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Vortex-loop calculation of the specific heat of superfluid 4He under pressure
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Vortex-loop renormalization is used to compute the specific heat of superfluid 4He near the lambda point
at various pressures up to 26 bars. The input parameters are the pressure dependence of Tλ and the superfluid
density, which determine the nonuniversal parameters of the vortex core energy and core size. The results for
the specific heat are found to be in good agreement with experimental data, matching the expected universal
pressure dependence to within about 5%. The nonuniversal critical amplitude of the specific heat is found to
be in reasonable agreement, a factor of four larger than the experiments. We point out problems with recent
Gross-Pitaevskii simulations that claimed the vortex-loop percolation temperature did not match the critical
temperature of the superfluid phase transition.
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Introduction. The idea that vortex loops could be the ther-
mal excitations responsible for the superfluid λ transition was
first intuitively suggested by Onsager [1], in the same confer-
ence paper where he proposed the quantization of circulation
in superfluids. Much the same speculative idea was proposed
by Feynman at the end of his 1955 review paper on superfluids
[2], and both of them proposed that Landau’s roton excitations
were the smallest loops being excited, the “ghosts of vanish-
ing vortex rings.” The first actual calculations of a vortex-
mediated superfluid transition were carried out by Kosterlitz
and Thouless (KT) [3,4] for two-dimensional (2D) superfluid
films, with vortex-antivortex pairs the 2D equivalents of three-
dimensional (3D) vortex loops. The first 3D renormalization-
group theory using circular vortex loops was proposed by one
of us [5]. This theory resulted in a 3D lambda-type phase
transition where the superfluid density went to zero as a
critical power law of the temperature difference from Tλ, and
the specific heat peaked at the same temperature, though the
critical exponents did not match known values. This was quite
different behavior from the 2D KT transition, where there is a
sudden jump to zero of the superfluid density at TKT, and no
change in the specific heat at that point.

The recursion relations resulting from the circular-loop
theory were later verified by Shenoy [6] using a duality
transformation of the Landau-Ginzburg-Wilson Hamiltonian,
which diagonalizes exactly into vortex-loop and spin-wave
thermal excitations. He was also able to show that the circular-
loop ideas could be generalized to the actual random-walking
loops, by employing a renormalized core size that was ba-
sically the extent of the fluctuations from the circular form
[7]. This advance now brought the critical exponents of the
loop theory into agreement with known values of the 3D O(2)
universality class.

In this Rapid Communication we calculate the specific heat
from the vortex loops as a function of pressure, and find
that the theory correctly predicts the universal scaling with
pressure seen in the experiments. The magnitude of the critical
specific heat, though not universal, shows that the loops can
easily account for nearly all of the entropy found very close

to the λ point. We use this result to address a claim made
recently [8] that the percolation temperature of the loops can
be as much as 6% lower than the critical temperature Tc. If that
were the case, the simulations should have seen two specific
heat peaks, one at the percolation temperature and one at Tc.
Since they see only a single peak, the percolation point and
Tc must be identical, at least to within the precision of the
simulation.

Vortex-loop theory. The loop theory starts from the hydro-
dynamic expression for the energy of single circular loops of
diameter a, divided by the thermal energy kBT ,

U0/kBT = π2K0(a/a0)[ln(a/ac) + C], (1)

where

K0 = h̄2ρ0
s a0

m2kBT
, (2)

with ρ0
s the unrenormalized (“bare”) superfluid density, m the

atomic mass, and a0 the bare core diameter. The parameter C
gives the energy of the vortex core, while the log term is from
the kinetic energy of the flowing helium. ac is an effective core
size, and for the bare case is proportional to a0.

For the case of many interacting loops, the renormalized
loop theory builds on two fundamental ideas used initially by
Kosterlitz and Thouless [3] in 2D. Vortex loops are dipolar
objects, and orient in an applied flow such that their backflow
opposes the applied flow. The superfluid density is the net
mass per unit volume flowing in response to the applied
flow, and hence it is reduced by the polarizablility of the
dipoles, which varies as a4. Linear response theory leads
to an integral equation for the scale-dependent renormalized
superfluid density ρr

s (a),

1

Kr (a)
= 1

Ko
+ 4π3

3a7
o

∫ a

ao

a4 e−U (a)/kBT a2 da, (3)

where Kr/K0 = ρr
s /ρ

0
s . U (a) is the renormalized loop energy,

where the energy of a large loop is screened by the smaller
loops around it, and following the “dielectric” screening ideas
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of Kosterlitz and Thouless gives

U (a)

kBT
=

∫ a

ao

(
1

Ko/Kr (a)

)
∂ (Uo)

∂a
da + π2KoC

= π2
∫ a

ao

Kr (a)

[
ln

(
a

ac

)
+ 1

](
da

ao

)
+ π2KoC. (4)

These two coupled integral equations can be iterated to
macroscopic scales, but it is more convenient to convert them
to differential recursion relations using a length scale � =
ln(a/a0) and fugacity y = (a/a0)6 exp[−U (a)/kBT ],

∂K

∂�
= K − 4π3

3
K2y, (5)

∂y

∂�
= [6 − π2K (ln(a/ac) + 1)]y, (6)

Kr = Ke−�. (7)

These can be iterated starting from the � = 0 values K0 and
y0 = exp(−π2K0C), and the macroscopic superfluid density
is found from Kr as � → ∞. The correlation length of the
theory is given by

ξ = a0

Kr
= m2kBT

h̄2ρs
, (8)

the known value [9]. The effective core parameter ac is found
using a free-energy minimization of the fluctuations about the
minimum-energy circular configuration [7], and is given by

ac/a = Kθ , (9)

with the exponent θ = d/[(d + 2)(d − 2)] in d dimensions
[10] near d = 3. The fixed points of the recursion equations
using θ = 0.6 in d = 3 are K∗ = 0.387 508 . . . and y∗ =
0.062 421 . . .. The temperature is varied by changing K0, and
the critical value K0c is determined when K and y scale to their
fixed-point values at large �; y blows up and K scales rapidly
to zero at values of K0 < K0c. The value of K0c is completely
dependent on the value of C, through the initial value of y0.

Expanding the recursion relations about the fixed points
gives an analytic expression for the correlation-length expo-
nent [6],

1

ν
= 1

2

[√
1 + 24

(
1 − π2θK∗

6

)
− 1

]
, (10)

and putting in the d = 3 values of K∗ and θ gives ν =
0.671 688 35 . . .. This is in complete agreement with the best
high-temperature expansion [11] value [0.6717(1)], the best
Monte Carlo simulation [12] value [0.6717(3)], and is within
the bounds of the recent conformal bootstrap calculations
[13]. We note that Eq. (7) guarantees that the loop theory
exactly satisfies the Josephson hyperscaling relation [14] for
the critical exponent of the specific heat, α = 2 − dν, giving
α = −0.015 065 . . . for d = 3.

The critical exponent η in the loop theory is effectively
η = 0 [6], due to the neglect of small logarithmic terms in the
duality transformation. It is known to be small in 3D; the most
accurate simulation [11] gives η = 0.0381(2). In the loop

FIG. 1. Fits to the data of Ref. [18], showing the values used for
Tλ and the resulting fit values of the amplitude A′.

theory the Hausdorff fractal dimension of the wandering loops
[15] is given by DH = 1/(1 − θ ) = 2.50, in exact agreement
with the scaling theory [16] prediction DH = (5 − η)/2 with
η = 0.

Specific heat calculation. To compare with experiments in
superfluid 4He, it is necessary to determine the nonuniversal
parameters of the core diameter a0 and the core energy con-
stant C in the critical region near Tλ. We use the experimental
values of the critical amplitude of the superfluid density
with pressure, and the pressure dependence of Tλ. For the
superfluid density we postulate that the starting value ρ0

s of
the superfluid density at � = 0 is equal to the total density ρ.
It is well known that phonons contribute a negligible amount
to the thermodynamics at the lambda point, particularly at
higher pressures where the sound velocity increases, and in
any event there are already larger noncritical contributions
to the background specific heat from other sources, such as
chemical-bond effects [17] that would be present even in the
normal liquid. We also do not include any “roton” contribu-
tions to ρ0

s , as we identify these excitations as the smallest
vortex loops in the theory, as will be apparent shortly. The
recursion relations are iterated using standard fourth-order
Runge-Kutta techniques to values of � between 10 and 100,
depending on the closeness to Tλ.

Figure 1 shows fits to the superfluid density measurements
of Ref. [18]. We fit to the amplitude A′ in the form

ρs

ρ
= A′tν = Kr

K0
, (11)

where t = 1 − T/Tλ, and in 3D the critical superfluid ex-
ponent is the same as the correlation-length exponent, from
Eqs. (8) and (10). We assume that ν = 0.671 688 35 is univer-
sal and independent of pressure, and only allow A′ to vary,
with results shown in the table in Fig. 1. This is different
from the assumption in Ref. [18], who allowed also ν to
vary, finding values close to 0.6717 but varying slightly with
pressure. Our values for A′ turn out to be consistently about
2%–3% higher than those of Ref. [18].
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FIG. 2. The parameters C and K0c vs pressure. Additional data
at low pressures from Ref. [18] were not shown in Fig. 1. The solid
lines are polynomial fits to guide the eye.

Once A′ is known in the critical region, the corresponding
values of C can be found from iterating the recursion relations.
At a given pressure trial values of C and K0 are inserted in y0,
and Kr is calculated at long length scales from the recursion.
K0 is then incremented to sweep the temperature, finding the
critical value K0c (where Kr goes to zero) and the superfluid
fraction Kr/K0 as a function of T/Tλ = K0c/K0. The resulting
superfluid amplitude is then compared with A′, and if it does
not match, the value of C is incremented, and the process is
repeated until a match is found. Figure 2 shows the resulting
values of C and K0c as a function of pressure. The core energy
in the critical region from Eq. (1), U0/kB = π2K0cC Tλ, is
plotted in Fig. 3 as a function of pressure, and also shown
are the roton energy gaps at T = Tλ from precision neutron
scattering measurements under pressure [19]. The agreement
is seen to be quite good, further justifying our claim that the
smallest loops can be treated as the roton excitations seen in
experiments.

FIG. 3. Vortex core energy at Tλ, compared with the neutron
scattering roton gap from Ref. [19]. The solid fit line is a guide to
the eye, while the dashed curve shows the roton gap energy at low
temperature from Ref. [20].

FIG. 4. Vortex core diameter vs pressure. The solid line is a
fit to guide the eye. The low-temperature measurements are from
Ref. [21].

The value of a0(p) near the lambda point can now be found
from Tλ(p),

a0(p) = m2kBTλ(p)

h̄2ρ(p)
K0c(p). (12)

At p = 0 bars this gives a value of a0(0) = 2.41 Å, in rea-
sonable agreement with the value of 1.6 Å deduced from
vortex-ring measurements [21] at low temperatures (0.2 K).
The bare core diameter remains microscopic in the loop theory
at the lambda point; it is the effective core size ac which
becomes divergent there. The pressure dependence of a0 is
shown in Fig. 4, where it increases with pressure, though
not quite as rapidly as found in low-temperature vortex-ring
measurements.

The loop recursion relation for the free energy was derived
by Shenoy [6] from the duality transformation,

∂ f

∂�
= −π exp(−3�)y, (13)

where f = (F/kBT )(a3
0/V ) with F the free energy in the

volume V , normalized by a3
0. At constant pressure, the total

heat capacity is

Cp = −T

(
∂2G

∂T 2

)
p

= −T

(
∂2F

∂T 2

)
p

− T p

(
∂2V

∂T 2

)
p

, (14)

where G = F + pV is the Gibbs free energy. The temperature
derivatives of V and a0 can be rewritten in terms of derivatives
of ρ, and we convert to the molar specific heat using cp =
(Vm/V )Cp, where Vm = NAm/ρ is the molar volume, with NA

Avogadro’s constant. With the gas constant R = kBNA, the
specific heat becomes (neglecting very small terms)

cp,loop = m R

ρ a3
0

[
−K2

0

(
∂2 f

∂K2
0

)
p

+ K0

(
∂ f

∂K0

)
p

(
4T

ρ

)(
∂ρ

∂T

)
p

− f

{(
2T 2

ρ2

)(
∂2ρ

∂T 2

)
p

+ 8T

ρ

(
∂ρ

∂T

)
p

}]
. (15)
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TABLE I. Specific heat fit parameters, in units J/(mol K).

Pressure (bar) B′
loop D′

loop B′
expt D′

expt B′
expt/B′

loop D′′

0.05 −1397 1372 −388.0 400.1 0.2777 19.14
1.65 −1406 1381 −382.1 394.0 0.2717 18.68
7.33 −1401 1377 −355.0 365.8 0.2534 16.76
15.03 −1328 1308 −337.5 346.6 0.2542 13.99
18.18 −1286 1269 −322.7 331.9 0.2510 13.48
22.53 −1223 1210 −299.6 309.5 0.2449 13.16
25.87 −1173 1164 −306.5 315.8 0.2613 11.76

By iterating Eqs. (5)–(7), (13), and (15) for seven different
values of pressure between 0.05 and 25.87 bars, we are able to
get the calculated loop specific heat cp,loop versus temperature
and pressure. To analyze the temperature behavior we employ
a fitting function

cp,fit = B′t−α + D′, (16)

using the value of α given above in accordance with Josephson
hyperscaling. Fits to the calculated results in the critical
regime at t < 4 × 10−3 give values of the amplitude B′

loop and
the offset D′

loop, shown in Table I for the different pressures.
The experimental data shown in Fig. 5 are also known to
follow a similar form [22], and we have fit the data to
this form (again for t < 4 × 10−3 and using our value α =
−0.015 065), with the results for B′

expt and D′
expt shown in

Table I.
Since the amplitude B′

loop is a nonuniversal quantity that
depends on other nonuniversal values at the bare scale a0, we

FIG. 5. Specific heat data from Ref. [23] (0.05 bars) and all other
data points from Ref. [22], compared with the adjusted loop theory
cp,adj (solid lines).

TABLE II. Universal parameter X , in units 10−4R(mol/cm3)
(K cm3/mol)3. Xexpt values from our fits to Refs. [18,22]; XFerer values
from Ref. [25].

Pressure (bar) Xloop Xexpt XFerer

0.05 8.68 2.41 2.06
1.65 8.68 2.36 2.02
7.33 8.68 2.20 1.99
15.03 8.67 2.21 2.02
18.18 8.67 2.18 1.99
22.53 8.66 2.12 1.96
25.87 8.66 2.26 2.19

would not expect B′
loop and B′

expt to be the same, and indeed
their ratio shown in Table I averages to a value of nearly 0.26.
What we do expect, however, is the pressure dependence of
both amplitudes to match, due to universality arguments given
by Rudnick and Jasnow [24] and Ferer [25]. Their ratio is
nearly independent of pressure, within fluctuations of at most
5% that are likely due to the uncertainties in the experimental
data. To compare more carefully with the data we plot as the
solid lines in Fig. 5 the theoretical specific heat adjusted by
the amplitude ratios,

cp,adj = (B′
expt/B′

loop)cp,loop + D′′, (17)

where D′′ = D′
expt − (B′

expt/B′
loop)D′

loop is the noncritical back-
ground probably coming from the chemical-bond effects [17],
and any nonloop excitations such as phonons. The adjusted
loop theory curves are seen to completely match the experi-
mental data for t < 4 × 10−3. We note that this type of scaling
adjustment of the amplitudes is also used in perturbative
renormalization group calculations of the lambda specific
heat [26], where again there is uncertainty in the precise
values of the parameters at the microscopic bare length scale.

A further test of universality is the parameter X which was
proposed by Ferer to be a universal constant independent of
pressure [25],

X =
∣∣B′∣∣
RVm

(
TλVm

A′

)3

. (18)

In Table II we compare values of X from the above values of
B′ and A′ from the loop theory and the experiments, and with
Ferer’s values using the experimental data fit to α = −0.02
and ν = 0.669. It is seen that the loop theory values are almost
completely independent of pressure, while the experimental
values are nearly constant, but fluctuate on the order of 5%.
The loop values are larger by a factor of about 4, since
B′

loop/B′
expt ≈ 4.

Conclusions. These results show that the vortex-loop the-
ory provides a complete description of the rapid rise of the
specific heat of superfluid helium very close to Tλ. The theory
is entirely consistent with universality, and the critical expo-
nents agree with the best simulation values. Even the nonuni-
versal amplitude of the loop specific heat is the correct order
of magnitude, only a factor of about four larger than the exper-
imental value. This difference likely stems from our use of the
hydrodynamic form of Eq. (1) for the energy of the smallest
loops at the bare scale, since with a0 only a few Å, quantum
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methods might give a better description [27]. The amplitude
of Eq. (15) varies rapidly with a0, so only a small change in
a0 would be needed to better match with the experiments.

In this Rapid Communication the superfluid transition
temperature Tλ is exactly coincident with the temperature at
which the loops percolate, e.g., for an infinite system the
temperature where infinite diameter loops are just nucleated,
made possible by the screening of the largest loops by all
the loops of smaller size. In a recent paper, Kobayashi and
Cugliandolo [8] have claimed from Gross-Pitaevskii (GP)
simulations that these two temperatures are different, with
the loop percolation temperature falling below the superfluid
transition temperature by as much as 6%. In coming to this
conclusion they needed to study the loop distribution func-
tion in their simulations, the number of loops with a given
diameter. The problem with GP vortices is that the core size
is relatively very large, spread out over several lattice points.
Near the transition the vortex density becomes very high, and
it becomes very difficult to follow the trajectory of a loop
when it comes close to another loop. To resolve which loop is
which they employed two different guesses in this situation:
a “stochastic” scenario in which the loop directions near a
crossing are randomly chosen (which gave the percolation
point 2% below the superfluid Tc), and a second scenario
where the configuration resulting in the longest loop is cho-
sen (percolation point 6% below Tc). The fact that the two
different scenarios give quite different percolation points is
already evidence that something is amiss with the procedures
for determining the loop distributions.

We disagree with the conclusion that the two temperatures
are different, and use their simulation of the GP specific
heat and superfluid density as evidence this is not the case.

Their specific heat data [Figs. 3(b) and 4(c) of Ref. [8]] show
only a single peak that is coincident with their superfluid
transition. If the loop percolation temperature was as much
as 6% smaller than Tc, our calculation shows that there should
have been a large specific heat peak right at that point, and
yet nothing at all is visible there in the data. There is only the
sharp peak right at Tc, which we and others [28] would argue
is actually also the percolation point. It is also impossible
that the superfluid density would be unaffected by the loop
percolation, and yet it shows no change at all at the purported
lower percolation temperatures (Figs. 6 and 7 of Ref. [8]). In
the loop theory the specific heat and superfluid density are
only driven by the very longest loops, and are completely
independent of the reconnection guesses discussed above. It
is only in computing aspects of the loop distribution function
that the inability to accurately trace the loops will become
troublesome, and we postulate this is the source of the claim
in Ref. [8] that the loop percolation does not coincide with the
superfluid Tc [29]. We point out that recently a new procedure
for accurately tracking the cores of GP vortices has been
developed [30,31]. This procedure is able to completely track
a reconnection event between two vortex lines that cross,
following the details of the motion even at the point of closest
approach. It would be very interesting if this procedure could
be applied to tracing the vortex loops in simulations such as
those of Ref. [8] to determine whether the loops do in fact
percolate at the superfluid transition.
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