
PHYSICAL REVIEW E 100, 061102(R) (2019)
Rapid Communications

Acoustic radiation force acting on a heavy particle in a standing wave
can be dominated by the acoustic microstreaming
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We numerically investigate the contribution of the microstreaming to the acoustic radiation force acting on
a small elastic spherical particle placed into an ultrasonic standing wave. When an acoustic wave scatters on
a particle the acoustic radiation force and the microstreaming appear as nonlinear time-averaged effects. The
compressible Navier–Stokes equations are solved up to second order in terms of the small Mach number using
a finite element method. We show that when the viscous boundary layer thickness to particle radius ratio is
sufficiently large and the particle is sufficiently dense, the acoustic microstreaming dominates the acoustic
radiation force. In this case, our theory predicts migration of the particle to the velocity node (pressure antinode).

DOI: 10.1103/PhysRevE.100.061102

In 1934, King’s desire for a novel method for measur-
ing pressure amplitudes in ultrasonic waves led to the first
analytical expression for the acoustic radiation force (ARF)
[1], which results from the interaction between background
and scattered acoustic fields. Since then, the original assump-
tions of an incompressible spherical particle in an inviscid
fluid have been gradually expanded in complexity due to
the increasing interest, mostly in the context of the acoustic
manipulation of particles and cells in lab-on-a-chip devices
[2–5]. Yosioka and Kawasima in 1955 [6], and Gor’kov in
1962 [7] first supplemented the theory with the contribution
of particle’s compressibility. More recently, the extension to
the viscous fluid was presented by Doinikov in 1994 [8,9],
and by Settnes and Bruus in 2012 [10].

When the particle in an inviscid fluid is small compared to
the acoustic wavelength of a one-dimensional plane standing
wave, its stable position can be determined by the sign of the
so-called acoustic contrast factor. King’s [1] factor depends on
the particle-fluid density ratio, while Yosioka and Kawasima’s
[6] factor includes also the dependence on the compressibility
ratio. Particles of positive acoustic contrast (“heavy”) collect
at velocity antinodes (pressure nodes), whereas particles of
negative contrast (“light”) move to velocity nodes (pressure
antinodes). This prediction also agrees with experiments, and
is commonly applied in particle separation processes [5,11].

Settnes and Bruus [10] modified the acoustic contrast fac-
tor to include the viscosity, by considering the fluid to be vis-
cous at the first order in perturbation expansion. They assume
the thickness of the viscous boundary layer δ = √

2η/(ρ0ω)
[12], for a medium of dynamic viscosity η, density ρ0, and
angular frequency of ω, to be small with respect to the
acoustic wavelength. However, Settnes and Bruus [10] put no
restriction on the ratio between δ and particle radius a.

While Settnes and Bruus [10] neglected the viscosity at
the second order, Doinikov [8] modeled the fluid as viscous
and included the acoustic microstreaming, which is a second-
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order viscous effect that appears in a form of steady vortices
around the particle solely due to the presence of the particle
in the acoustic field. In contradiction to the popular first-order
viscous model by Settnes and Bruus [10] and inviscid models
[1,6,7], Doinikov’s [8] model predicts that a heavy particle
could be forced towards the velocity node. The discrepancy
appears only when the thickness of the viscous boundary layer
is larger than the particle radius.

In the last 25 years, this inversion of the direction of the
ARF has not been indisputably confirmed or denied, despite
experimental efforts by Avetisyan et al. [13], and Ran and
Saylor [14]; moreover, the sign inversion has been questioned
recently by Settnes, Karlsen, and Bruus [10,15]. Here, we
provide numerical evidence confirming the sign inversion for
a case of a heavy particle in a highly viscous fluid. This
phenomenon results due to the viscosity related increase in
the contribution of the acoustic microstreaming to the ARF.

In line with previous works [8–10], we neglect thermal
effects, and the motion of a viscous fluid is therefore governed
by the compressible Navier–Stokes equations and the conti-
nuity equation. The pressure p is assumed to be a function
of density ρ only. The Navier-Stokes equations are linearized
using the perturbation technique. Formally, the physical fields
are expanded in a series, (·) = (·)0 + (·)1 + (·)2 + · · · , where
(·) represents the field, while the subscript denotes the respec-
tive order. We assume that the acoustic velocity amplitude
‖v1‖ is small with respect to the speed of sound cf (small
Mach number), i.e., ‖v1‖/cf � 1, and that the streaming
velocity v2 is small with respect to the acoustic velocity, i.e.,
‖v2‖/‖v1‖ � 1.

Substitution of the perturbed fields into the governing
equations, assuming a quiescent fluid at the zeroth order, leads
to the set of first-order equations,

ρ0
∂v1

∂t
= −∇p1 + η∇2v1 +

(
ηB + η

3

)
∇(∇ · v1), (1)

∂ρ1

∂t
= −ρ0∇ · v1, (2)

p1 = c2
f ρ1, (3)
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with velocity v, bulk viscosity ηB, and equilibrium density
ρ0. The first-order fields are assumed to be harmonic with
factor eiωt . The solid particle is modeled using the equations
of linear elasticity [16], with the primary and the secondary
speed of sound, cP and cS, respectively. The acoustic fields,
comprising velocity v1 and pressure p1, are assumed to be
sums of background fields (bg) and scattered fields (sc),
namely, (·)1 = (·)bg

1 + (·)sc
1 . We assume a one-dimensional

plane standing wave along the z direction of the cylindrical
coordinate system. The background velocity field is set to

v
bg
1 = Re

[
ϕa

2
ik(eikz − e−ikz )eiωt

]
ez, (4)

with the corresponding velocity potential amplitude

ϕa = − pa

iωρ0 + (
ηB + 4

3η
)
k2

, (5)

with pressure amplitude pa, and wave number for viscous
fluids k [17]. The acoustic wavelength can then be defined
through the wave number as λ = 2π/Re[k]. At the fluid-solid
interface, we impose the continuity of velocity and stress.
The fluid is assumed to be unbounded, and the first-order
fields therefore converge to the background fields with the
increasing distance from the particle.

Applying the perturbation theory up to second order and
taking the time average 〈(·)〉 := 1

T

∫
T (·)dt over an oscillation

period T yields the equations of acoustic streaming [8,10],

∇〈p2〉− η∇2〈v2〉−
(
ηB + η

3

)
∇(∇ · 〈v2〉) = −ρ0∇ · 〈v1v1〉,

(6)

ρ0∇ · 〈v2〉 + ∇ · 〈ρ1v1〉 = 0. (7)

At the second order, we impose the no-slip boundary condi-
tion on a fluid at the fluid-solid interface, namely,

〈v2〉 = −
〈(∫

v1dt · ∇
)

v1

〉
at the interface, (8)

where the right-hand-side term is the negative Stokes’ drift
[18–20] that compensates for the first-order oscillations of
the interface. The contribution of the streaming due to the
attenuation of the background field, which is present even in
the absence of the particle, was neglected by Doinikov [8,9].
In our simulations we also found this contribution to be neg-
ligible. In experiments, however, the presence of boundaries
could lead to more significant Rayleigh streaming [12], which
leads to an additional drag force on the particle. However,
it has been shown [21] that the streaming at the center of a
wide channel can be very low and thus small compared to
the microstreaming that originates from the presence of the
particle.

We consider the time-averaged ARF on the particle to be
the net mean force,

F rad :=
〈∫

S(t )
σ · n(t )dS

〉
, (9)

integrated over the oscillating particle surface S(t ), with
outward pointing surface normal n(t ), and stress tensor σ.

FIG. 1. The first-order COMSOL model; (a) the geometry and
(b) the mesh of the model, which is symmetric with respect to the z
axis of the cylindrical coordinate system (r, θ, z).

Doinikov [8] demonstrated that the expression for the ARF,
accurate to the second order, can be written as

F rad =
∫

S0

[〈σ2〉 − ρ0〈v1v1〉
] · n0dS, (10)

where the difference between the mean second-order stress
tensor and Reynolds stress [22] is mapped onto the normal
n0 pointing out of the arbitrary static surface S0 enclosing
the particle, and integrated over S0. The viscous effects at
the second order, including microstreaming, are contained
in the stress tensor 〈σ2〉. The first- and the second-order
viscous equations are solved consecutively using two finite
element method (FEM) models (COMSOL Multiphysics 5.4
framework [23]). The geometry and the mesh used for the
first-order FEM model are shown in Fig. 1. We use a perfectly
matched layer (PML) that absorbs outgoing waves to model
the fluid domain as being infinite. For the second-order model,
we use the same geometry and mesh as depicted in Fig. 1, but
without PML and particle domains. The infinite fluid domain
assumption is satisfied by using the domain large enough to
mitigate the effect of boundaries on the computed ARF.

The mesh is refined at the fluid-PML interface to minimize
the reflections back into the fluid domain and in the region
of the viscous boundary layer to improve the discretization
of high-velocity gradients. Integration boundaries placed at
various distances from the particle are used for the validation
of the model, and for the computation of the ARF. Since the
problem is symmetric with respect to the direction of the wave
propagation, we define the only nonzero component of the
ARF as Frad = F rad · ez, with unit vector ez directed along the
axis of symmetry.

Convergence studies were performed to determine the re-
quired amount of mesh elements and the minimal fluid domain
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FIG. 2. (a) Comparison of Eulerian streaming patterns around a
rigid sphere by Rednikov and Sadhal [25], and (b) by our numerical
model. The particle of 10 μm radius is positioned at a velocity
antinode of a standing wave with frequency of 0.6 MHz, in wa-
ter. The flow direction is indicated by arrows. (c) The ARF on a
polystyrene sphere, and (d) on a copper sphere in water, with respect
to the frequency f . The particle of 1 μm radius is positioned between
the velocity node and the antinode.

size. For simulations, we chose the fluid thickness of 100 × a,
in order to eliminate the influence of the outer fluid boundary
(details in the Supplemental Material [24]).

We compare the streaming pattern obtained by our model
[Fig. 2(b)] to the analytical solution for a rigid sphere by
Rednikov and Sadhal [25] [Fig. 2(a)]. A rigid particle (a =
10 μm) in water is positioned at the velocity antinode of
a standing wave with f = 0.6 MHz. The outer streaming
patterns agree and show the fluid flowing away from the
sphere along the z axis. The numerical simulation reveals
inner vortices contained near the viscous boundary layer,
which are driving the outer streaming, and which do not
appear in the analytical solution since they used the limiting
velocity approach [26].

TABLE I. The material parameters for water (H2O) [27,28],
oil [15], polystyrene (PS) [29], and copper (Cu) [29]. The viscous
acoustic contrast factor (�vis) is computed using Eq. (50b) from [10];
the inviscid contrast factor (�inv) results from the same expression,
but assuming δ = 0, which recovers the expression from the inviscid
theory [6].

PS/H2O Cu/H2O Cu/oil Unit

ρ0 998.2 998.2 922.6 kg m−3

ρp 1050 8930 8930 kg m−3

cf 1482 1482 1445 m s−1

cP 2400 5010 5010 m s−1

cS 1150 2270 2270 m s−1

η 1.002 1.002 41.5 mPa s
ηB 3.09 3.09 89.3 mPa s
�inv 0.18 0.75 0.76 mPa s
�vis at 0.5 MHz 0.18 1.1 2.1
�vis at 15 MHz 0.18 0.82 1.19

pa 100 100 100 kPa

To further validate our model, the ARF is analyzed for
a polystyrene [Fig. 2(c)] and copper [Fig. 2(d)] particle im-
mersed in water and positioned between the velocity node
and the antinode. The frequency range of 0.5 MHz � f �
15 MHz, considering water, yields a minimum acoustic wave-
length λ of 99 μm and a maximum thickness of the viscous
boundary layer δ of 0.80 μm. Therefore, the wavelength is
large and the viscous boundary layer is small relative to the
particle radius of 1 μm. In this regime the models by Settnes
and Bruus [10], Doinikov [8], and our numerical model mu-
tually agree. The agreement of our numerical model, denoted
by “COMSOL,” with the theory by Settnes and Bruus [10]
is demonstrated using a polystyrene particle in Fig. 2(c). In
that case the model by Doinikov [8] is not applicable due
to its rigid sphere assumption. However, Doinikov’s model
[8] agrees well with the numerical model and the model by
Settnes and Bruus [10] for a less compressible copper particle,
as shown in Fig. 2(d). The model by Yosioka and Kawasima
[6] agrees with the numerical model for polystyrene, but
shows a deviation of up to 50% for copper at 0.5 MHz. The
deviation, which is mostly due to the effect of viscosity at
the first order, decreases to about 10% at 15 MHz. The effect
of viscosity at the first order can be estimated by comparing
the inviscid [6] (�inv) and the first-order viscous [10] (�vis)
acoustic contrast factors. The difference between �inv and
�vis is significant for a copper particle in water and goes from
0.3565 at 0.5 MHz to 0.0748 at 15 MHz, but negligible for a
polystyrene particle, where it goes from 0.0003 at 0.5 MHz
to 0.0001 at 15 MHz. The factors are listed in Table I,
along with the other material parameters that are used in
simulations.

In addition to the difference in the compressibility assump-
tion, the theoretical models treat the viscosity of the surround-
ing fluid differently. Doinikov [8] considers the viscosity at
the first and second order and thus includes the contribution
of the microstreaming around the particle. Settnes and Bruus
[10] neglect microstreaming by assuming the fluid to be invis-
cid at the second order. Both models are derived for the limits
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FIG. 3. The ARF on a copper sphere (a = 1 μm) in oil. (a) The
force with respect to the relative thickness of the viscous boundary
layer. The forces are normalized with respect to the force Finv from
the inviscid model [6]. The particle is positioned between the velocity
node and the antinode. The boundary layer thickness changes due to
the frequency sweep, indicated by the acoustic wavelength λ. (b) The
ARF for different theories and our numerical model COMSOL. The
force is analyzed with respect to the particle position in a standing
wave with a frequency of 0.5 MHz. Our model agrees with the
model by Doinikov [8] and predicts a different sign of the ARF
compared to the models by Settnes and Bruus [10] and Yosioka and
Kawasima [6].

of a � λ and δ � λ, and with no restriction on the relative
viscous boundary layer thickness δ/a. These two theories dis-
agree for a copper particle with radius of 1 μm immersed in oil
at δ/a > 1. In Fig. 3(a), we normalized the force by the force
from the inviscid model [6] to show the counteracting effects
of the viscosity at the first and second order. Doinikov’s model
predicts a decrease of the normalized ARF with the increase of
δ/a, whereas the model by Settnes and Bruus [10] predicts an
increase of the normalized ARF. Our numerical model agrees
with the model by Doinikov [8] throughout the whole range
of δ/a, experiencing the change in the direction of the force at
δ/a = 2.75. This leads to the particle being forced towards the
velocity node. In Fig. 3(b), the ARF is analyzed for the same
case, at f = 0.5 MHz, as a function of the particle position
in a standing wave. The position of the center of the particle
is varied between two velocity nodes (at z = 0 and z = λ/2).
Our numerical results support the second-order viscous theory
by Doinikov [8], predicting the force of opposite direction
compared to the first-order viscous theory by Settnes and
Bruus [10].

For a further analysis, we expand the expression from
Eq. (10) by applying the Newton’s viscosity law, and divide
it into a sum of three force contributions, namely, Frad =

FIG. 4. The individual force contributions to the ARF, according
to Eqs. (11)–(13), for a copper sphere in oil, positioned between the
velocity node and the antinode. The forces are plotted with respect to
the distance of the integration surface from the particle surface, i.e.,
ξ = r − a, normalized with the thickness of the viscous boundary
layer δ. Here, the thickness of the fluid domain was increased to
140 × a. The ARF according to Doinikov [8] and Settnes and Bruus
[10] is included for a reference.

F I
rad + F II

rad + F III
rad, with

F I
rad = ez ·

∫
S0

[ − 〈p2〉I − ρ0〈v1v1〉
] · n0 dS, (11)

F II
rad = ez ·

∫
S0

η
(〈∇v2〉 + 〈∇v2〉�

) · n0 dS, (12)

F III
rad = ez ·

∫
S0

(
ηB − 2

3
η

)
〈∇ · v2〉n0 dS. (13)

In Fig. 4, we show the values of separate contributions for a
copper particle in oil, at frequencies of (a) 15 MHz and (b)
0.5 MHz. The distance ξ , between the spherical integration
surface and particle surface (at ξ = 0), is increased in terms
of the thickness of the viscous boundary layer. We observe
that the contribution of the gradient of the streaming velocity
(F II

rad) grows to the same order as the pressure contribution
(F I

rad) when increasing δ/a from 0.977 in Fig. 4(a) to 5.35 in
Fig. 4(b). The contribution of the divergence of the streaming
velocity to the ARF (F III

rad) is negligible at both ends of the
frequency range. This validates the common assumption that
the time-averaged second-order flow, i.e., the streaming flow,
is incompressible [8,9]. In addition, the total force (Frad) is,
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as expected from the theory [8], constant irrespective of the
integration surface.

We have established that in a standing wave in highly
viscous fluids (δ/a > 1), the ARF can force particles that
are less compressible and of higher density than the sur-
rounding fluid towards the velocity node (pressure antinode).
This phenomenon is due to the dominant contribution of the
second-order viscous effect called the acoustic microstream-
ing. The demonstrated behavior contradicts the inviscid the-
ories [1,6,7], and confirms the second-order viscous theory
by Doinikov from 1994 [8], who considered the acoustic
microstreaming. Our numerical model shows that the contri-
bution of microstreaming to the ARF should not be neglected

when the relative thickness of the viscous boundary layer is
high (δ/a > 1). The first-order viscous models that neglect the
viscosity at the second order, such as the model by Settnes and
Bruus [10], are consequently valid only in a limited range in
terms of δ/a. When the viscosity of the medium is relatively
low (δ/a < 1), our model and models by Doinikov [8] and
Settnes and Bruus [10] coincide. To observe the suggested
effects in experiments, an acoustic device with a wide channel
could be used to minimize the Rayleigh streaming. The effect
is strongest for heavy particles in highly viscous fluids; for
example, copper particles in oil.
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