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Stochastic resonance via parametric adaptation: Experiments and numerics
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In contrast with the conventionally observed mechanism of stochastic resonance (SR) wherein the level of
additive noise is systematically varied with a fixed set-point parameter, in this work we report the emergence of
the SR phenomena in an electrochemical system maintaining the same level of noise and varying the parametric
distance from a homoclinic bifurcation inherent to the system. The experimental system involves the corrosion
of a metal disk in an acidic medium under potentiostatic conditions. The applied potential is used as a control
parameter and the anodic current generated during the electrodissolution of the metal is the accessible system
variable. In the presence of noise, it was observed that the system was able to enhance its output’s fidelity
with a weak subthreshold input signal when the set point was kept at an optimal parametric distance from the
bifurcation. Numerical simulations were performed on a model for this system to corroborate the experimental
observations. This type of SR may be critical in scenarios where a biological entity has control only on its sensory
parameters and not on the environmental noise amplitude.
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Detection of weak signals in a noisy environment is an
essential requirement for natural systems that are devoid of
a conventional signal amplifying apparatus. One phenomenon
that accomplishes this process is the mechanism of stochastic
resonance (SR). The SR emerges from the interaction between
the system’s nonlinearity and internal or external stochasticity,
resulting in the amplification of an otherwise undetectable
weak signal. Benzi et al. reported this phenomenon in 1981
[1,2] to explain the periodicity of the Earth’s glaciation cy-
cles. These results were followed by the work of Nicolis
and Nicolis later in the same year [3]. In these landmark
articles, SR was reported in systems showing bistable be-
havior. The separatrix dividing the basins of attraction of the
two fixed points acts as a threshold for the noise amplitude.
The presence of such a threshold is critical in observing
SR. It has now been reported in a diverse set of theoretical
[4–9] and experimental [10–16] systems which create this
threshold via different mechanisms, such as Hopf bifurca-
tion [4,9,13] and homoclinic bifurcation [14,15,17,18]. SR is
further categorized into periodic SR [1–3,13] and aperiodic
SR [14,19] depending on the periodicity or aperiodicity of
the input signal. In the absence of such an input signal, a
relative enhancement in the coherence of the system’s output
at an optimal amplitude (level) of noise is called coherence
resonance [18,20–22]. A detailed review over the topic of
stochastic resonance and related phenomena can be found in
a review written by Gammaitoni et al. [23].
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Conventionally, SR refers to the optimization of input-
output fidelity by varying the amplitude of the noise present
in the system. This method of varying noise amplitude is of
interest in cases where direct control over the noise strength
is present. However, this direct control mechanism is hard
to envisage in a biological agent for signal detection in its
environment. Even when noise may be abundant in its en-
vironment, the individual may have little or no control over
the noise amplitude to improve a signal’s detection. In such a
scenario, the agent might still be able to enhance the signal
detection efficacy by optimizing its sensory parameters. A
numerical demonstration of this mechanism was performed by
Anishchenko et al. in 1993 [24] on the Chua’s oscillator. Over
the years, there have been further numerical studies in this
direction, for excitable neuronal models [25,26] and bistable
systems [9,27–29].

In the present work, we experimentally demonstrate the
phenomenon of stochastic resonance by controlling a system
parameter while keeping the level of noise in the system in-
variant. For this purpose, an electrochemical system involving
the corrosion of iron in the presence of sulfuric acid and cop-
per sulfate is used. It is observed that the system response has
enhanced fidelity with a weak input signal (periodic or ape-
riodic) at an optimal parametric distance from a homoclinic
bifurcation, while the noise amplitude (level) is maintained at
a constant value. This observation is verified by calculating
the cross-correlation coefficient between the signal and the
system response at various set-point parameter values. The
resulting curve is unimodal in nature with a maximum cross-
correlation being achieved at an intermediate (optimal) value
of the parametric distance. Numerical simulations have been
performed in a model [30] developed for the experimental
system to corroborate our results.
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FIG. 1. A schematic of the experimental setup used to study the
electrodissolution of an iron disk anode (working electrode) in an
acidic media (electrolyte). Copper sheet and saturated calomel elec-
trode are the cathode (counterelectrode) and the reference electrode,
respectively. The applied potential is controlled with a potentiostat
and a USB DAC control card (not shown).

The subsequent text is organized in the following or-
der. First, the experimental setup and protocol are detailed,
after which the experimental results involving periodic and
aperiodic stochastic resonance are presented. Subsequently,
the electrochemical model is explained and the numerical
simulation analyses are shown. Finally, a brief summary and
discussion of the obtained results are given.

The experimental setup consisted of a three-electrode elec-
trochemical cell used to study the electrodissolution of iron
in an acidic media. The anode (working electrode) was an
iron disk with a diameter of 6.3 mm (Able Target iron rod,
99.9% purity) shrouded in epoxy. The circular cross-sectional
surface was pretreated by polishing it with sandpapers of
monotonically finer grits (grit sizes 280, 400, 600, and 1500)
to create a smooth circular surface which gets exposed to
the electrolyte. The cathode (counterelectrode) was a copper
sheet (12 mm × 50 mm, 0.3 mm thickness) immersed in the
electrolyte. The third electrode was a saturated calomel elec-
trode which is used as a reference electrode. The electrolyte
in which all three electrodes were immersed consisted of a
mixture of 1.0 M sulfuric acid (Baker ACS, 97.9%) and 0.4 M
copper sulfate pentahydrate (Baker ACS, 99.4%) solution.
The electrolyte volume was maintained at 300 ml in all the
experiments. The ambient temperature during the experiments
was maintained at 298 K. A schematic of this setup is given in
Fig. 1. Anodic potential with respect to the reference electrode
was controlled with a Bi-potentiostat (Pine Instrument Co.,
AFRDE5). The applied potential V consisted of two types of
signals: A constant value V0 referred to as the set point of
the system and a time-varying signal superimposed over it.
The time-varying signal consisted of a weak (subthreshold)
periodic or aperiodic rectangular pulse train S(t ) and a uni-
form white-noise signal η(t ) with zero mean and amplitude D.
These time-varying signals were generated in a computer and
supplied to the potentiostat using a control card (MCC-USB

3101) at a sampling rate of 100 Hz. The anodic current (I) was
simultaneously recorded with a data acquisition card (MCC-
USB 1608FS) at a sampling rate of 1 kHz. These experiments
were performed at a fixed amplitude of external noise D while
the set point V0 was changed for each experimental run. The
electrodes were polished and cleaned before each experiment
to ensure quasi-identical initial conditions.

The autonomous dynamics, along with the bifurcations
present in the system, have been reported previously in the
work of Santos et al. [31]. The anodic potential is the system
control parameter by the variation of which various dynamical
regimes of the anodic current can be realized. A range of
the potential values leads to period-1, limit cycle oscillations
in the anodic current. This interval of potential lies within
the parameter domain where the dynamical system exhibits
fixed-point behavior. Within the oscillatory regime, the system
exhibits relaxation oscillations with the period of oscillations
increasing as one increases the anode potential V0 [31]. This
increment of period as a function of system parameter is
indicative of the presence of a homoclinic bifurcation. It was
previously demonstrated that the time period of these oscilla-
tions increases exponentially as a function of increasing anode
potential V0, until the cessation of oscillations is observed
at Vhc [31]. At potentials higher than Vhc, the anodic current
exhibits a fixed-point behavior. It is to be noted that although
the exact locations of these bifurcations may vary from one
experimental run to the other (=305 ± 2 mV), the qualita-
tive bifurcations are robust across all trials. In the present
experiments, the system is kept at the fixed-point regime
(V > Vhc). The anode voltage is V (t ) = V0 + S(t ) + Dη(t ),
where V0 is the set point of the system. S(t ) and η(t ) are the
subthreshold signal (periodic or aperiodic) and external noise
with amplitude D, respectively. The amplitude of noise D was
kept constant for all experiments while the set point V0 was
varied to observe periodic or aperiodic stochastic resonance.
For every set point, it was ensured that the subthreshold
signal S(t ), by itself, was not sufficient to make the system
cross the homoclinic bifurcation point Vhc [V0 + S(t ) > Vhc].
Hence, the bifurcation point Vhc was determined prior to the
experiment in order to estimate the signal pulse amplitude S(t )
and the minimum value of the set point V0 that is allowed.

For the case of periodic stochastic resonance (PSR), the
signal S(t ) was taken to be a periodic train of rectangular
pulses of amplitude −100 mV. The external noise ampli-
tude D was kept fixed at 185 mV while the set point V0

is systematically varied to observe PSR. The homoclinic
bifurcation was located at Vhc ≈ 305 mV. The pulse repe-
tition interval (period) was 17 s with a pulse duration of
2 s. Different combinations of external noise amplitudes and
interpulse intervals had been also explored in order to test
the robustness of our experimental findings, showing similar
results (not shown). In Fig. 2 (left), the top time series in red
corresponds to a section of the subthreshold periodic signal
S(t ). The panels (a)–(c) correspond to the system response
(anodic current) at a low, optimal, and high set-point (V0)
value, respectively. Here, the set point is a measure of the
parametric distance from the bifurcation Vhc. It is evident that
there is maximal information transfer from the input signal
to the system response at the optimal set-point value [Fig. 2,
panel (b)]. At low values of the set point [Fig. 2, panel (a)],
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FIG. 2. Time series of the periodic input subthreshold signal (top
left panel). System response (anodic current) to the input signal at
low (a), optimal (b), and high (c) values of the set point V0. The
system response fidelity to the input signal is the best at the optimal
set-point value. Cross-correlation coefficient (|Co|) between the input
and the output is plotted as a function of the set point V0 in the
right panel (dotted line). The curve shows a unimodal variation as
a function of the set point with a maximum at V0 = 450 mV, a
characteristic observation of stochastic resonance. The marked points
(a)–(c) on this curve correspond to the anodic current time series
shown in the lower three panels on the left. The amplitude of noise
was kept fixed at D = 185 mV while the input pulse amplitude was
−100 mV. The time period between the pulses was 17 s with a pulse
duration of 2 s.

the perturbed system responds even when the instantaneous
value of S(t ) = 0 due to the dominance of noise, leading to
a decrease in the overall input-output correlation. In contrast,
the system becomes insensitive to the subthreshold signal at
higher values of the set point [Fig. 2, panel (c)]. This visual
observation is verified by calculating the modulus of the cross-
correlation coefficient (|Co|) between the input subthreshold
signal and the system response (anodic current) in Fig. 2
(right). The cross-correlation coefficient was calculated using
the following formula applicable in the case of real signals
using the MATLAB programming software:

|Co| = max[|ρ(τ )|], 0 � τ � 0.5 s,

ρ(τ ) = E{[I (t ) − μI ][S(t + τ ) − μS]}
σI × σS

,

where I (t ) and S(t ) denote the anodic current and the input
subthreshold signal, respectively. The function E [· · ·] denotes
the expectation value and σ and μ are the standard devia-
tion and the mean of the respective quantities. The cross-
correlation coefficient plotted as a function of the set point
shows a characteristic unimodal shape with a clear maximum
at V0 = 450 mV. This observation is an indicator of the phe-
nomenon of PSR.

To observe aperiodic stochastic resonance (ASR), the
signal S(t ) was taken to be an aperiodic train of rectangular
pulses of amplitude −100 mV while the noise amplitude D
was kept fixed at 185 mV. The homoclinic bifurcation was
found to be at Vhc ≈ 305 mV. In this scenario, the input signal
S(t ) was an aperiodic train of rectangular pulses with inter-
pulse time intervals distributed uniformly randomly between
5 and 25 s with a mean value of 15 s. The pulse width was 2 s
as kept for the case of PSR. In Fig. 3 (left), it can be observed
that there is an optimal value of the set point V0 at which there
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FIG. 3. Time series of the aperiodic input subthreshold signal
(top left panel). System response (anodic current) to the input signal
at low (a), optimal (b), and high (c) values of the set point V0. The
system response correlation to the input signal is the best at the
optimal set-point value. Cross-correlation coefficient (|Co|) between
the input and the output is plotted as a function of the set point V0 in
the right panel (dotted line). The curve shows a unimodal variation
as a function of the set point with a maximum at V0 = 470 mV,
indicating the occurrence of stochastic resonance. The marked points
(a)–(c) on this curve correspond to the anodic current time series
shown in the lower three panels on the left. The amplitude of noise
was kept fixed at D = 185 mV while the input pulse amplitude
was −100 mV. The time period between the pulses was uniformly
distributed between 5 and 25 s with a pulse duration of 2 s.

is maximal information transfer from the subthreshold signal
to the system response (anodic current). This observation is
corroborated by the presence of the characteristic unimodal
shape of the |Co| versus V0 curve [Fig. 3 (right)] with a
maximum at V0 = 470 mV. Therefore, it was demonstrated
that the system response gets augmented fidelity with the
input subthreshold signal at an optimal value of the system
bifurcation parameter V0 when the external noise amplitude D
is kept constant.

To corroborate the experimental findings, a two-
dimensional numerical model of the dynamics of an
electrochemical cell under potentiostatic conditions was
simulated [30]. This model captures the essential features of
the experimental electrochemical cell studied in this work.
The system equations are as follows:

εu̇ = v − u

R
− f (u, c); ċ = u − v

R
+ (1 − c) + α f (u, c),

where f (u, c) = c(a1u + a2u2 + a3u3).
The variables u(t ) and c(t ) denote the electrode potential

and the surface concentration of the electroactive species,
respectively. The parameters ε, R, and v correspond to the
double-layer capacitance, the Ohmic resistance, and the ap-
plied potential, respectively. The first equation corresponds
to the conservation of charge, where the left-hand side cor-
responds to the current flowing through the double-layer
capacitance. The first right-hand-side term refers to the total
current flowing in the system and the second term corresponds
to the Faradaic current due to the electrochemical reaction.
The second equation gives us the mass balance where the first
right-hand-side term is for diffusion and the second one is
for the migration due to potential gradients. Further details
along with corresponding bifurcations can be found in [30].
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FIG. 4. Numerical simulations: Time series of the periodic input
subthreshold signal (top left panel). System response (I) to the input
signal at low (a), optimal (b), and high (c) values of the set point v0.
The system response correlation with the input signal is the best at
the optimal set-point value. Normalized cross-correlation coefficient
(|Co|) between the input and the output is plotted as a function of
the set point v0 in the right panel (dotted line). The curve shows a
unimodal variation as a function of the set point with a maximum at
v0 = 29.36, indicating the occurrence of stochastic resonance. Cross-
correlation coefficient is normalized by the value of |Co| obtained
for a superthreshold input signal and zero noise in the system. The
|Co| curve (right panel) is an average curve after ten repetitions. The
marked points (a)–(c) on the normalized |Co| curve correspond to
the current time series I shown in the lower three panels on the left.
The amplitude of noise was kept fixed at D = 1.6 while the input
pulse amplitude was −0.133. The time period (dimensionless units)
between the pulses was 70 with a pulse duration of 15.

In this case, v is the bifurcation parameter of the system, and
the anodic current I defined as (v−u)

R is the observable. The
model shows qualitatively similar dynamics to the experimen-
tal system at the parameter values ε = 0.03, α = 0.1, R = 10,
a1 = 1.125, a2 = −0.075, and a3 = 0.001 25. A variety of
dynamics can be provoked at different values of the bifur-
cation parameter v [30]. A limit cycle behavior is exhibited
for 28.097 � v � 29.235, beyond which the system exhibits
stable fixed-point behavior. Noise and the input subthreshold
signal were superimposed on the applied potential v in a
similar fashion as the experiments, v = v0 + S(t ) + Dη(t ).
Here S(t ) and η(t ) represent the weak subthreshold signal
(periodic or aperiodic) and uniform white noise with zero
mean, respectively. The parameter v0 can be considered as
an analog of the system set point in the experiments. The
parameters were chosen such that v0 + S(t ) did not cross the
bifurcation at v = 29.235. The system was simulated using
the fourth-order Runge-Kutta method of solving ordinary
differential equations in the presence of additive noise.

In these simulations the amplitude of noise D was kept
fixed to 1.6 and the periodic (or aperiodic) signal amplitude
was kept fixed to −0.133. To observe PSR (or ASR), the value
of v0 was varied while other system parameters remained
constant.

As was done in the experiments, the observation of SR was
quantitatively verified by calculating the cross-correlation co-
efficient (|Co|) between the system response I (t ) and the input
subthreshold signal S(t ). The value of |Co| was normalized
with respect to the maximum achievable value of |Co| for a
given signal and system parameters. This maximum achiev-
able value was calculated by measuring the cross-correlation
between the system response I (t ) and a superthreshold signal
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FIG. 5. Numerical simulations: Time series of the aperiodic in-
put subthreshold signal (top left panel). System response (I) to the
input signal at low (a), optimal (b), and high (c) values of the set point
v0. The system response correlation with the input signal is the best at
the optimal set-point value. Normalized cross-correlation coefficient
(|Co|) between the input and the output is plotted as a function of
the set point v0 in the right panel (dotted line). The curve shows a
unimodal variation as a function of the set point with a maximum at
v0 = 29.37, indicating the occurrence of stochastic resonance. Cross-
correlation coefficient is normalized by the value of |Co| obtained
for a superthreshold input signal and zero noise in the system. The
|Co| curve (right panel) is an average curve after ten repetitions. The
marked points (a)–(c) on the normalized |Co| curve correspond to
the current time series I shown in the lower three panels on the left.
The amplitude of noise was kept fixed at D = 1.6 while the input
pulse amplitude was −0.133. The time period (dimensionless units)
between the pulses was uniformly randomly distributed between 20
and 120 with a pulse duration of 15.

S(t ) in the absence of noise. A superthreshold signal is a
signal whose amplitude is large enough to cause the output
to spike whenever there is an input pulse without the presence
of noise. Under these conditions, the system would respond
to each pulse of the signal S(t ), hence it would yield the
maximum achievable value of |Co|. As seen in Figs. 4 and
5, we observe an augmented signal response with respect to
the input subthreshold signal (periodic in Fig. 4 and aperiodic
in Fig. 5) at an optimal value of the system set point v0. A
characteristic unimodal shape in the normalized |Co| versus
set point v0 curve is also observed in both the cases (right
panel, Figs. 4 and 5). Therefore, numerical simulations of a
simplified electrochemical model of an electrode operating
under potentiostatic conditions yield results which are similar
to our experimental observation of SR induced by varying a
system set-point parameter.

In this work, we demonstrated the emergence of SR in a
system where external additive noise amplitude remains fixed.
This was done by varying a system parameter which con-
trolled the system’s parametric distance from a bifurcation.
This type of signal detection can find its use in biological
systems where an agent has to detect a weak signal in a noisy
environment. Having little or no control on the environmental
noise amplitude, augmenting its signal detection efficiency by
adjusting its sensory parameters may be advantageous for a
biological agent. This type of signal detection may also be
relevant to systems with internal noise, such as ensembles
of neurons. Internal noise sources are ubiquitous and usually
out of the system’s control. Hence, such systems may be
good potential systems for further experiments in set-point
parameter controlled stochastic resonance. In the context of
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electrochemical systems, pitting corrosion on different sub-
strates is regarded as a stochastic process. Considering this
stochastic process as a source of internal noise, one can search
for stochastic resonance phenomena similar to the present
work by varying a system parameter while keeping the level
of internal noise constant.
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