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Oscillatory noncontinuum gas flows at the micro and nanoscales are characterized by two dimensionless
groups: a dimensionless molecular length scale, the Knudsen number Kn, and a dimensionless frequency θ ,
relating the oscillatory frequency to the molecular collision frequency. In a recent study [Shi et al., Phys.
Rev. E 89, 033305 (2014)], the accuracy of the lattice Boltzmann (LB) method for simulating these flows
at moderate-to-large Kn and θ was examined. In these cases, the LB method exhibits spurious numerical
oscillations that cannot be removed through the use of discrete particle velocities drawn from higher-order
Gauss-Hermite quadrature. Here, we identify the origin of these spurious effects and formulate a method to
minimize their presence. This proposed method splits the linearized Boltzmann Bhatnagar-Gross-Krook (BGK)
equation into two equations: (1) a homogeneous “gain-free equation” that can be solved directly, containing terms
responsible for the spurious oscillations; and (2) an inhomogeneous “remainder equation” with homogeneous
boundary conditions (i.e., stationary boundaries) that is solved using the conventional LB algorithm. This
proposed “splitting method” is validated using published high-accuracy numerical solutions to the linearized
Boltzmann BGK equation where excellent agreement is observed.
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I. INTRODUCTION

The lattice Boltzmann (LB) method has its origin in the
lattice gas cellular automata [1], where it was devised to
remove statistical noise caused by Boolean operations. Over
the past three decades, the LB method has been developed
significantly [2,3], including introduction of the Bhatnagar-
Gross-Krook (BGK) collision operator [4], multiphase capa-
bility allowing for interphase interactions [5–7], decoupled
particle velocities from temporal-spatial discretization [8–10],
and multi-relaxation-time collision models [11]. Introduction
of the BGK collision operator led to the prevalent LB BGK
method [12,13], which was later shown to be a numerical
scheme for solving the Boltzmann BGK equation [14,15]. The
LB method is now applied widely to simulate fluid transport
of scientific and engineering relevance [16–19].

The above-mentioned link between the LB BGK model
and the Boltzmann BGK equation has spurred interest in using
the LB BGK method to simulate noncontinuum gas flows
that naturally occur at the micro and nanoscales [20–31]. It is
known that these flows depart from continuum Navier-Stokes
descriptions [32], with the deviations captured by solutions
to the Boltzmann BGK equation [33]. Even so, existing LB
BGK models exhibit poor accuracy for these noncontinuum
flows [34]. This is in contrast to their demonstrated success in
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simulating macroscopic (continuum) flows. One reason un-
derlying this issue is the widespread use of standard discrete
particle velocity sets that are formulated using Gauss-Hermite
(GH) quadrature for continuum (near-equilibrium) flows.
Noncontinuum flows at the micro and nanoscales strongly
deviate from equilibrium.

A number of modifications have been introduced to the LB
framework to address this issue. Early proposals include the
use of kinetic boundary conditions at solid walls [20] and
an effective mean free path to account for rarefied effects
near walls [21,22]. These approaches make use of the stan-
dard LB algorithm and particle velocity set, while achieving
improved accuracy in the low Knudsen number slip regime.
Later research focused on larger Knudsen numbers by mod-
ifying the discrete particle velocities. The velocity sets for
continuum flows have been increased using higher-order full-
space Gauss-Hermite (FGH) quadrature [23–25], half-space
Gauss-Hermite (HGH) quadrature [26–28], and other Gauss
quadrature rules [29]. These allow for enhanced numerical de-
scription of the distribution function over the particle velocity
space, improving the accuracy of moment evaluation.

Importantly, noncontinuum flows arise not only at finite
and large Knudsen numbers, Kn = λ/L, where λ is the gas
mean free path and L is the hydrodynamic characteristic
length scale, but also under highly unsteady conditions. Micro
and nanoelectromechanical systems often feature resonating
structures that oscillate at high frequencies, inherently gen-
erating such unsteady flows [35]. In these practical settings,
both spatial and temporal noncontinuum effects can arise.
Temporal effects are characterized by the frequency ratio
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θ = ωτ , where ω and τ are the oscillation frequency and
molecular relaxation time, respectively. A variety of numer-
ical approaches, including the direct simulation Monte Carlo
method and methods, based on the Boltzmann equation with
a range of collision operators and their linearized forms, have
been used to study noncontiuum oscillatory flows between
plates and inside cavities [36–41]. In the context of the LB
method, Shi et al. [42] investigated the numerical performance
of a hierarchy of FGH LB models using simulations of os-
cillatory Couette flows at different Kn and θ values. Strong
spurious oscillations in the velocity field were evident at large
θ , the origin of which remained unknown. Use of higher-order
FGH LB models did not alleviate these spurious features
which tended to overwhelm key flow characterisitics.

Here we explore this issue, identify its cause, and formulate
a method that minimizes these spurious oscillations. We find
that evaluation of the moments using the discrete particle
velocity set underlies these effects. At a high frequency, the
distribution function is strongly oscillatory which makes these
moment evaluations problematic. This issue is addressed by
splitting the linearized Boltzmann BGK equation into two
equations: (i) a gain-free equation [40], and (ii) a remainder
equation. We solve the gain-free equation directly using the
method of characteristics, circumventing the use of the LB
method, while the remainder equation is solved numerically
using FGH and HGH LB models. This approach is found
to drastically reduce the appearance of spurious oscillations.
Similar yet different splitting treatments have been used
previously in the kinetic theory of gases to deal with the
propagation of boundary-induced discontinuities [40,43–46].

The article is organized as follows: In Sec. II, we study the
linearized Boltzmann BGK equation for oscillatory Couette
flows. By analyzing the resulting distribution function in parti-
cle velocity space, we explain the origin of the aforementioned
spurious oscillations. We then describe the proposed splitting
method in Sec. III, where the resulting gain-free equation
is solved analytically for oscillatory Couette flows. An off-
lattice LB model is used to solve the remainder equation. In
Sec. IV, we present numerical results for oscillatory Couette
flows using the splitting method. These results are compared
to existing high-accuracy solutions to the linearized Boltz-
mann BGK equation. Concluding remarks are given in Sec. V.

II. LINEARIZED BOLTZMANN BGK EQUATION FOR
OSCILLATORY COUETTE FLOWS

We consider a flow generated in a gas confined between
two parallel solid plates that oscillate in their planes, i.e.,
oscillatory Couette flow. The distance between the plates is
L and they move in opposite directions at identical speeds ûw;
see Fig. 1.

This flow can be described in the frequency domain by the
“steady-state” solution of a virtual time-dependent linearized
Boltzmann BGK equation [47],

∂ ĥ

∂t ′ + c · ∂ ĥ

∂r
= − ĥ

τ ∗ + ĥeq

τ
, (1)

FIG. 1. Schematic of oscillatory Couette flow. The origin of the
fixed (inertial) coordinate system is at the center line of the bottom
plate. It is fixed in the laboratory frame.

where ĥ is the frequency-based distribution function that
defines the (linearized) perturbation to the true distribution
function of the gas [42,47]. The variables t ′, r, and c repre-
sent the virtual time, particle position, and particle velocity,
respectively. The relaxation time τ , originates from the BGK

model [4], and a complex-valued relaxation time arises, τ ∗ �=
τ/(1 + ωτ i). Here, ω is the (applied) oscillatory frequency
and i is the usual imaginary unit. The local equilibrium
perturbation ĥeq is

ĥeq = δρ̂

ρ0
+ c · û

RT0
+

(
c2

2RT0
− D

2

)
δT̂

T0
, (2)

where D is the dimensionality of physical space and R is the
gas constant. ρ0 and T0 represent the reference fluid density
and temperature at global equilibrium, respectively. In the
low Mach number (linear) limit, the density and temperature
perturbations in oscillatory Couette flows are zero, i.e., δρ̂ =
0 and δT̂ = 0 [42]; the flows are isothermal. The bulk fluid
velocity in Eq. (2) is

û =
∫

f eq
0

ρ0
ĥcdc, (3)

where f eq
0 is the global Maxwellian of the quiescent fluid at

density ρ0 and temperature T0. The Maxwell diffuse boundary
conditions are employed at the solid walls,

ĥ =
{

ĥeq,+
w = − cx ûw

RT0
, for cy > 0 at y = 0

ĥeq,−
w = cx ûw

RT0
, for cy < 0 at y = L

, (4)

where cx and cy are the components of c in the x and y di-
rections. The linearized Boltzmann BGK equation, Eq. (1), is
integrated along the characteristic line (c = dr/dt). Applying
the boundary conditions in Eq. (4), together with Eq. (2), then
gives

ĥ =
⎧⎨
⎩

ĥeq,+
w exp

(− aY
ζy

) +
√

π

2Kn·ζy

∫ Y
0 exp

[
a
ζy

(Y ′ − Y )
] · ĥeq(Y ′)dY ′, for ζy > 0

ĥeq,−
w exp

[ a(1−Y )
ζy

] −
√

π

2Kn·ζy

∫ 1
Y exp

[
a
ζy

(Y ′ − Y )
] · ĥeq(Y ′)dY ′, for ζy < 0

, (5)
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FIG. 2. The profiles of ĥosc(ζx �= 0, ζy > 0)/ĥeq,+
w at Y = 1/10 and θ = 5. The top row: Kn = 1/10; the bottom row: Kn = 1.

where a = √
π (1 + θ i)/(2Kn) and Kn = √

πRT0τ/(
√

2L).
The dimensionless spatial coordinates are (X,Y ) = (x, y)/L,
whereas the dimensionless particle velocities are (ζx, ζy) =
(cx, cy)/

√
2RT0.

A. Effect of discontinuity of the distribution function
in particle velocity space

Importantly, the discontinuity in ĥ about cy = 0 exists at
every point in the flow region [see Eq. (5)]; ζy is in the
denominator of each term. This discontinuity results from the
boundary condition in Eq. (4), and can be robustly handled
through the use of half-space quadrature, which integrates the
regions cy < 0 and cy > 0 separately. We therefore apply the
half-space LB model to solve Eq. (1) and simulate oscillatory
Couette flows at large θ . The use of half-space quadrature
still results in spurious oscillations similar to those observed
in previous LB modeling [42]; see results in Sec. IV A.
Therefore, the discontinuity in particle velocity space cannot
account for these spurious oscillations.

B. Oscillatory component of the distribution function

The first terms in Eq. (5) are complex-valued exponential
functions, which we refer to as ĥosc for convenience:

ĥosc =
{

ĥeq,+
w exp

(− aY
ζy

)
, ζy > 0

ĥeq,−
w exp

[ a(1−Y )
ζy

]
, ζy < 0

. (6)

Note that ĥosc is symmetric about (ζx, ζ y,Y ) = (0, 0, 1/2);
Y = 1/2 refers to the center of the channel. Importantly,
for flows at large θ , this exponential function is a highly

oscillatory function of ζy. Figure 2 gives results for
ĥosc(ζx �= 0, ζy > 0)/ĥeq,+

w at Y = 1/10, θ = 5, and Kn =
1/10, 1, respectively. These results show that both the real and
imaginary parts of ĥosc are highly oscillatory, especially in the
vicinity of ζy = 0. Moreover, the amplitude and wavelength
of ĥosc grow with increasing ζy, and ĥosc converges to ĥeq,+

w for
large ζy.

Equation (5) also contains integrals involving the equilib-
rium distribution function ĥeq. Since ĥeq is a linear combi-
nation of the moments of ĥ, these integral expressions are
expected to be less oscillatory than ĥosc.

Therefore, it appears plausible that the oscillatory compo-
nent ĥosc drives the spurious oscillations observed in previous
LB simulations [42]. Importantly, ĥosc, in Eq. (6), is the
solution to the linearized Boltzmann BGK equation, Eq. (1),
but with the gain term ĥeq omitted. We henceforth refer to this
modified equation as the gain-free equation. This will form a
key component of the proposed “splitting method,” which is
discussed in the next section.

III. THE SPLITTING METHOD

Equations (1) and (4) form an inhomogeneous linear sys-
tem, which can always be split into two linear systems, solved
independently, and then combined to obtain the required solu-
tion. We therefore split the original distribution function ĥ into
two components, i.e., ĥ = ĥ(1) + ĥ(2). The first distribution
function, ĥ(1), is chosen to satisfy the gain-free equation,

∂ ĥ(1)

∂t ′ + c · ∂ ĥ(1)

∂r
= − 1

τ ∗ ĥ(1), (7)
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subject to the boundary conditions,

ĥ(1) =
{

ĥeq,+
w , for cy > 0 at y = 0

ĥeq,−
w , for cy < 0 at y = L

. (8)

The remainder equation is the corresponding inhomoge-
neous equation with homogeneous boundary conditions, de-
fined by the remainder following subtraction of Eqs. (7) and
(8) from Eqs. (1) and (4), i.e.,

∂ ĥ(2)

∂t ′ + c · ∂ ĥ(2)

∂r
= − ĥ(2)

τ ∗ + ĥ(2),eq

τ
+ ĥ(1),eq

τ
(9)

where

ĥ(1),eq = c · û(1)

RT0
, ĥ(2),eq = c · û(2)

RT0
. (10)

û(1) and û(2) are the first-order moments of ĥ(1) and ĥ(2),
respectively. The inhomogeneous linear equation, Eq. (9),
is subject to homogeneous boundary conditions at the solid
walls,

ĥ(2)
w =

{
0, for cy > 0 at y = 0

0, for cy < 0 at y = L
. (11)

Equations (7) and (8) are solved directly (and analytically)
for ĥ(1) using the method of characteristics for oscillatory
Couette flows—a similar approach can be used for other
flow geometries (which may require numerical computation).
This is possible because Eq. (7) is not of integrodifferential
form—it is a simple differential equation—unlike the original
Boltzmann BGK equation, Eq. (1). Since ĥ(1) can be a highly
oscillatory function of particle velocity, c—as observed for
ĥosc above (it satisfies the same equation, as discussed)—
direct and accurate solution using the method of charac-
teristics facilitates accurate evaluation of its corresponding
moments; this will be explored below for oscillatory Couette
flows.

The remainder equation, Eq. (9), for ĥ(2) is driven by a
source (inhomogeneous) term that contains moments of ĥ(1).
These moments smooth any oscillatory behavior in ĥ(1). Thus,
ĥ(2) in the remainder equation is expected to be far less
oscillatory than ĥ(1). An LB method (e.g., D2Q36) is then
suitable to solve this remainder equation and evaluate the
corresponding moments of ĥ(2); the required moment, û(1) in
Eq. (10), is evaluated directly and hence accurately from the
solution to ĥ(1), as discussed above.

A. Gain-free solution for oscillatory Couette flows

As mentioned above, solution to Eqs. (7) and (8) is given
by Eq. (6), i.e., ĥ(1) = ĥosc, via the method of characteristics.
The corresponding fluid velocity is then determined exactly
by

û(1) =
∫

f eq
0

ρ0
ĥ(1)c dc =

(
ûw√
π

�(Y ), 0

)
, (12)

where

�(Y ) = A0[a(1 − Y )] − A0(aY ), (13)

FIG. 3. The profiles of ĥ(1)
6 , ĥ(1)

28 and the streamwise velocity û(1)

for oscillatory Couette flow at Kn = 1/10 and θ = 5. FD2Q36 LB
results (solid red line) [42]; analytical solution (open black circles)
to Eqs. (6) and (12). Black dashed lines in (e,f) are included to guide
the eye.

and A0(z) = ∫ ∞
0 exp(−x2 − z/x)dx is the zeroth-order

Abramowitz function [48].
The exact solutions in Eqs. (6) and (12) are used to examine

whether the conventional GH LB model can solve Eq. (7)
accurately and handle the highly oscillatory distribution func-
tion ĥ(1) and its moments. Figure 3 compares numerical
solutions of the gain-free equation using the D2Q36 model in
Ref. [42] (in terms of the LB discrete velocities c j) to the exact
analytical solution in Eq. (6), for Kn = 1/10 and θ = 5. For
clarity, we illustrate the exact analytical solution using black
open circles with a spatial resolution, �Y = 1/100.

Two representative distribution functions are shown for
c6(−b, b) and c28(c,−a), i.e., ĥ(1)

6 and ĥ(1)
28 , and the stream-

wise bulk velocity û(1) (the fluid velocity component in the
x direction) is also given. These results are obtained using
the full-space (FGH) D2Q36 model [42], denoted FD2Q36;
its discrete particle velocities are defined by Eq. (16) and
given in Table I. The distribution functions ĥ(1)

6 and ĥ(1)
28 from

the LB simulation (continuous red lines) are in excellent
agreement with the exact analytical solution in Eq. (6) (open
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TABLE I. Constants and velocity weights for FD2Q36 and HD2Q36 schemes.

a = 0.6167
√

RT0, w1−4 = 0.1671, w5−8 = 7.85 × 10−3,

FD2Q36 [42] b = 1.8892
√

RT0, w9−12 = 6.53 × 10−6, w13−20 = 3.62 × 10−2,

c = 3.3243
√

RT0. w21−28 = 1.04 × 10−3, w29−36 = 2.26 × 10−4.

a = 0.2695
√

RT0, w1−4 = 6.33 × 10−2, w5−8 = 5 × 10−2,

HD2Q36 [27] b = 1.1996
√

RT0, w9−12 = 6.09 × 10−4, w13−20 = 5.63 × 10−2

c = 2.5453
√

RT0. w21−28 = 6.21 × 10−3, w29−36 = 5.52 × 10−3.

circles). However, the streamwise velocity, û(1) (the first-order
moment of ĥ(1)), deviates significantly from the exact solution,
Eq. (12), and presents strong (spurious) oscillations. These
features are very similar to the spurious oscillations reported
in Ref. [42].

Figure 3 shows that conventional FGH LB models accu-
rately solve the gain-free equation, Eq. (7), even for strongly
noncontinuum flows at large θ , but have difficulty with the
subsequent moment evaluation, e.g., for û(1). This is because
the discrete particle velocity set of the LB method is selected
from FGH abscissae, and GH quadrature is known to perform
poorly when the integrand is a highly oscillatory function
of particle velocity. In Ref. [42], FGH LB models are used
to evaluate the moments of ĥ, which includes the highly
oscillatory function ĥ(1). This explains why these previously
reported results [42] exhibit spurious numerical oscillations
for flows at large θ .

B. Lattice Boltzmann method for the remainder equation

An LB model to solve ĥ(2) is constructed under the conven-
tional GH LB framework [42]. The discrete particle velocity
version of Eq. (9) is

∂ ĥ(2)
j

∂t ′ + c j · ∂ ĥ(2)
j

∂r
= − ĥ(2)

j

τ ∗ + ĥ(2),eq
j

τ
+ ĥ(1),eq

j

τ
, (14)

where ĥ(2)
j denotes ĥ(2) evaluated at a discrete velocity c j , and

the corresponding equilbrium functions are

ĥ(1),eq
j = c j · û(1)

RT0
, ĥ(2),eq

j = δρ̂ (2)

ρ0
+ c j · û(2)

RT0
. (15)

The source term, ĥ(1),eq
j in Eq. (14), does not include

its density perturbation δρ̂ (1); consistent with its continuous
form, ĥ(1),eq, in Eq. (10). However, δρ̂ (2) is included in ĥ(2),eq

j ,
see Eq. (15), because the LB model is derived in the low
Mach number limit. This feature is used to assess its ac-
curacy of oscillatory Couette flows by checking that δρ̂ (2)

vanishes.
In Eq. (14), both FD2Q36 and half-space D2Q36

(HD2Q36) schemes are used to specify c j ,

c j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(±a,±a), j = 1 − 4

(±b,±b), j = 5 − 8

(±c,±c), j = 9 − 12

(a, b)FS, j = 13 − 20

(a, c)FS, j = 21 − 28

(b, c)FS, j = 29 − 36

, (16)

where the subscript FS denotes full symmetry, and the in-
cluded constants and velocity weights of the two schemes are
summarized in Table I. The corresponding moments, δρ̂ (2) and
û(2), are computed using

δρ̂ (2) = ρ0

∑
j

w j ĥ
(2)
j , û(2) =

∑
j

w j ĥ
(2)
j c j . (17)

FD2Q36 and HD2Q36 discrete velocities do not stream
among the lattice nodes in one time step. This requires the
temporal and spatial discretizations to be decoupled from
the discrete particle velocities. We therefore apply a finite-
difference scheme [42] to discretize time and physical space
in Eq. (14). This leads to an off-lattice LB evolution equation,

ĝ(2)
j,n+1 + �t ′c j ·

(
∂ ĥ(2)

j,n

∂r

)
FD

= ĥ(2)
j,n + 1

2

(
 · ĥ(2),eq

j,n − ∗ · ĥ(2)
j,n

) +  · ĥ(1),eq
j,n , (18)

where n and �t ′ are the nth time layer and virtual time step,
respectively. The dimensionless collision frequencies are  =
�t ′/τ and ∗ = �t ′/τ ∗. In Eq. (18), a function ĝ(2)

j is defined
to remove numerical implicitness,

ĝ(2)
j =

(
1 + θ

2
i

)
ĥ(2)

j + 

2

(
ĥ(2)

j − ĥ(2),eq
j

)
. (19)

Using ĝ(2)
j , the moments, δρ̂ (2) and û(2), become

δρ̂ (2) = ρ0

1 + θ i/2

∑
j

w j ĝ
(2)
j ,

(20)

û(2) = 1

1 + θ i/2

∑
j

w j ĝ
(2)
j c j .

In addition, (∂ ĥ(2)
j,n/∂r)FD on the left side of Eq. (18)

represents the finite-difference approximation of the spatial
derivative. As in Ref. [42], we apply a second-order upwind
scheme to discretize spatial derivatives on the bulk nodes
while a hybrid scheme, consisting of first-order upwind and
central difference schemes, is used for nodes next to the solid
walls. Take the x component of (∂ ĥ(2)

j,n/∂r) as an example. The
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second-order upwind approximations are

∂ ĥ(2)
j,n

∂x

∣∣∣∣∣
x,y

≈ 3ĥ(2)
j,n(x, y) − 4ĥ(2)

j,n(x − �x, y) + ĥ(2)
j,n(x − 2�x, y)

2�x
, c jx > 0, (21)

∂ ĥ(2)
j,n

∂x

∣∣∣∣∣
x,y

≈ −3ĥ(2)
j,n(x, y) − 4ĥ(2)

j,n(x + �x, y) + ĥ(2)
j,n(x + 2�x, y)

2�x
, c jx < 0, (22)

and those based on the hybrid scheme are

∂ ĥ(2)
j,n

∂x

∣∣∣∣∣
x,y

≈ (1 − ε)ĥ(2)
j,n(x + �x, y) + 2εĥ(2)

j,n(x, y) − (1 + ε)ĥ(2)
j,n(x − �x, y)

2�x
, c jx > 0, (23)

∂ ĥ(2)
j,n

∂x

∣∣∣∣∣
x,y

≈ (1 + ε)ĥ(2)
j,n(x + �x, y) − 2εĥ(2)

j,n(x, y) − (1 − ε)ĥ(2)
j,n(x − �x, y)

2�x
, c jx < 0. (24)

�x is the lattice spacing in the x direction and ε is a numer-
ical factor to tune the weight of first-order upwind and central
difference methods in the hybrid scheme. In this article, we
specify ε = 0.05 to ensure the LB simulation is stable while
nearly second-order accurate [42]. In summary, an off-lattice
LB model is made up of Eqs. (15), (16), and (18)–(24). Its
discrete particle velocities are specified by Table I.

IV. RESULTS AND DISCUSSION

In this section, we examine the two possible reasons dis-
cussed in Sec. II for the spurious oscillations in previous LB
simulations [42]: (1) The discontinuity of ĥ about cy = 0 in
the flow region, and (2) the highly oscillatory variations in ĥ in
particle velocity space. We first use the HGH LB model (with-
out the proposed splitting method) to simulate oscillatory
Couette flows at large θ , and then apply the splitting method to
examine its efficacy in simulating these flows. High-accuracy
numerical results of the Boltzmann BGK equation are used as
benchmarks, whose spatial resolution is �Y = 1/40 [36].

A. Half-space LB simulation for oscillatory Couette flows

Unlike the results of Ref. [42] that implemented FGH LB
models, HGH LB models inherently account for the distri-
bution function discontinuity in particle velocity space. We
therefore initially assess whether HGH LB models are stable
and free of the spurious oscillations observed in the FGH
LB models [42]. The simulations of Ref. [42], which directly
solved the complete linearized Boltzmann equation, Eq. (1),
are repeated using the HD2Q36 model. The splitting method
is not used in this initial comparison.

Figure 4 shows the streamwise velocity û in one repre-
sentative oscillatory Couette flow at Kn = 1/10 and θ = 5.
Complex conjugates of the LB results obtained using both
FD2Q36 (the same as the results in Ref. [42]) and HD2Q36
models are given, facilitating direct comparison to high-
accuracy solutions of the linearized Boltzmann BGK equation
[36]. Similar to FD2Q36, spurious oscillations are observed
in results obtained using HD2Q36. Therefore, HGH quadra-
ture does not suppress the large-θ LB instablity reported in
Ref. [42], and we conclude that the discontinuty of ĥ in the
flow region does not drive the observed spurious oscillations.

Nonetheless, we note that numerical accuracy is slightly
improved through use of HGH quadrature. Oscillatory am-
plitudes and freqencies in the spurious oscillations decrease
relative to FGH LB simulations; compare results in the top and
bottom rows of Fig. 4. This is because HGH quadrature dis-
tributes more discrete particle velocities near the discontinuity
in the distribution function about ζy = 0, where the solution is
most oscillatory.

B. Splitting method for oscillatory Couette flows

Next, we apply the splitting method—using both FD2Q36
and HD2Q36 LB models—to calculate ĥ(2)

j and its moments.

FIG. 4. The streamwise velocities û of oscillatory Couette flow
at Kn = 1/10 and θ = 5. Solid line (red): the LB results (top row:
FD2Q36; bottom row: HD2Q36); circles (open and black): high-
accuracy Boltzmann BGK solution [36]. Black dashed lines are
included to guide the eye.
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FIG. 5. The streamwise velocities û of oscillatory Couette flow
at Kn = 1/10 and θ = 5. Solid line (red): the present results (top
row: FD2Q36; bottom row: HD2Q36); circles (open and black):
high-accuracy Boltzmann BGK solution [36]; dashed line (green):
the results in Ref. [42].

Results are presented for θ = 5, and two different Knud-
sen numbers, Kn = 1/10 and Kn = 1. The two-dimensional
computational domain is a square between the two solid
walls with a gap L = 1. Periodic boundary conditions are
employed at the two ends of this domain while the distribution
functions at the solid walls are specified using Eq. (11). We
choose the Mach number, M = 0.16, and reference density,
ρ0 = 1. All simulations are performed using 4 × 600 grids;
the corresponding lattice spacings in the x and y directions
are �x = L/4 and �y = L/600, respectively. Refined grids in
the x and y directions produce an insignificant enhancement
in numerical accuracy. We use a Courant-Friedricks-Lewey
number, CFL = cm�t ′/�y, where cm is the maximum particle
speed. It is chosen to be 0.2 to guarantee numerical stabil-
ity. Results using both FGH and HGH show that δρ (2) = 0
throughout the computational domain, as required.

The streamwise velocity û is given in Fig. 5 for Kn =
1/10 and θ = 5. These results are compared to high-accuracy
numerical solutions of the linearized Boltzmann BGK equa-
tion [36] and the results of Ref. [42]. Use of the splitting
method with FD2Q36 produces results that agree well with
the high-accuracy solutions of Ref. [36]; see Figs. 5(a) and
5(b). Strikingly, both the real and imaginary components of
the streamwise velocity no longer exhibit the strong spurious
oscillations of the conventional LB simulations reported in
Ref. [42]. This confirms the mechanism anticipated in Sec. II
that drives these spurious oscillations: GH quadrature is in-
capable of accurately computing moments of the distribution
function when it is highly oscillatory. The proposed splitting
method overcomes this impediment allowing for accurate
evaluation of moments and hence the streamwise velocity.

FIG. 6. The streamwise velocities û of oscillatory Couette flow
at Kn = 1 and θ = 5. Details as in Fig. 5.

Results obtained using the HD2Q36 LB model are produced
in Figs. 5(c) and 5(d). This HGH LB model achieves slightly
better accuracy in both the real and imaginary components,
relative to the corresponding FGH LB model. Namely, the
HGH velocity profiles exhibit suppressed fluctuations near the
solid walls.

Figure 6 shows corresponding results for Kn = 1 and
θ = 5. This strongly nonequilibrium flow generates enhanced
spurious oscillations relative to Kn = 1/10 and θ = 5 (see
Fig. 5), when the conventional LB method is used [42].
Again, the proposed splitting method dramatically improves
the situation and its results are in excellent agreement with
high-accuracy numerical solutions of the Boltzmann BGK
equation [36]; similar performance is achieved for higher Kn,
e.g., Kn = 5 and θ = 5 (results not shown). As in the results
of Fig. 5, use of HGH quadrature slightly improves accuracy,
and we expect this improvement can be further enhanced
through use of higher-order HGH quadrature. However, the
primary suppression of spurious oscillations is achieved by
the splitting method—use of HGH quadrature produces a
relatively minor improvement.

V. CONCLUSIONS

We have investigated the origin of spurious oscillations in
previous LB simulations of noncontinuum oscillatory Couette
flows [42]. These spurious effects arise at high frequency,
which this study shows are due to inaccuracy in moment
evaluations of the oscillatory distribution function. Increasing
the number of discrete particle velocities in the standard GH
LB framework has little effect on the moment evaluation.

Spurious oscillations are suppressed through development
and use of the proposed splitting method, where the origi-
nal linearized Boltzmann BGK equation is decomposed into
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two linear equations. The first is a homogeneous gain-free
equation subject to inhomogeneous boundary conditions—it
contains the dominant oscillatory component of the complete
distribution function. The gain-free equation is solved directly
using the method of characteristics, facilitating accurate eval-
uation. The remainder equation is inhomogeneous in form
with a set of homogeneous boundary conditions. This inho-
mogeneity involves moments of the distribution function that
suppresses oscillatory behavior. The remainder equation is
solved using the LB method, either using full-space or half-
space GH quadrature. Combination of these solutions, i.e., use
of the splitting method, was shown to suppress the previously
observed spurious oscillations in Ref. [42] and gave excellent
agreement with published high-accuracy numerical solution
of the Boltzmann BGK equation.

This splitting method circumvents the need to reformu-
late the current LB framework using large discrete velocity

sets and/or more complex finite-difference (finite-volume)
temporal-spatial schemes.
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