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We describe a general and simple paradigm for discrete time crystals (DTCs), systems with a stable
subharmonic response to an external driving field, in a classical thermal setting. We consider, specifically, an
Ising model in two dimensions, as a prototypical system with a phase transition into stable phases distinguished
by a local order parameter, driven by thermal dynamics and periodically kicked with a noisy protocol. By means
of extensive numerical simulations for large sizes—allowed by the classical nature of our model—we show
that the system features a true disorder-DTC order phase transition as a function of the noise strength, with a
robust DTC phase extending over a wide parameter range. We demonstrate that, when the dynamics is observed
stroboscopically, the phase transition to the DTC state appears to be in the equilibrium two-dimensional Ising
universality class. However, we explicitly show that the DTC is a genuine nonequilibrium state. More generally,
we speculate that systems with thermal phase transitions to multiple competing phases can give rise to DTCs
when appropriately driven.

DOI: 10.1103/PhysRevE.100.060105

Introduction. Discrete time crystals (DTCs) [1–20] have
recently emerged as a novel form of nonequilibrium quantum
matter. A time crystal is a system in which the time trans-
lation invariance of the dynamics is spontaneously broken
asymptotically [21,22]. While time crystallinity is impossible
in thermal equilibrium states of systems with a local time-
independent Hamiltonian [23–26], it can emerge in excited
states [27] or through spontaneous breaking of an underlying
discrete time symmetry [1–3]. Concrete examples of the lat-
ter mechanism have been found in closed quantum systems
with time-periodic Hamiltonians (“Floquet” systems [28–30])
such as the π -spin glass and related models [2–6,8–10].
The usual setting in such unitary spin systems is that the
dynamics is split between evolution with an interacting dis-
ordered Hamiltonian followed by a rotation of the spins. The
usual Floquet heating towards an infinite temperature state
[31–33] is avoided by exploiting localization [34,35] so that
spatiotemporal order can be established without fine-tuning.
For reviews see, e.g., Refs. [36–38].

The discovery of DTCs in unitary disordered Floquet
systems raises numerous questions. Two important ones are
the possibility of realizing DTCs in clean quantum systems
[1,7,11,12,16,17,39,40] and whether DTCs can survive in the
presence of dissipation [15,41–54]. Studying these two issues
is part of the more general search for an understanding of the
range of mechanisms through which time crystalline order can
be stabilized. In the case of quantum systems coupled to an ex-
ternal environment, the problem one faces is that of the natural
tendency of dissipation to destabilize order [8,9,41,49]. In this
respect, several mean-field or fully connected model systems
have been shown to display DTC behavior with an appropriate
engineering of the dissipative processes [43,44,46,50,55–57],

with some candidate open quantum systems argued to do
the same away from mean field [45,48,49]. An important
open question concerning the emergence of DTCs in open
settings is their survival in the presence of thermal noise
[19,20,49,58]. In this context, the emergence of DTCs in
classical systems coupled to an external environment, induc-
ing both damping and stochastic forces, have been recently
investigated in Refs. [19,20]. Interestingly, in Ref. [19] an
activated first-order dynamical DTC phase transition has been
found in a one-dimensional driven Frenkel-Kontorova model
at finite temperature while, in Ref. [20], the stabilization of
truly many-body and robust period-doubled states have been
demonstrated in a network of coupled nonlinear oscillators.

In this work, we shed light on the interplay between driv-
ing, noise, and interactions and the associated disorder-DTC
order phase transition by considering a prototypical setting
for DTCs in fully classical and thermal many-body systems.
The generic scheme we propose is extremely simple, but
to our knowledge has not been presented elsewhere before.
The setup is that of a classical system with an equilibrium
symmetry-breaking transition—below we consider a two-
dimensional (2D) Ising model as an obvious example—which
is periodically driven. A period of the dynamics of duration
τ consists of stochastic evolution under conditions such that
asymptotically (i.e., if τ was to diverge) the symmetry-broken
state would be stable, followed by a sudden random inversion
of a fraction μ of the spins (see Fig. 1). We show that
there exists a wide range of values of (τ, μ) in which a
stable DTC emerges. This driven dynamics, when observed
stroboscopically, leads to a nonequilibrium stationary state
(NESS), in terms of which we construct the associated phase
diagram as a function of (τ, μ). We then show that, despite
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step 1: relax eτL

step 2:
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FIG. 1. Dynamics of the driven Ising model under DTC con-
ditions. Starting a cycle from a magnetized state, domains of the
opposite magnetization [blue (dark)/yellow (light) indicate down
(up), respectively] are annealed away under the evolution of duration
τ generated by L during step 1 of the protocol. Step 2 randomly
inverts most of the spins, leaving on average ε = 1 − μ “mistakes.”
These are subsequently annealed away in step 1 of the succeeding
period. Due to the underlying symmetry breaking of the Ising model,
only after two periods the original orientation of the spin profile is
recovered. This gives rise to the period-doubling DTC.

the out-of-equilibrium nature of the dynamics, the transition
from disorder to DTC order appears to be in the 2D Ising
universality class.

Model and dynamical protocol. We study a classical Ising
model on a 2D square lattice of linear size L and periodic
boundary conditions, with nearest neighbor couplings and no
magnetic field. The energy function is

E (σ) ≡ −J
∑
〈i, j〉

σiσ j, (1)

where σi = ±1, sites are labeled by i, j = {1, . . . , L2}, 〈i, j〉
denotes nearest neighbors, σ = {σi, . . . , σN } with N = L2

indicates a whole configuration of spins, and the coupling is
ferromagnetic, i.e., J > 0. Below we set J = 1 for simplicity.

The dynamics is periodic [59] according to the following
two-step protocol within each period τ (see Fig. 1):

(1) The first step evolves the system for time τ with a single
spin-flip thermal dynamics which obeys detailed balance with
respect to the equilibrium Boltzmann distribution associated
to the energy function of Eq. (1) at temperature T . As we
are interested in dynamics where a symmetry-broken state is
stable, we will restrict to T = 0 below.

(2) The second step instantaneously inverts each spin with
probability μ. When μ < 1 not all spins are inverted, and we
denote with ε = 1 − μ the “error” introduced in the inversion
step.

This driven dynamics is described, within a period, by the
evolution operator

Fτ ≡
[ N∏

i=1

(
εIi + μσ̂ x

i

)]
eLτ , (2)

with σ̂ x
i and Ii the x Pauli and the identity matrices acting

on the ith spin, respectively. The rightmost factor implements

step (1) above, with

L ≡
N∑

i=1

(
σ̂ x

i − Ii
)
�i(σ) (3)

the generator of zero-temperature Glauber dynamics [60–62].
Here, �i(σ) = θ [E (σ) − E (σ i )], where σ i indicates the con-
figuration obtained from σ by flipping the ith spin, and θ (z)
the Heaviside function. Therefore, only moves that do not
increase the energy are allowed. The leftmost factor in Eq. (2)
implements step (2) above.

After a transient, the system reaches a time-periodic NESS.
The dynamics depends on two parameters: the period τ and
the rotated fraction of spins μ. To investigate the DTC phase
transition it is convenient to consider the stroboscopic-time
staggered magnetization,

mst (n) ≡ (−1)n m(nτ ), with n = 0, 1, . . . , (4)

where m(t ) denotes the total magnetization per spin at time t ,

m(t ) ≡ 1

N

N∑
i=1

σi(t ). (5)

For a large enough number of cycles, we might expect that
a stroboscopic NESS will be established. To characterize it, a
natural order parameter is the average of the stroboscopic-time
staggered magnetization of Eq. (4),

〈mst〉 = lim
N→∞

1

N

N∑
n=1

mst (n). (6)

Note that 〈mst〉 corresponds to the usual order parameter used
to identify DTC order, given by the Fourier component of the
magnetization at half the driving frequency [36–38].

DTC state and phase transition. We numerically investigate
the dynamics given in Eq. (2) by using a continuous-time
Monte Carlo algorithm [61,63,64] for the thermal part of the
protocol. In Figs. 2(a) and 2(b) we show the (stroboscopic)
behavior of the magnetization at times which are multiples of
the period, m(nτ ), with n = 0, 1, 2, . . . , for τ = 1 and two
different values of μ. Two phases can be clearly identified:
Fig. 2(a) shows m(nτ ) for μ = 0.95 > μc. Here, the system
displays stable DTC oscillations with twice the period of
the driving (ordered DTC phase). For the value of τ consid-
ered in Fig. 2, our estimate for the transition point between
the ordered DTC and the disordered driven paramagnet is
μc ≈ 0.925 (see below for details). For a smaller value of
μ = 0.85 < μc (i.e., for a larger number of mistakes in the
inversion) the oscillations in the magnetization decay quickly
with time [see Fig. 2(b)], corresponding to the disordered
(paramagnetic) phase (PM).

In terms of the staggered magnetization of Eq. (4), the
disordered phase has 〈mst〉 = 0 while in the DTC phase
〈mst〉 �= 0. This suggests that a phase transition takes place at
the transition point μc. To determine its nature and to precisely
locate the transition point, we then inspect the behavior of
Binder cumulants of the staggered magnetization [61,64,65]

Q2p =
〈
m2p

st

〉
〈|mst|p〉2

, (7)

060105-2



CLASSICAL STOCHASTIC DISCRETE TIME CRYSTALS PHYSICAL REVIEW E 100, 060105(R) (2019)

L=16
L=32
L=128

L=16
L=32
L=128

L=8
L=16
L=32
L=64
L=128

DTC

PM

FIG. 2. DTC phase transition. (a) Magnetization m(nτ ) at the
end of each cycle n for (τ, μ) = (1, 0.95) from an initial state with
min = 0.8. The persistent oscillations with period 2τ are indicative
of a DTC. (b) Same for (τ, μ) = (1, 0.85). Here the oscillations get
rapidly attenuated, indicative of the disordered time-homogeneous
phase. (c) Binder cumulant Q4 as a function of μ for τ = 1 and
different system sizes. The crossing of the curves locates the critical
point of the disorder-DTC order phase transition at μc ≈ 0.925.
(d) Phase diagram as a function of μ and τ . The shading corresponds
to the value of 〈mst〉 in a system with L = 32. Black squares give
the location of μc(τ ) extracted from the analysis of Q4 at τ =
{0.25, 1, 2, 3} [cf. panel (c)].

with p � 2. As shown in Fig. 2(c), the curves for Q2p as a
function of μ for different system sizes L and fixed τ cross
at a single point. The size independence of Q2p at this point
implies the emergence of a diverging correlation length ξ (see
below for details) associated with a continuous phase transi-
tion. Thus, the crossing point allows for a precise location of
the critical point μc for a given value of τ . The corresponding
phase diagram of the disorder-DTC order phase transition in
the (τ, μ) plane can be obtained by repeating the procedure
described in Fig. 2(c) for different values of τ and it is shown
in Fig. 2(d). Here, for a given τ , there is a μc(τ ) such that μ <

μc(τ ) corresponds to the disordered phase, while μ > μc(τ )
to the DTC phase. μc(τ ) decreases with increasing τ as the
longer annealing time allows for a larger error density before
the DTC order becomes unstable.

Figure 3 shows stroboscopically sampled configurations
along representative trajectories in the various regimes of the
dynamics. The top row corresponds to the DTC, with μ > μc.
Here, the magnetization at even and odd number of cy-
cles alternates, displaying subharmonic behavior. The bottom
row corresponds to the paramagnetic stroboscopic NESS at
μ<μc. Beyond fluctuations, there is no distinction between
even and odd cycles, and discrete time symmetry remains
unbroken. The middle row corresponds to conditions near
criticality, μ ≈ μc. Here, the presence of a continuous phase
transition should result in scale invariance [66]. Indeed, this
can be seen in the inset to the rightmost panel of the middle
row, in which we consider two typical configurations of the
system for two different sizes, L = 64 and L = 128, respec-
tively. The latter spin configuration is re-scaled through a
majority voting coarse graining on 2 × 2 plaquettes. Clearly,
the L = 64 and the rescaled L = 128 configurations show an

μ > μc

DTC

μc

critical

μ < μc

PM

t = n τ (n + 5) τ (n + 10) τ (n + 15) τ

FIG. 3. Stroboscopic trajectories. Instantaneous configurations
from representative trajectories under DTC conditions (top, μ =
0.95 > μc), near criticality (middle, μ = 0.9 ≈ μc), and for a
paramagnetic NESS (bottom, μ = 0.8 < μc). Here, τ = 1. We
show a succession of snapshots for size L = 128 at times corre-
sponding to odd and even cycles separated by 5τ , with t = τ ×
{1985, 1990, 1995, 2000}. The top row shows how the magnetization
alternates in the DTC. The inset at the bottom of the last panel in the
middle row compares a 64 × 64 (on the left) and a coarse-grained
128 × 128 (on the right) configuration on the same scale to illustrate
the self-similarity of the system at μc.

almost perfect self-similarity, thus confirming scale invariance
at criticality.

Critical properties of the DTC transition. Results from
previous sections are indicative of a continuous phase tran-
sition with an emerging divergent correlation length at crit-
icality. The latter describes the behavior of the (equal-time)
connected correlation function,

Ci, j (t ) ≡ 〈σi(t )σ j (t )〉 − 〈σi(t )〉〈σ j (t )〉, (8)

at large (spatial) distances. In this limit, we expect that Ci, j ∼
e−ri j/ξ , with ξ being the correlation length and ri j ≡ |ri − r j |
the distance between spins i and j. In a continuous phase
transition a power-law behavior emerges in various thermo-
dynamic quantities as the critical point is approached [66].
Examples for such quantities include ξ , the order parameter
〈mst〉, and its susceptibility χ , defined as

χ ≡ L2
(〈

m2
st

〉 − 〈mst〉2
)
. (9)

From the theory of continuous phase transitions, the following
critical scaling relations are expected to hold in the strobo-
scopic NESS near the critical point

〈mst〉 ∼ |μ − μc|β, ξ ∼ |μ − μc|−ν, χ ∼ |μ − μc|−γ ,

(10)
with β, ν, and γ being the critical exponents corresponding to
the various thermodynamic quantities. Despite that Eqs. (10)
strictly hold in the thermodynamic limit, critical exponents
can be efficiently extracted through a finite-size scaling anal-
ysis [61,64,65]. In a finite system the correlation length ξ

is bounded by the system size L and all the various ther-
modynamic quantities (e.g., χ ) saturate when ξ ∼ L. Close
to the critical point, by using that |μ − μc| ∼ L−1/ν [see the
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simulation simulation simulation

FIG. 4. Critical exponents of the DTC transition obtained via
finite-size scaling. (a) Plot of μmax ∼ L−1/ν , the point in which χ

takes its maximum value χmax as a function L. The fit results in
ν = 0.9 ± 0.3. (b) Plot of 〈mst (μc )〉 ∼ L−β/ν . The fit gives β/ν =
0.13 ± 0.01. Using the value of ν obtained in panel (a) we get β =
0.12 ± 0.04. Inset: Plot of 〈mst〉 as a function of μ̄c = (μ − μc )/μc

for the same sizes as in Fig. 2(c). The slope β of the fitting curve
(black, dashed) has been fixed at the value obtained from the main
panel. (c) Maximum value of the susceptibility, χmax ∼ Lγ /ν , as a
function of L. The fit leads to γ /ν = 1.69 ± 0.08. Using the result
for ν from panel (a) we obtain γ = 1.8 ± 0.6. In panels (b) and (c),
μc is extracted as explained in Fig. 2.

equation in the middle of Eqs. (10)], the following scaling
relations can be obtained [64,65]:

μmax ∼ L−1/ν, χmax ∼ Lγ /ν, 〈mst (μc)〉 ∼ L−β/ν. (11)

For a given L, μmax corresponds to the value of μ in which
χ takes its maximum value, χ (μmax) = χmax, and 〈mst (μc)〉
is the value of the staggered magnetization at the critical
point. From Eqs. (11), by inspecting different system sizes,
it is possible to extract the values of ν, β/ν, and γ /ν.
The behavior of μmax, χmax, and 〈mst (μc)〉 as a function of
L is shown in Fig. 4. By fitting with the power laws in
Eqs. (11), we obtain the following values for the critical
exponents of the disorder-DTC phase diagram: ν = 0.9 ±
0.3, β = 0.12 ± 0.04, and γ = 1.8 ± 0.6. These values are
compatible with those of the equilibrium 2D Ising model [66],
(ν2D, β2D, γ2D) = (1, 1/8, 7/4), even though in our case they
correspond to a nonequilibrium phase transition, as shown
in the next section. To benchmark the validity of the fitting
procedure, in the inset of Fig. 4(b) we plot 〈mst〉 as a function
of μc = (μ − μc)/μc > 0 for different sizes and checked
that, for large L, it follows the behavior predicted in Eqs. (10),
i.e., 〈mst〉 ∼ |μ − μc|β .

Nonequilibrium nature of the DTC phase. To assess the
nonequilibrium nature of the DTC phase transition, we now
analyze the properties of the Floquet evolution operator Fτ .
At stationarity we have Fτ |ρNESS〉 = |ρNESS〉, with |ρNESS〉
the system’s stationary state. Here, the NESS probability of
finding the system in a given spin configuration σ is ρσ =
〈σ|ρNESS〉, while the transition rate from the configuration σ to
σ′ is Tσ→σ′ = 〈σ′|Fτ |σ〉. In these discrete time dynamics, one
can define the average elementary currents between two con-
figurations as Jσ→σ ′ ≡ ρσTσ→σ ′ − ρσ ′Tσ ′→σ . In equilibrium
settings, detailed balance requires ρσTσ→σ ′ = ρσ ′Tσ ′→σ and,
thus, on average no currents can be observed between any
pairs of spin configurations σ and σ ′, i.e., Jσ→σ ′ = 0 ∀σ, σ′.
As such, in order to prove the nonequilibrium character of the
phase transition that we are investigating, it would be suffi-
cient to show the presence of at least one nonzero current [67].
For small sizes, the NESS |ρNESS〉 can be found through

tn n + 2 n + 4 n + 6 n + 8

e(t)

n = 1 n = 25 n = 251 n = 5001

τ

μ

2.5

2.0

1.5

1.0

0.5

0.0
1.0

0.12

0.04

0.08

0.00

m(t)

0.5 0.6 0.7 0.8 0.9

(a) (b)

(c)

FIG. 5. Nonequilibrium nature of the DTC. (a) Sum of the
absolute values of all elementary stationary currents Jσ→σ′ for
different values of the parameters (τ, μ) for L = 3. A nonzero
value of this witnesses the nonequilibrium nature of the Floquet
dynamics. (b) Time-dependent magnetization m(t ) and energy e(t ) =
1/L2

∑
〈i, j〉 σi(t )σ j (t ) for a system with L = 128. The value of n is

chosen large enough so that the curves look stationary (in this case
n = 100 is sufficient). The behavior of both m(t ) and of e(t ), which
is not time reversible, makes it evident that the process generating
these trajectories has a nonequilibrium character. (c) Coarsening
dynamics in the instantaneous configurations of the system for t =
τ × {1, 25, 51, 5001} with min = 0.5. In panels (b) and (c), τ = 1
and μ = 0.95.

exact diagonalization of Fτ , while the probabilities ρσ and the
transition rates Tσ→σ ′ can be directly evaluated by listing all
the possible spin configurations. One can then construct the
matrix current, whose entries are the elementary currents be-
tween all the possible spin configurations Jσ→σ ′ , and evaluate
its L1 norm (defined as

∑
σ,σ ′ |Jσ→σ ′ |/2). Figure 5(a) gives the

L1 norm of the current matrix for a system with L = 3 and
for a range of values of (τ, μ) and shows that, except for the
limits τ = 0 and μ = 1, there exists at least one nonvanishing
average current, resulting in a violation of detailed balance
and, therefore, demonstrating that the disorder-DTC order is a
nonequilibrium phase transition.

Such a nonequilibrium nature of the dynamics is also
clearly apparent in continuous-time resolved dynamical re-
alizations, as displayed in Fig. 5(b) for the energy and the
magnetization, which are manifestly not time reversible.

Having shown that the asymptotic state is a nonequilibrium
one, we can ask whether the analogy with the 2D Ising
model extends beyond the stroboscopic NESS. A simple test
is to consider the dynamics starting from an initial state
with zero magnetization (such as a quench from a random
configuration). Figure 5(c) shows that under DTC conditions
the stroboscopic dynamics exhibits coarsening, displaying
progressive growth of domains of both magnetized states
(before eventual collapse to one of the two in the last panel,
which is a finite-size effect). As the relaxation step of the
protocol is standard Glauber dynamics at zero temperature we
could have expected coarsening only within a period, but the
fact that it survives for long times despite the periodic driving
is nontrivial, and constitutes another indication that the DTC
state is robust.

Conclusions. We have shown that a DTC phase can be
obtained in a fully classical and thermal setting—and in the
absence of disorder or any form of classical localization—as
a symmetry-breaking transition of a driven 2D Ising model.
The classical nature of the problem we consider allowed us,
by means of numerical simulations of large system sizes
and finite-size scaling (something often outside the range
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of possibility in both closed and open quantum systems),
to demonstrate convincingly that the transition to a DTC
is indeed a phase transition. Our results suggest that when
observed stroboscopically, this phase transition in the NESS
is in the 2D Ising universality class. The mechanism for
DTCs described here is simple and easily generalizable. For
example, we expect that driven Potts models will lead to
DTCs with periods larger than two [68,69]. The simplicity
of the scheme also suggests that it should be possible to
observe these classical DTCs in experiments such as magnetic
solid state systems and other platforms with order-disorder
transitions with a scalar order parameter. In particular, the
dynamics we have studied in this work can be implemented

in a setup of dissipative Rydberg atoms [70–72] in the limit of
strong dephasing [73–75] and driven by a periodic sequence
of slightly imperfect π -pulse rotations, which simulates the
random inversion of a fraction of spins.
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