
present the low intensity case (μ = 2), the complete reflection case
(μ = 0.25), and the crossing case (μ = 0.001). The right panel
shows the minimum grating width d as a function of the plasma
density of the plateau. The present figure was obtained for a specific
density value of 0.3nc, however the results are generic.

density is lower (ne < 0.25nc), gratings can still be formed
[33,34,36–41], but Raman backscattering leads to the gen-
eration of hot electrons, which will heat the grating and
increases the parameter μ. At very low temperature, the role
of collisions in principle needs to be taken into account. We
verified by simulations that predictions from the fluid model
still hold for temperatures as low as 10 eV, nevertheless
for longer timescales the ratio between tunit and the typical
collision time has to be considered, and collisions might be
included in the kinetic model to properly describe the lifetime
and evolution of the grating.

Also note that the validity of the above discussion and
Fig. 4 resides in the assumption that the driver overlap time is
at least of the order of the characteristic grating formation time
τform ∝ 1/a0. For shorter times, the model is still valid but the
peak density will be smaller and can be calculated from the
fluid equations. A unified model was presented of the nonlin-
ear dynamics and saturation of ion-plasma gratings generated
by two driving laser beams in a self-consistent way. This
provides the tools to dimension the gratings for the required
application [1–16] as plasma gratings for the manipulation
of coherent light can be generated in a controlled way and
fine-tuned for a specific purpose. This is another important
example of the use of laser-modulated plasmas for high-power
laser science and the possibility to control light by light.
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