
PHYSICAL REVIEW E 100, 060103(R) (2019)
Rapid Communications

Microscopic reweighting for nonequilibrium steady-state dynamics

Marius Bause ,* Timon Wittenstein , Kurt Kremer , and Tristan Bereau
Max Planck Institute for Polymer Research, 55128 Mainz, Germany

(Received 10 July 2019; published 19 December 2019)

Computer simulations generate trajectories at a single, well-defined thermodynamic state point. Statistical
reweighting offers the means to reweight static and dynamical properties to different equilibrium state points by
means of analytic relations. We extend these ideas to nonequilibrium steady states by relying on a maximum
path entropy formalism subject to physical constraints. Stochastic thermodynamics analytically relates the
forward and backward probabilities of any pathway through the external nonconservative force, enabling
reweighting both in and out of equilibrium. We avoid the combinatorial explosion of microtrajectories by
systematically constructing pathways through Markovian transitions. We further identify a quantity that is
invariant to dynamical reweighting, analogous to the density of states in equilibrium reweighting.
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Many chemical and biological processes are influenced by
external driving forces and operate away from equilibrium—
examples include colloidal particles, biopolymers, enzymes,
and molecular motors [1]. Despite our current lack of a
universal theory for statistical mechanics off equilibrium
[2], computer simulations can complement experiments by
providing microscopic insight into these complex processes.
Unfortunately, current computational power often prevents
molecular simulations from reaching the experimentally rel-
evant timescales or, alternatively, obliges them to operate
at artificially large driving forces [3]. The latter motivates
a formalism to reweight dynamics across off-equilibrium
conditions.

When dealing with systems in equilibrium, Ferrenberg and
Swendsen introduced a statistical-reweighting procedure to
infer information about a system when sampled at another
state point [4,5]. It requires microscopic information at fixed
thermodynamic conditions, e.g., temperature, collected by
computer simulations or experiments. A probability associ-
ated with each microstate is reweighted according to physical
relationships linking the initial and final thermodynamic con-
ditions. Reweighting can be conducted arbitrarily far from the
initial state, provided it is sufficiently sampled.

Equilibrium reweighting has led to a number of develop-
ments in the field, from estimating accurate free energies [6]
to building more robust Markov state models [7,8]. In this
Rapid Communication, we generalize reweighting to dynami-
cal processes by replacing microstates with microtrajectories.
The proposed methodology, valid for nonequilibrium steady-
state (NESS) systems, employs a maximum path entropy
formalism while generalizing the standard detailed balance
relation.

Jaynes’ maximum entropy approach offers a general varia-
tional principle to understand macroscopic phenomena from
microscopic knowledge of a statistical system [9]. This
information-theoretic method regards entropy as the measure
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of uncertainty of the system. Consider a coordinate x of
a system with unknown probability distribution, p(x). We
further define another distribution, q(x), used as a prior on
p(x). The most likely representation of p(x) can be found by
minimizing the cross-entropy functional

C[p(x)] = −
∫

dx p(x) ln

[
p(x)

q(x)

]
. (1)

This quantity was shown to fulfill the axioms for an un-
certainty measure [10]. Setting a uniform prior (i.e., q(x) =
const.) reduces to the well-known Shannon entropy and mini-
mizing the cross entropy in this case is equivalent to maximiz-
ing the Shannon entropy.

According to Jaynes, a system would maximize the num-
ber of microscopic realizations compatible with a certain
macroscopic state, linking the two scales via constraints. For
instance, working in the canonical ensemble will lead to a
constraint on the average energy 〈E〉

Cequ = −
∫

dx p(x) ln

[
p(x)

q(x)

]
− ζ

(∫
dx p(x) − 1

)

−β

(∫
dx p(x)E (x) − 〈E〉

)
, (2)

where ζ and β are Lagrangian multipliers, controlling the
normalization of probabilities and the fixed average energy.
Minimization of Cequ with respect to p(x) yields

p(x) = q(x)

Z̃ (β )
exp [−βE (x)], (3)

where the partition function Z̃ (β ) = ∫
dx q(x) exp [−βE (x)]

becomes a normalization constant and the Lagrange multiplier
β is identified with the inverse temperature, β−1 = kBT .
This approach naturally lends itself to reweighting: Given
a reference distribution q(x) sampled at inverse temperature
β ′, microscopic information at a third inverse temperature
β ′′ = β + β ′ is inferred through the calculation of p(x). This
reweighting becomes exact under full knowledge of the den-
sity of states function �(x) = q(x) exp [β ′E (x)].

2470-0045/2019/100(6)/060103(6) 060103-1 ©2019 American Physical Society

https://orcid.org/0000-0003-4105-8906
https://orcid.org/0000-0001-5923-2867
https://orcid.org/0000-0003-1842-9369
https://orcid.org/0000-0001-9945-1271
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.100.060103&domain=pdf&date_stamp=2019-12-19
https://doi.org/10.1103/PhysRevE.100.060103


BAUSE, WITTENSTEIN, KREMER, AND BEREAU PHYSICAL REVIEW E 100, 060103(R) (2019)

The maximum entropy formalism has been general-
ized to the study of dynamical systems by working with
microtrajectories—an approach called maximum caliber [11].
It was shown to recover known off-equilibrium relations [12]
and predict dynamical pathways in NESSs correctly when
supplied with appropriate constraints [13]. Conceptually, the
approach follows the same scheme as the previous derivation
of equilibrium reweighting: The most likely microtrajecto-
ries maximize the path entropy function subject to physical
constraints.

The following discusses a rich and relevant subset
of nonequilibrium processes: nonequilibrium steady states.
NESS correspond to the long-time limit under constant driv-
ing by an external reservoir [14]. As such, time symmetry is
broken, but the fluxes within the system are time independent
and so are the distributions of microtrajectories.

Compared to equilibrium reweighting that focuses on the
sampling of microstates, dynamical reweighting of NESS
considers microtrajectories—collections of microstates—
which become computationally intractable for all but the
smallest of systems. To complicate things further, the length of
time of a microtrajectory is a priori unknown. To resolve these
issues, we map all trajectories to a first-order Markov process.
This coarse graining of microtrajectories leaves us with the
easier task of sampling transition probabilities and subse-
quently constructing microtrajectories out of the combination
of individual microtransitions. Such an approach facilitates
the sampling of microtrajectories.

Markov state models (MSM) discretize configurational
space into so-called microstates (i.e., collection of micro-
scopic states) as well as time in terms of steps of constant
length τ (i.e., the lag time), thereby mapping trajectories to
a discrete-time Markov chain [15]. All observed transitions
are collected to infer a transition probability matrix pi j (τ ),
where i and j label microstates. An appropriate space and time
discretization helps fulfill the Markovian assumption [16].
Markov state models have proven powerful tools for reach-
ing timescales that are unattainable by brute-force computer
simulations [17].

Utilizing the Markovian assumption, the microtrajectories
of the abovementioned cross-entropy functional [Eq. (1)]
reduce to

C = −
∑
i, j

πi pi j ln
pi j

qi j
, (4)

where π corresponds to the stationary distribution [18]. In the
absence of constraints, the minimum of the cross entropy is its
prior qi j .

Previous work has shown how to constrain the system
according to microscopic and/or macroscopic constraints in
equilibrium: (i) the matching of simulation and experimental
data at equilibrium by enforcing detailed balance [19,20]; (ii)

inferring kinetic rates given variations in equilibrium popu-
lations [21]; or (iii) by using the stationary distribution and
macroscopic constraints [22]. Such macroscopic constraints
are typically process dependent and are not always known.
Turning to NESS can lead to more severe consequences:
Macroscopic constraints displaying symmetry often impose
space inversion and time reversal, resulting in nondissipative
ensembles [23]. Instead, the modeling of dissipative NESS
systems requires constraints that are antisymmetric or with-
out symmetry [13]. Still, macroscopic constraints alone are
unable to describe the dynamics correctly [24]: A system
can be driven globally or only at the boundaries and can
globally dissipate the same amount of heat while showing
different dynamics. In this Rapid Communication, we propose
to constrain the dynamics of a NESS to antisymmetric and
microscopic balance constraints. We account for these effects
by drawing antisymmetric microscopic balance constraints
from microscopic reversibility [25,26]

P[�(+t )| f (+t )]

P[�̄(−t )| f̄ (−t )]
= exp (−βQ|�(+t )| f (+t )]), (5)

where P[�(+t )| f (+t )] denotes the probability of observing
the time-forward trajectory x(+t ) under the external driving
force f (+t ), P[�̄(−t )| f̄ (−t )] points at the time-reversed
trajectory, while Q[�(+t )| f (+t )] refers to the amount of
heat exchanged between the system and the reservoir along
a given trajectory and acting forces. Critically, this links
the probability of a forward trajectory with its time-reversed
counterpart. In the case of equilibrium dynamics, the relation
becomes path independent and simplifies to detailed balance
[27]. For a more general expression, we integrate Eq. (5) over
the complete set of initial states i, target states j, as well as the
set of all trajectories connecting them, to obtain the coarser
expression [24],

〈�Si j〉 = ln
pi j

p ji
, (6)

where �Si j is called local entropy production, describing
the amount of work an external reservoir has to perform on
the system to transition between two states. This quantity
naturally generalizes detailed balance [28] and will be used
as a microscopic constraint on the caliber.

Furthermore, we consider a set of global constraints: The
conservation of probability flow through so-called global bal-
ance,

∑
i π j p ji = ∑

i πi pi j , allowing for global fluxes in the
system. Normalization considerations imply

∑
j pi j = 1 and∑

i πi = 1. Since all transition probabilities in NESSs are time
independent, the existence of a steady-state distribution π is
guaranteed [29,30].

Having defined all constraints, the caliber functional be-
comes

Cdyn = −
∑
i, j

πi pi j ln
pi j

qi j︸ ︷︷ ︸
Caliber

+
∑

i

μi

⎛
⎝∑

j

pi j − 1

⎞
⎠ + ζ

∑
i

(πi − 1)

︸ ︷︷ ︸
Normalization

+
∑

j

ν j

(∑
i

πi pi j − π j

)
︸ ︷︷ ︸

Global Balance

+
i< j∑
i j

πiαi j

(
ln

(
pi j

p ji

)
− �Si j

)
︸ ︷︷ ︸

Local Balance

,

(7)
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where μi, ζ , ν j , and αi j are Lagrange multipliers. Equation
(7) modifies the equilibrium-reweighting caliber [Eq. (2)] in
several ways: (i) The entropy expression is discretized and
replaced by the path entropy; (ii) transition probabilities are
normalized; (iii) a global-balance condition ensures a steady
state; and (iv) local entropy production is introduced as a
NESS extension to detailed balance. The solution is obtained
by minimizing with respect to the set of transition probabil-
ities and the stationary distribution. Assuming that �Si j is
small [24], we obtain

pi j = qi j exp

(
ci + c j

2
+ �Si j − �Sq

i j

2
+ ζ

)
, (8)

which only depends on �Sq
i j = ln (qi j/q ji ) from the refer-

ence simulation, �Si j , and the unknown constants ci [24].
We note that �Si j corresponds to the local entropy produc-
tion in the target state. Analogous to histogram reweight-
ing, the unknown coefficients ci can be found via nonlinear
relationships [31]

1 =
∑

j

pi j =
∑

j

√
qi jq ji exp

(
ci + c j + 2ζ

2
+ �Si j

2

)
.

(9)
The set of equations is convex [24] and is solved by
self-iteration from a randomly selected starting point until
convergence.

An alternative formalism by means of the Girsanov theo-
rem was introduced, which relies on single-trajectory proba-
bility reweighting and the Boltzmann distribution to estimate
the change between equilibrium state points [32]. In another
work, equilibrium transition rates are reweighted by a maxi-
mum caliber formalism enforcing the Boltzmann distribution
[21]. In contrast, the present method reweights MSMs in
NESS without prior knowledge of the steady-state distribu-
tion, but rather through the entropy production.

Application. The reweighting procedure is tested on a
single particle driven by a nonconservative force f along a
periodic one-dimensional potential U (x) (see Fig. 1). The
nonconservative force may emerge from magnetic fields, me-
chanical flows, or mechanical dragging. An analogous setup
was experimentally studied, using silica spheres on a tilted
surface [33]. The overdamped equation of motion for the
particle is given by

0 = −∂U (x)

∂x
− γ ẋ +

√
2γ kBT R(t ) + f , (10)

where T is the temperature of a canonical reservoir coupled
to the system by friction constant γ . R(t ) is a δ-correlated
Gaussian process with mean 0. Both the temperature and the
potential energy are fixed, while the reweighting is performed
over different ranges of nonconservative forces. We report
results in reduced units, where the box size is set to L, the
mass of the particle is set to M, and energy is measured
in ε. The temperature is chosen to be T = 1 ε/kB, and the
energy barriers shown in Fig. 1 are 2 kBT − 4 kBT . Following
our Markovian approximation, the model is separated in 60
microstates of equal size and a lagtime τ = 2 × 10−3T , where
T = L

√
M/ε is the unit of time. The integration time step

FIG. 1. (a) Periodic potential energy surface experienced by the
particle. The two arrows show possible paths from metastable state
A to B. (b) Stationary distributions for the equilibrium reference sys-
tem, feq = 0 (red, symmetric distribution), and under the influence
of a nonconservative driving force, fneq = 9ε/L (blue, asymmetric
distribution). The points show the probability distributions obtained
by sampling in one of the two states and reweighting into the other,
fneq → feq and feq → fneq.

was set to δt = 10−5 T . The nonconservative force is varied
between 0 and 9ε/L.

For the given model, we want to derive an analytic ex-
pression for the local entropy productions �Si j , required by
the reweighting procedure [Eq. (8)]. Given an underlying
force field F = −∇U (x) + f , the local entropy production of
a single continuous trajectory �(t ) is given by

�S[�(t )] =
∫

dt
F · �̇

T
, (11)

where the quantity is integrated over time, �̇ is the velocity,
and T is the temperature [34]. Assuming a constant noncon-
servative force f and making use of a numerically discretized
trajectory, �(t ) ≈ {xk}, we approximate �S between starting
and target points xi and x j , respectively,

�Si j ({xk}) ≈ U (xi ) − U (x j ) + ∑
k (xk+1 − xk ) · f

kBT
. (12)

Because the entropy production of forward and backward
steps directly cancel, the quantity is unaffected by path varia-
tions in one dimension. Still, the periodic boundary conditions
permit two different results between i and j, as indicated in
Fig. 1, the shorter and longer paths (green and orange, respec-
tively), such that Eq. (12) has two solutions. By choosing the
lag time of the MSM to be reasonably short, we effectively
scale down the longer paths to a negligible weight. As such,
our expression for the local entropy production becomes

�Si j ≈ U (xi ) − U (x j ) + (x j − xi ) f

kBT
. (13)
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FIG. 2. First passage time probabilities between metastable
states B and C, expressed as a function of time (in units of the lag
time τ ). The lines show the simulation data at f = 0 and f = 9 ε/L.
The points show the results under reweighting from each other for
processes (a) B → C and (b) C → B.

The expression depends on temperature—a quantity that may
change in off-equilibrium systems due to driving of an off-
equilibrium reservoir [35]. Here we find excellent agreement
between the expression in Eq. (13) using the equilibrium-
reservoir temperature and Eq. (6) when directly sampled
from an MSM: a weighted average error of 1%, which does
not affect the quality of the reweighting upon insertion in
Eq. (8) [24]. We conclude that the derived equation holds,
effectively implying weak coupling between the driving force
and temperature. Such a coupling might become relevant for
more complex systems.

To assess our reweighting procedure, we monitor both
static and kinetic properties: (i) the stationary distribution
of the particle position and (ii) the first-passage-time distri-
butions between metastable states. The metastable states are
labeled A, B, and C (Fig. 1).

Figure 1 shows the stationary distributions of the particle
position both in equilibrium and under the influence of a driv-
ing force. We reweight the simulation data from equilibrium to
the NESS and vice versa, demonstrating that the correct static
distributions are recovered when reweighting both in and out
of equilibrium—a result that holds for any pair of state points
as described further below.

Turning to dynamical properties, Fig. 2 reports the first-
passage-time distributions between two metastable states in
equilibrium and under a strong global driving force ( f =
9ε/L). The change in the broadness of the distributions
[Fig. 2(a)] and the shift in the peak position [Fig. 2(b)] suggest
that the set of dominant trajectories change significantly under
driving. This example shows that the external driving force
changes both the timescale and corresponding processes of

FIG. 3. Moments of the first-passage-time distribution between
three metastable states under external driving: (a) mean, (b) variance,
and (c) skewness. The metastable states are defined in Fig. 1. The
points correspond to reference simulations at various states, while
the lines show the quantity under continuous reweighting, always
choosing the equilibrium system ( f = 0) as reference.

a transition. Here again, the reweighting procedure recovers
the first-passage-time distributions in either directions: from
equilibrium to NESS and vice versa.

This analysis is extended to other state points by comparing
the mean, variance, and skewness of the first-passage-time
distributions in Fig. 3. The equilibrium system is chosen as
a reference and is continuously reweighted to off-equilibrium
driven systems, even though any other reference state point
could be selected. Additionally, we validate our reweight-
ing procedure using two other systems: (i) an equilibrium
system obtained by varying the potential [24] and (ii) an
off-equilibrium system motivated by a four-state laser model
using a locally constrained nonconservative force, as a way to
illustrate population inversion [24,36].

The present reference potential energy surface in Fig. 1
[24] is such that several pairs of processes show the same
dynamics at equilibrium: the transition A → B and C → B,
but also B → A and B → C as well as A → C and C → A.

Upon driving the system off equilibrium, these symmetries
break—a phenomenon captured by the reweighting proce-
dure. Increasing f strongly affects the mean-first-passage
times (Fig. 3), thereby altering the nature of the slowest
processes. We first analyze the metastable transitions situated
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along the direction of f . While the processes A → B and
B → C speed up with increasing driving, C → A shows a
nonmonotonic behavior: It first slows down up to a driving
force f ≈ 4 ε/L before speeding up. The variance reveals that
a broader selection of trajectories becomes dominant before
the threshold. Turning to metastable transitions that oppose
to the driving force, only the process C → B slows down
with driving, while A → C constantly speeds up, despite
unfavorable driving. Process B → A shows nonmonotonic
behavior, similar to C → A. This counterintuitive behavior
can be explained by the growing number of long transitions
from B to A via C.

Reweighting implies the existence of an invariant quantity,
irrespective of the state point or driving force. Here we can
isolate the following invariant Ii j = √

qi jq ji exp ( ci+c j

4 + ζ )
[24]. The invariant is symmetric under time-space inversion
and thus preserves nondissipative information about the sys-
tem [36]. We can thereby rewrite the abovementioned solution
of the caliber [Eq. (8)] as

pi j = Ii j

Zi j
exp

(
�Si j

2

)
, (14)

using the normalization Zi j = exp ( −ci−c j

4 ). Note that Zi j

depends on both Ii j and �Si j via the relation 1 =∑
j

Ii j

Zi j
exp ( �Si j

2 ) and accounts for the interconnection of the
states. We draw similarities with equilibrium reweighting in
Eq. (3): (i) The probability is proportional to the product of
an invariant and an exponential function (the density of states
and the Boltzmann factor in equilibrium); (ii) the partition
function depends on the control variable (T or �Si j); and
(iii) the reweighting only depends on relative quantities, only
requiring knowledge of temperature difference or changes in
the local entropy production. Both procedures show striking
similarities in their derivation, functional form, and properties.

The present reweighting method is a generalization of
existing likelihood and maximum caliber methods that have
been applied to systems in and out of equilibrium with varying

microscopic and macroscopic constraints. The microscopic
expression for the local entropy production acts as a local
constraint that generalizes detailed balance for NESS. We
show that this choice governs static and dynamic properties
of a NESS and enables us to reproduce these properties over a
wide range of driving. The analytic expression for the relative
entropy production allows us to continuously tune the external
driving force and quantitatively reweight the stationary distri-
bution and kinetic properties. Critically, we reduce the combi-
natorial explosion of pathways by connecting our approach to
Markov state models, thereby constructing microtrajectories
from individual microtransitions.

The maximum caliber formalism in combination with lo-
cal entropy productions offer an analytic relation between
NESSs. Dynamical data of a system can be gathered in a
driving-invariant quantity and detailed kinetic information at
any thermodynamic state point can be recovered. This idea
allows us to populate rare transition paths [37]: A driving
force may push the system to discover new paths and the
reweighting procedure recovers detailed dynamical informa-
tion of the sampled path at any another thermodynamic state
point. In case equilibrium dynamics are of interest, the entropy
productions only depend on the free energy. Low-weight
trajectories can thus be calculated with high accuracy and
no further information. By tuning the relative local entropy
productions of the system, the reweighting allows us to study
dynamical properties and pathways in NESS without further
simulation.
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