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Nonmonotonic diffusion rates in an atom-optics Lévy kicked rotor
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The dynamics of chaotic Hamiltonian systems such as the kicked rotor continues to guide our understanding of
transport and localization processes. The localized states of the quantum kicked rotor decay due to decoherence
effects if subjected to noise. The associated quantum diffusion increases monotonically as a function of a
parameter characterizing the noise distribution. In this Rapid Communication, for the atom-optics Lévy kicked
rotor, the quantum diffusion displays nonmonotonic behavior as a function of a parameter characterizing the
Lévy distribution. The optimal diffusion rates are experimentally obtained using an ultracold cloud of rubidium
atoms in a pulsed optical lattice. The parameters for optimal diffusion rates are obtained analytically and show
a good agreement with our experimental and numerical results. The nonmonotonicity is shown to be a quantum
effect that vanishes in the classical limit.
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Chaotic Hamiltonian systems continue to open up novel
scenarios for momentum and energy transport in both the
classical and quantum regimes. The kicked rotor system, a
particle periodically kicked by an external sinusoidal field,
is a paradigm for Hamiltonian chaos [1]. This sets a stan-
dard benchmark for momentum transport, namely that, in the
regime of sufficiently strong kicking strengths, the onset of
quantum interference effects suppresses the classical diffusive
transport [2,3]. This is the dynamical localization scenario
in which the system settles into a quasisteady state without
absorbing further energy. In contrast to this, novel transport
scenarios have been exemplified by several variants of a
kicked rotor. These include atom-optics-based experimental
realizations and theoretical studies of directed transport in
parity-broken [4], PT -symmetric [5], and dissipative [6]
kicked rotors. Anomalous transport has been observed in Lévy
kicked [7], relativistic [8,9], and a nonsmooth version [10] of
a kicked rotor, while suppression of quantum diffusion was
observed in higher-dimensional [11], nonideal [12], coupled
[13,14], and relativistic [15] kicked rotors. As the quantum
kicked rotor is related to the Anderson model [16,17] for
charge transport in a crystalline lattice, all of these results
have applications in a larger class of disordered conductors
and time-dependent problems in condensed matter physics.

The kicked rotor system is suitable for studying decoher-
ence and/or the quantum to classical transition of its localized
states, especially since the classical and quantum signatures
of transport are markedly distinct. In the classical domain,
the temporal evolution of mean energy is 〈E〉 = Dt where the
diffusion coefficient D ≈ K2/2 and K is the kick strength [2].
In the corresponding quantum regime, 〈E〉 becomes asymp-
totically time independent, i.e., 〈E〉 = Dt∗[1 − exp(−t/t∗)],
where t∗ is the localization timescale until which quantum
dynamics follows the classical behavior. Thus, the numerical
values of the kick strength K � 1 and kick period T deter-
mine the classical and quantum diffusion rates [2]. In particu-
lar, varying K does not alter the qualitative nature of diffusion

except if the accelerator modes are present in the classical
phase space [18,19]. On the other hand, if the parameters K
and/or T are subjected to stationary noise, i.e., K is replaced
by K + δK , where δK is drawn from a stationary probability
distribution, then both theory and experiments have shown
that quantum localization is not sustained [20–22]. A similar
scenario unfolds if T is subjected to an additive noise [23].
In general, increasing the tunable noise strength leads to
quantum diffusion that monotonically approaches the clas-
sical limit. In many situations where conductivity, and not
localization, is desired, the tunability for optimal transport
with a fixed kicked strength is useful.

In this Rapid Communication, we propose and demon-
strate a mechanism based on manipulating the periodic kick
sequence by tuning a parameter associated with Lévy-noise
characteristics to obtain optimal momentum transport in an
atom-optics kicked rotor (AOKR) system. Experimentally, the
existence of the optimal diffusion rate as a function of a pa-
rameter characterizing the noise distribution is demonstrated.
The observed results are in good agreement with the analytical
results and simulations.

We consider the dimensionless Hamiltonian of the quan-
tum AOKR given by

H = p2

2
+ K cos(x)

∑
n

(1 − gn)δ(t − n). (1)

In this, gn is a stochastic variable that controls whether an
external field of kick strength K is applied to the cold atomic
cloud at the nth time instant. Further, gn is taken from a
discrete Bernoulli distribution such that if gn = 0, the particle
experiences a kick, and if gn = 1, no kick is applied. The wait-
ing time between the occurrences of 0 is drawn from a Lévy
waiting time distribution w(τ ) ∼ τ−1−α , where α is the Lévy
exponent [24,25]. The regime of 0 < α < 1 corresponds to a
diverging mean waiting time τ̄ and, as we had demonstrated
earlier, this effectively leads to a slower decay of decoherence
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[7]. In this Rapid Communication, we exploit the dynamics
when the kicks are imparted at time intervals governed by
w(τ ) with exponent α > 1 and τ̄ = α

α−1 is well defined. In
this regime, we demonstrate through both theory and exper-
imentation the existence of an optimal quantum diffusion as
a function of α. This optimality is an unusual property since
for other commonly used additive noise sources such as white
and Gaussian noise, quantum diffusion is usually monotonic
as a function of noise strength [25,26]. Early experimental at-
tempts at manipulating the kick sequence without introducing
noise, such as the double kicked rotors, modify the standard
diffusion due to kick-to-kick correlations or classical cantori
[27] but do not lead to nonmonotonicity and optimality in
diffusion rates.

The quantum dynamics of the system in Eq. (1) for α > 1
is studied using a Floquet analysis. The Floquet operator can
be written as

F (Kn) = e−ip2/2h̄s e−iK cos x/h̄s e−iK ′
n cos x/h̄s

= F (K )F (K ′
n), (2)

where h̄s is the scaled Planck’s constant, Kn = K (1 − gn), and
K ′

n = −Kgn. Further, F (K ) represents the Floquet operator
of the standard kicked rotor F (K ) = e−ip2/2h̄s e−iK cos x/h̄s for
which gn = 0 for all n. The noisy rotor corresponds to F (K ′

n).
We consider the eigenstate |r〉 of the Floquet operator F (K )
given by

F (K )|r〉 = e−iηr |r〉,
where ηr is the quasienergy of the state |r〉. For K � 1 as we
have taken, |r〉 would be localized states. The factor gn in-
duces noise in the kicking sequence whenever gn = 1, i.e., the
time instances when the kicks are not imparted. Thus, under
the action of F (K ′

n), the system transitions from state |r〉. The
survival probability amplitude Ar (t ′, t ′′) of the noisy system to
remain in the state |r〉 in a given time interval [t ′′, t ′) [25] is

Ar (t ′, t ′′) = N 〈r|T
t ′−1∏
n=t ′′

F (Kn)|r〉, (3)

in which T represents time ordering and N = e−iηr (t ′−t ′′ ) is
introduced to normalize the survival probability amplitude for
the noiseless system.

By using random-phase approximations and averaging
over all the quasienergy states and also over the random
phases of the initial state, the survival probability amplitude
is

Ar (t ′, t ′′) = q(K ′
n/h̄s)G(t ′,t ′′ ). (4)

In this, G(t ′, t ′′) represents the number of noisy events in the
interval [t ′′, t ′) and

q(K ′
n/h̄s) = 1 − (

K ′2
n /2! h̄2

s

)
cos2(x)

+ (
K ′4

n /4! h̄4
s

)
cos4(x) + · · · . (5)

Since |q(K ′
n/h̄s)| < 1 for K ′

n 	= 0, the survival probability
in the state |r〉 decays over time and the consequent state

transitions result in diffusion. By using the force-force cor-
relator which is related to the decoherence factor [25,28,29],
the mean energy for α > 1 can be obtained as

〈E〉t ∼ K2

2
(1 − e

−t
t∗ ) − K2

2α
t + K2

2

t

1 − α
c

+ O(qt )

∼ I1 + I2 + I3 + O(qt ), (6)

where c = (q2 − 1)t∗ and t∗ ∼ K2
n

h̄2
s

is the localization time

(or break time) of the standard kicked rotor. To physically
understand this expression, we analyze each of these terms.
The first term I1 = K2

2 (1 − e
−t
t∗ ) represents the energy growth

of the standard kicked rotor, I2 = −K2

2α
t corresponds to the

missing of kicks, and the energy growth represented by I3 =
K2

2
t

1− α
c

results from decoherence due to the introduction of
noise.

After long times, t � t∗, Eq. (6) reduces to 〈E〉 ∼ Dt , in
which the diffusion coefficient D is given by

D ∼ K2

2

(
− 1

α
+ 1

1 − α
c

)
. (7)

This reveals a nonlinear dependence of the diffusion coeffi-
cient D on both the kick strength K and Lévy exponent α.
The mean energy of the system grows linearly in time, in-
dicating a dominance of diffusion. In contrast, the diffusion
coefficient D has a quadratic dependence on kick strength
but the dependence on α is not monotonic. The expressions
in Eqs. (6) and (7) form the central analytical results of this
Rapid Communication. In what follows, we describe an atom-
optics-based experiment to verify these results.

The experimental setup and the sequence is similar to
that in Refs. [7,30]. We prepare a laser-cooled cloud of
87Rb atoms in the magneto-optical trap (MOT). This is fol-
lowed by further forced evaporative cooling in a crossed
optical dipole trap (λ = 1064 nm). The cold atomic ensemble
has ∼2 × 105 atoms at temperature ∼3 μK and follows the
Maxwell-Boltzmann distribution in momentum space. This
atomic ensemble serves as the initial Gaussian wave packet for
simulating the quantum kicked rotor. The process of kicking is
implemented using a pulsating one-dimensional (1D) optical
lattice. The lattice laser beam is ∼6.7 GHz detuned to the
red from the |F = 1〉 −→ |F ′ = 2〉 transition of 87Rb. The
lattice beam is derived from the first-order diffraction of an
acousto-optic modulator (AOM). The lattice is turned on and
off by switching the rf power that drives the AOM via a high-
frequency switch. The pulse on time for the applied kicks is
≈ 220 ns and the free propagation time is kept to be ≈10.6 μs.
For the parameters used in the experiment, the scaled Planck
constant is ∼2 and the kick strength K is calculated to be 6
with a 10% uncertainty. For realization of the Lévy noise, a
sequence of waiting times following Lévy statistics is fed into
an arbitrary wave-form generator which in turn controls the
rf switch of the AOM driver. The presented experimental data
for each Lévy exponent are an average over five different noise
realizations.

Figure 1(a) shows one realization of the actual kicking
sequence used in the experiment for several values of the Lévy
exponent α. As α increases, the mean number of missed kicks
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FIG. 1. (a) Schematic diagram of the sequence of kicks that are experimentally applied by pulsing the rf driving an acousto-optic modulator
that switches the optical lattice on/off. (b) Measured (symbols) and numerically simulated (dashed lines) mean energy growth for α = 2, 4, 10,
and 15 with K = 6.0, h̄s = 2.0. Experimental values have ±5% uncertainty (not shown in the figure). (c) Quantum diffusion coefficient as a
function of α. Mean energy after 77 kicks is plotted as a function of α for K = 6.0, h̄s = 2.0. Triangles represent experimental measurements,
open circles are the numerically computed values, and the dashed line is the analytical expression in Eq. (7).

decreases such that, in the limit of α → ∞, it is effectively
a periodic kick sequence. In this limit, we expect the system
to display the properties of a standard kicked rotor system,
i.e., Eq. (1) with gn = 0 for all n. Figure 1(b) shows the mean
energy growth of the system for K = 6, h̄s = 2 while the Lévy
exponent α is varied. In this figure, symbols represent exper-
imental measurements while dashed lines are the numerical
results.

To obtain a broader perspective of this result, for an ar-
bitrarily chosen time t = t̄ , the mean energy 〈E〉t̄ is tracked
as a function of α. Figure 1(c) shows the case of t̄ = 77 (in
units of kick period) with K = 6.0, h̄s = 2.0, for experimental
measurements matched against numerical simulations and the
analytical expression in Eq. (7). For the latter, the localization
time t∗ is treated as a fitting parameter and found to be
t∗ = 5.84. Clearly, the experimental result displays an excel-
lent agreement with the theoretical result in Eq. (7). Notably,
there is a finite α, α = αc, at which 〈E〉t̄ (and therefore
D) is maximum. In the case shown in Fig. 1(c), αc ≈ 4.0.
The choice of t = 77 is for illustrative purposes. A similar
behavior with an identical value of αc is obtained for any
other t , provided other parameters are held constant. Physi-
cally, the nonmonotonic behavior of the diffusion coefficient
results from the competition between the two terms, I2 (energy
loss from missing of kicks) and I3 (the overall increase in
mean energy due to decoherence of the localized state). As
shown below, this is purely a quantum effect absent in the
corresponding classical system.

Further, we explore the limit of α → ∞. For any fixed
value of t such that t � t∗, if the limit α � αc is taken,
both I2 and I3 tend to zero. This leads to 〈E〉 ∼ K2/2, a
time-independent value corresponding to that of the local-
ized state obtained with periodic kicking. For large α, the

mean number of missed kicks becomes vanishingly small
and hence the system essentially works as a standard kicked
rotor. As observed in Fig. 1(c), for large α, the mean en-
ergy approaches a constant value. This constant value of
K2/2 = 18 is approached very slowly since D ∝ α−1 as α →
∞. This can be expected for α � 1 for any finite value
of h̄s. However, for moderately large α in the semiclassical
limit of h̄s → 0, consistent with the discussion in Ref. [31],
the diffusion timescale dominates over the noise timescale,
and hence quantum diffusion approximately follows the
classical.

In Figs. 2(a) and 2(b), numerically simulated energy diffu-
sion of the system in Eq. (1) is displayed for K = 10 and 15,
respectively. It can be noticed from comparing the two figure
panels that αc depends on the kick strength. For K = 10,
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FIG. 2. Numerically calculated mean energy growth of the sys-
tem as a function of time t with (a) kick strength K = 10, h̄s = 2 (top
curve is for α = 6, middle curve is for α = 8, and the bottom curve
for α = 4) and (b) K = 15, h̄s = 2 (top curve is for α = 8, middle
curve is for α = 15, and the bottom curve is for α = 4).
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FIG. 3. The variation of critical exponent αc as a function of K ,
with h̄s = 2. The dashed line is the analytical expression in Eq. (8)
and symbols represent the values of αc from numerical simulations.
At K = 6, experimental data for αc from Fig. 1(c) are also shown.

αc ≈ 6, and for K = 15, we obtain αc ≈ 8. These numerical
estimates of αc agree with those predicted by the analytical
expression in Eq. (8). The results shown in Figs. 1(b) and
1(c) are qualitatively similar for other values of kick strengths
as well, while maintaining the dependence of maximum αc

on K . For a fixed value of time t = t̄ , starting from Eq. (7) an
expression for αc is derived by extremizing D with respect to
α and it gives

αc = 1 +
√

(1 − q2)t∗

1 − 1
(1−q2 )t∗

. (8)

In this, q ≡ q(K ′
n/h̄s) and t∗ ≡ t∗(K/h̄s). Hence, αc depends

only on the ratio K
h̄s

. Figure 3 shows αc as a function of K
for a fixed value of h̄s. In this figure, the result of Eq. (8)
is matched against the numerical simulations of a quantum
Lévy kicked rotor. The experimentally obtained data point for
K = 6 is also shown. To a first approximation, αc increases
linearly with K . This result also emphasizes the quantum
nature of the nonmonotonic diffusion in a Lévy kicked rotor.
As h̄s → 0, in the semiclassical limit, K/h̄s � 1 and hence
αc → ∞. Hence, the nonmonotonic diffusion is a quantum
phenomenon and cannot be seen in the classical Lévy kicked
rotor. Indeed, in the classical numerical simulations (not
shown here) of this system, the diffusion is indeed monotonic
for all values of K .

Another feature that can be inferred from Fig. 2 is that
for large kick strengths such as K � 10, the curves for 〈E〉t

corresponding to different values of α tend to be close to each
other or even overlap. However, for K = 6 in Fig. 1, as α is
varied, 〈E〉t remains quite distinct. The extent to which the
system responds to variations in the Lévy exponent α can
be quantified by a “response” curve defined as follows. We
define a “bandwidth” in α space (see the inset in Fig. 4) as
Nα = α2 − α1, in which α1 and α2 are such that

〈E〉t (α1) = 〈E〉t (α2) = 0.9〈E〉t (αc), and α2 > α1. (9)

FIG. 4. Simulations showing the variation of Nα (= α2 − α1)
with K . The values of α1 and α2 are chosen such that 〈E〉 is 90%
of that at αc. The inset shows the analytical result from Fig. 1(c). In
this, Ec is the mean energy at αc and Nα is the “bandwidth” in α.

Thus, in analogy with the Q values of the oscillators, smaller
values of Nα would correspond to a higher sensitivity of the
system to changes in α, in stark contrast to larger Nα cor-
responding to lower sensitivity. Figure 4 shows Nα obtained
through numerical simulations starting from Eq. (6). The inset
in this figure pictorially illustrates the definition of Nα for the
data shown in Fig. 1(c). It is seen that as K increases, Nα

increases, pointing to increasing loss of sensitivity to changes
in α for large kick strengths. This behavior of Nα explains
why 〈E〉t curves nearly overlap for large K . If K � 1, there is
a wide band of α values for which diffusion rates are nearly
the same as those at αc. Physically, it is reasonable to expect
that large kick strengths are classically chaotic regimes, and
the AOKR is less sensitive to variations in α.

In summary, the dynamics of a Lévy kicked rotor system
is studied through experiments, theory, and simulations. In
this variant of a kicked rotor, the system misses kicks at
time intervals governed by the Lévy waiting time distribution,
w(τ ) ∼ τ−1−α , with α > 1. The central result is nonmono-
tonic behavior of the diffusion coefficient upon variation of α.
Physically, nonmonotonicity of diffusion arises due to the
competition between noise-induced energy loss (arising from
missing kicks) and the energy gain due to decoherence effects.
In general, for any value of kick strength K such that the
system is classically chaotic, the diffusion rate as a function
of α displays a single maximum at α = αc. The theoretical
result shows that αc ∝ K/h̄s, implying that the nonmonotonic
diffusion is a purely quantum effect that vanishes in the
classical limit.
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