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Fredholm theory for the mean first-passage time of integrate-and-fire oscillators
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We develop a method to investigate the effect of noise timescales on the first-passage time of nonlinear
oscillators. Using Fredholm theory, we derive an exact integral equation for the mean event rate of a leaky
integrate-and-fire oscillator that receives constant input and temporally correlated noise. Furthermore, we show
that Fredholm theory provides a unified framework to determine the system scaling behavior for small and large
noise timescales. In this framework, the leading-order and higher-order asymptotic corrections for slow and fast
noise are naturally emerging. We show the scaling behavior in the both limits is not reciprocal. We discuss further
how this approach can be extended to study the first-passage time in a general class of nonlinear oscillators driven
by colored noise at arbitrary timescales.
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The dynamics of nonlinear oscillators that receive tem-
porally correlated inputs plays a central role in the analysis
of many physical, chemical, and biological systems [1]. The
standard method that is used to treat stochastic dynamics that
are governed by temporally correlated noise is to approximate
the probability law of the system using a Fokker-Planck-like
evolution equation (FPE) [2–4]. Most existing analyses are
only applicable when the noisy input correlation time is either
much shorter or much longer than the oscillator intrinsic
timescale [3]. Many challenging and interdisciplinary ques-
tions remain regarding the analysis of stochastic dynamics in
the case of nonlinear systems with noise that has intermediate
timescales.

In this Rapid Communication, we determine the mean
event rate of a specific nonlinear oscillator: a leaky integrate-
and-fire (LIF) neuron that receives input which fluctuates
over arbitrary timescales. Although the LIF is used widely
in the mathematical description and numerical simulations of
neural circuits [5], a precise analytical approach that yields
the exact system response at all correlation timescales has not
yet been developed. We use a mathematical approach that is
based on Fredholm theory [6] to address this gap. Our method
yields an effective transfer function in the form of an integral
equation for arbitrary noise correlation times. Furthermore,
our method readily provides an asymptotic expansion term
for system limiting behavior in the fast noise case, similar to
previous results [7]. We also derive an asymptotic expansion
in the slow noise limit. Our results enable us to understand
the interplay between finite noise timescales when shaping
nonlinear system dynamics.

*Corresponding author: farzad@bccn-berlin.de

We consider the dynamics of an LIF oscillator whose
membrane voltage x and input variable y satisfy

d

dt
x = αm

[
μ − x +

√
αm + αs

αm
σy

]
,

d

dt
y = −αsy + √

αsη(t ), (1)

where αm = 1/τm and αs = 1/τs. Here, τm is the membrane
time constant, τs is the noise correlation time, η(t ) is the
white noise random variable, and σ is the noise amplitude.
An oscillator emits an event whenever the membrane reaches
the threshold, x(t−) = xth = 1; in this case, the voltage returns
immediately to the resting potential (reset), x(t+) = 0. The

input scaling factor
√

αm+αs
αm

ensures that the input fluctuation

does not die out in the limit τs → ∞, and the equilibrium dis-
tribution of y is Py = e−y2

/
√

π . Additionally, in the absence
of an event as xth → ∞, the equilibrium distribution of x is
independent of αs and is given by Px = e−(x−μ)2/σ 2

/(
√

πσ ).
The standard approach to analyzing Eq. (1) is to study its

FPE as follows,

∂

∂t
ρ(x, y, t ) = − ∂

∂x
Jx(x, y, t ) − ∂

∂y
Jy(x, y, t )

+ [δ(x) − δ(x − 1)]r(y, t ), (2)

where ρ(x, y, t ) is the probability density of the system being
in the state (x, y) at time t , Jx(x, y, t ) = ℵx ρ(x, y, t ) and
Jy(x, y, t ) = αs[−y − 1

2
∂
∂y ]ρ(x, y, t ) are the flux in x and y, re-

spectively, and ℵx ≡ αm(μ − x +
√

αm+αs
αm

σ y). The reset rate

r(y, t ) is the rate at which x reaches the threshold (x = 1) at
noise level y and at time t ; r(y, t ) is given by

r(y, t ) = Jx(1, y, t ). (3)
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This system of equations has proven difficult to solve directly
due to complications associated with the reset mechanism.

To resolve this challenging problem, let ρ̂(x, y, t |x′, y′, t ′)
be the probability density of state variables (x, y) at time
t in the absence of a spiking mechanism, given the initial
condition (x′, y′) at time t ′. Using system invariance under
time translation, we observe that this unrestricted probability
density is a function of t − t ′, and that it can be written as
ρ̂(x, y, t − t ′|x′, y′). Moreover, the system without the reset
mechanism is simply a linear set of stochastic differential
equations with a Gaussian noise variable [Eq. (1)]. Thus, ρ̂ is
completely determined by its mean (xave, yave ) and its covari-
ance matrix (C); details are given in Ref. [8]. To include the
reset mechanism, we must remove the oscillator at x = 1 and
reinsert it at x = 0, keeping the value of y unchanged at time
t ′′ with a rate of r(y, t ′′ − t ′|x′, y′). Therefore, the probability
density ρ(x, y, t |x′, y′, t ′) [Eq. (2)] for the oscillator state to be
(x, y) at time t , given that the state was (x′, y′) at time t ′, is
given by

ρ(x, y, t |x′, y′, t ′) = ρ̂(x, y, t − t ′|x′, y′)

−
∫ t

t ′
dt ′′

∫
dy′′[ρ̂(x, y, t − t ′′|1, y′′)

− ρ̂(x, y, t − t ′′|0, y′′)]r(y′′, t ′′ − t ′|x′, y′).

(4)

Note that Eq. (4) is exact; because Eq. (2) is a linear partial
differential equation (PDE) with the boundary conditions,
inhomogeneity and Eq. (4) is its solution based on its Green’s
function (propagator) [1]. The rate of oscillator removal at the
threshold is, indeed, where x fluxes through x = 1 from below
the threshold. Thus,

r(y, t − t ′|x′, y′) = [ℵ1 ρ(1, y, t − t ′|x′, y′)]+, (5)

where [·]+ is a half-rectification function. Note that, since ρ

is non-negative, we obtain r = 0 for y < y− ≡
√

αm
αm+αs

z(1),
where z(x) ≡ (x−μ)

σ
. Taking Eq. (5) and inserting ρ(x, y, t −

t ′) for x = 1 from Eq. (4) yields a self-consistency equation
for r(y, t − t ′|x′, y′). We take the limit t ′ → −∞ to obtain
the equilibrium value for r; r(y, t − t ′|x′, y′) and ρ̂(x, y, t −
t ′|x′, y′) both reach steady state values in this limit. Note that
req(y) and ρ̂eq(x, y) are independent of x′ and y′, respectively.
Furthermore, since ρ̂(x, y, t |1, y′) − ρ̂(x, y, t |0, y′) decays as
e−αmt for large t , we obtain

req(y) = ℵ1

(
ρ̂eq(1, y) −

∫ ∞

y−
dy′ K (y, y′)req(y′)

)
, (6)

where the kernel K is given by

K (y, y′) =
∫ ∞

0
dt[ρ̂(1, y, t |1, y′) − ρ̂(1, y, t |0, y′)]. (7)

Equation (6) is the Fredholm equation of the second kind.
Since we already have expressions for both ρ̂eq and the kernel
K (details are given in Ref. [8]), Eq. (6) uniquely determines
req(y) for y � y−. Finally, the output event rate Req, which
describes that rate at which an oscillator emits spikes at

FIG. 1. Event rate of an LIF oscillator as a function of mean
input for two different synaptic filtering dynamics; the black line
indicates αs = 1000 and the gray line indicates αs = 10. Symbols
are simulation results of an LIF for 1000 trials; error bars are smaller
than the symbol size. Parameters: σ = 1.0, αm = 100.0.

equilibrium, is given by

Req =
∫ ∞

y−
dy req(y). (8)

The solution to this equation is easily obtained numerically
using standard techniques (details are given in Ref. [8]).
Figures 1 and 2 illustrate the dependence of the mean event
rate on various parameters. In Fig. 1, the output rate Req is
plotted against mean input μ for two intermediate values of
τs; the rate is reduced for larger τs. Figure 2 demonstrates the
dependence of Req on arbitrary τs. We observe that the event
rate is strongly dependent on synaptic filtering. Fredholm
theory for the escape rate [Eq. (6)], presented here, also allows
an analytical study of the asymptotic behavior, in both the fast
and slow noise regimes.

To determine the asymptotic correction for the fast noise
regime, we must expand ρ̂eq(1, y) = ∑∞

n=1 ( αm
αs

)n/2
ρ̂

eq
fn

(1, y)

FIG. 2. Event rate of an LIF oscillator as a function of synaptic
timescale. The black line indicates the output rate obtained by
solving Fredholm equation in Eq. (6). The crosses indicate the event
rate resulting from numerical simulations of an LIF oscillator over
1000 trials, as described in Eq. (1). Parameters: μ = 0.2, σ = 1.0,
αm = 100.0.
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and K (y, y′) = ∑∞
n=1 ( αm

αs
)n/2Kfn (y, y′). We make the ansatz

that req(y) = ∑∞
n=0( αm

αs
)n/2r fn (y). We obtain

∞∑
n=0

(
αm

αs

)n/2

r fn (y) = αm

∞∑
n=−1

(
αm

αs

)n/2

Fn(y), (9)

where Fn(y) collects terms of order ( αm
αs

)n/2. Since the
right-hand side of Eq. (9) only has terms with n � 0, we
must to impose that F−1(y) = 0 for y � y−. Therefore, as
shown in Ref. [8], to leading order, the event rate, R f0 ≡∫ ∞

y−
dy r f0 (y), is given by R f0 = αm

IR[z(0),z(1)] , where IR(z0, z1) =
2

∫ z0

z1
dzez2 ∫ ∞

z dz′e−(z′ )2
. This is indeed the firing rate of an

LIF neuron receiving white noise input [9]. To obtain the first-
order asymptotic correction to the white noise case, we must
evaluate F0(y) in Eq. (9); this gives the Fredholm theory for
the first-order correction. Using the linearity of the Fredholm
operator and its resolvent properties in Eq. (9) for n = 1
(details are given in Ref. [8]), we can write the asymptotic
correction of the fast noise limit as

R f1 = − αm


0I (z(0), z(1))2
JR(z(0), z(1)), (10)

where JR(z0, z1) = 2
√

π [exp (z2
0 )erfc(z0) − exp (z2

1 )erfc(z1)]

and 
0 = −√
2

ζ ( 1
2 )

(up to 10−10 numerical accuracy; see Ref. [8]

for details), where ζ is the Riemann zeta function. This is
consistent with previous results [7], that use the boundary-
layer and half-range expansion theories [4]. Interestingly, the
constant 
0 corresponds to Milne extrapolation lengths for
the FPE [10]. Equation (10) yields the linear rate correc-

tion Req = R f0 +
√

αs
αm

R f1 in the fast noise limit. Figure 3
demonstrates the limiting behavior of the event rate in the
near white noise regime; the full solution of the Fredholm
equation using Eq. (6) (thick red line) and linear asymptotic
correction according to Eq. (10) (thin gray line) are plotted

against
√

αm
αs

. The simulation results shown in Fig. 3 (cross

FIG. 3. Fast noise regime for the event rate of an LIF oscillator

as a function of
√

αm
αs

. The thick black line displays the full solution

of Eq. (6) and the thin gray line displays the linear approximation of
firing for large and finite αs. Crosses are simulations of an LIF for
105 trials with a duration of 1000τm. Parameters: μ = 0.20, σ = 1.0,
αm = 100.0.

symbols) provide an excellent agreement with the full solution
(thick black line).

The asymptotic correction in the slow noise regime is also
a straightforward application of a perturbation calculation in
our approach. In the slow noise limit (αs → 0), we can assume
that the level of noise is constant between two neighboring
events and the interevent interval is t0(y) ≡ α−1

m [log(μ +
σy) − log(μ + σy − 1)] for y > y− [11]. Therefore, to lead-
ing order, rs0 (y) is given by

rs0 (y) = Peq(y)

t0(y)
= αm√

π
e−y2

[
log

(
μ + σy

μ + σy − 1

)]−1

(11)

for y > y−, and rs0 (y) = 0 otherwise. Although this result
is already established [11], asymptotic correction terms for
nonzero but small αs still need to be determined. To sim-
plify the calculation, we rescale the noise to be independent

of αs by setting � ≡
√

αm+αs
αm

σ ; dependence on αs can be
reintroduced at a later stage. To determine the first-order
correction in the slow noise case, we observe that, for y−y−√

αs
αm

�
1, ρ̂eq(1, y) is exponentially small and can be neglected, and
the kernel K (y, y′) is exponentially small unless y′ − y is
of order

√
αs/αm. Therefore, for y−y−√

αs/αm
� 1, we have y′ ∼

y +
√

αs
αm

Y in Eq. (6) and using the Taylor expansion in Y of
req(y + √

αs/αmY ) we can rewrite req as

req(y) = �

( ∞∑
n=0

[
αs

αm

]n/2

Kn(y)
dn

dyn

)
req(y), (12)

where � = −αm[μ − 1 + �y], as given in Ref. [8], and Kn

must be expanded as Kn(y) = ∑∞
k=0 [ αs

αm
]k/2Kn,k (y), where

Kn,k are independent of αs/αm. Importantly, Kn,k (y) = 0 when
n + k is odd and �K0,0(y) = −1 (details are given in Ref. [8]).
Inserting this in Eq. (12), we obtain

∞∑
m=1

[
αs

αm

]m−1 2m∑
n=0

Kn,2m−n
dn

dyn
req(y) = 0. (13)

Interestingly, because Kn,m = 0 when n + m is odd, the
leading-order correction is of order αs/αm rather than√

αs/αm. Thus, we expand req in powers of αs/αm as

req(y) =
∞∑

n=0

[
αs

αm

]n

rsn (y). (14)

Inserting Eq. (14) into Eq. (12) and collecting terms with the
same power of αs/αm, we find that rsn satisfies

Krsn (y) = −Sn(y), (15)

where the operator is given by K ≡ K0,2(y) + K1,1(y) d
dy +

K2,0
d2

dy2 , and for n � 1, Sn satisfies

Sn(y) =
n−1∑
k=0

[
2(n+1−k)∑

=0

Ki,2(n+1−k)−(y)
d

dy

]
rsk (y), (16)

and S0(y) = 0. Since K is a second-order differential opera-
tor, Eq. (15) determines rsn up to two integration constants,
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FIG. 4. Slow noise regime for the event rate of an LIF oscillator
as a function of αs

αm
. The thick black line is the full solution of

Eq. (6) and the thin gray line is its the linear approximation for small
and finite αs. Mean event rates of numerical simulations of an LIF
oscillator for 105 trials with a duration of 1000/αs are indicated by
crosses. Parameters: μ = 0.2, σ = 1.0, αm = 100.0.

provided that all rsk for k ∈ {0, 1, . . . , n − 1} are given. This
does not completely determine rsn because we have only con-
sidered req for y−y−√

αs/αm
� 1. However, we can still determine

the asymptotic corrections since we can write the scaling
factor cn ≡ rsn/rs0 and insert it into Eq. (15) and thus cn

satisfies [
d

dy
− 2y

]
d

dy
cn(y) = −sn(y), (17)

where sn(y) = t0(y)Sn(y)/[K2,0(y)Peq(y)]. This is clearly con-
sistent with c0(y) = 1 in rs0 (y) = c0(y)Peq(y)/t0(y). For large
y and y−y−√

αst0(y) � 1, the kernel K (y, y′) becomes exponentially
small; therefore, as y → ∞, fluctuations in y are negligible for
any order n. Hence, for n > 0, cn(y) → 0 and d

dy cn(y) → 0 as
y → ∞. Thus, cn(y) satisfies

cn(y) =
∫ ∞

y
dy1ey2

1

∫ ∞

y1

dy2 sn(y2)e−y2
2 . (18)

This determines the leading-order correction rs1 (y) =
c1(y)rs0 (y) and s1 is given in Ref. [8]. Here, we obtain Eq. (18)
assuming that � is constant, so the scaling factor can be refor-
mulated as c̃1 = c1 − y

2 [ d
dy t0(y)]/t0(y) to return to the original

formulation of the problem. Now, using Rs1 ≡ ∫ +∞
y−

dy′rs1 (y′)
we obtain Req = Rs0 + αs

αm
Rs1 . Figure 4 illustrates the linear

approximation (thin gray line) of the event rate for small but
finite αs tangents to the full solution of Fredholm equation
(thick black line) in Eq. (6).

In this Rapid Communication, we studied the nonlinear
dynamics of an LIF oscillator that is driven by colored noise.
We derived an exact expression for the event rate of the
model for arbitrary correlation times in the form of a Fred-
holm equation, which can readily be evaluated numerically.
This approach does not require the separation of timescales
and weak noise expansion that are typically assumed in the
classical analysis of colored noise in stochastic dynamics

[2,3]. Additionally, we show that Fredholm theory provides
a uniform formalism by which to systematically calculate the
fast and slow noise asymptotic expansions. These expansions
lead to the interesting conclusion that the system exhibits dif-
ferent scaling behaviors in slow and fast noise regimes. Most
previous works in the fast noise regime use boundary-layer
theory to derive the leading-order correction to the mean rate
[4,7]. Our approach recovers this result. Formally, application
of FPE boundary-layer theory requires the assumption that the
potential well is smooth and has zero slope at the absorbing
upper boundary. Remarkably, our result indicates that the
details of the potential do not contribute to the correction
term. In the slow noise extreme (αs → 0), Moreno-Bote et al.
[11] used an adiabatic approach to derive the mean event
rate; we have derived the same result. It is noteworthy that
Moreno-Bote et al. [12] showed that in the limit of large τs

and an additional white noise the leading-order correction is
linear. The unified framework here allows us to generalize
their results systematically and also calculate the magnitude
of the slow noise correction. Our analysis shows that the
order of the asymptotic corrections at the both slow and fast
noise timescales does not scale reciprocally; the order of
limiting behavior for the case of fast noise is

√
τs/τm, while

for slow noise it is τm/τs. Our asymptotic analysis for large
and small αs indicates that linear regimes fall outside the
physiological relevant range of synaptic dynamics (Figs. 3 and
4). This demonstrates the importance of the full solution of
the Fredholm equation for the investigation of neural network
dynamics.

Our approach can be extended to calculate the response
of LIF units to infinitesimal nonstationarities in the input.
This can be used to evaluate the stability of an asynchronous
state of recurrent networks. To this end, one needs to follow
the perturbation theory developed in Ref. [13]. Furthermore,
using the Markovian embedding method one can consider a
nonexponentially correlated temporal input (for small noise,
σ/μ � 1) [3] similar to work by Schwalger et al. [14] for the
perfect integrate-and-fire neurons.

Our method can be applied when the solution to the unre-
stricted process ρ̂ is known. For example, our method can be
used in the normative models of decision making in a dynamic
environment that an agent values recent observations more
than older ones [15]; in the case of exponential discounting
of the observations, one can directly apply our results. The
other interesting example is Kubo’s stochastic model that
describes an irreversible process in which the noise variable
takes discrete values with a Poisson switching. In Kubo’s
model ρ̂ is readily determined for an arbitrary drift term
[3,16]. This model has been used extensively in analyzing
the kinetic theory of gases and the statistical theory of line
broadening [17]. In cases where oscillator dynamics can be
described by a motion equation of phase variable, a Fourier
expansion of ρ̂ is typically available [18]. In this case, an
arbitrary-precise solution can be constructed by considering
the first n Fourier moments as it has been used to construct
a non-Gaussian density in laser gyroscope applications [19].
More generally, where an exact expression for ρ̂ is unavail-
able, an approximate solution can often be estimated, for ex-
ample, in exponential and quadratic integrate-and-fire systems
[20]. This approximate solution can be used to obtain an
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approximate mean first-passage time. Therefore, the approach
to cast statistics of nonlinear stochastic oscillators in the
form of a Fredholm equation allows analysis of the ef-
fects of correlated environmental noise in a diverse range of
problems.
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