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Nested multiresolution hierarchical simulated annealing algorithm for porous media reconstruction
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Microstructure strongly influences flow and transport properties of porous media. Flow and transport
simulations within porous media, therefore, requires accurate three-dimensional (3D) models of the pore and
solid phase structure. To date, no imaging method can resolve all relevant heterogeneities from the nano- to
the centimeter scale within complex heterogeneous materials such as clay, reservoir rocks (e.g., travertine,
chalk, . . .), hardened cement paste, and concrete. To reconstruct these porous materials it is thus necessary
to merge information from different 2D and potentially 3D imaging methods. One porous media reconstruction
methodology that has been around for at least two decades is simulated annealing (SA). However, realizations
with SA typically suffer an artificially reduced long-range connectivity, while multiphase reconstructions are
not feasible in most cases because of a prohibitive computational burden. To solve these problems we propose
a hierarchical multiresolution and multiphase simulated annealing algorithm. To decrease the computational
cost of multiphase simulation, our algorithm sequentially simulates one phase after another, in a hierarchical
way, which enables handling multimodal distributions and topological relations. Building upon recent work, our
algorithm improves long-range connectivity and CPU efficiency by simulating larger particles using a coarser
resolution that is subsequently refined compared to standard SA; our proposed extension not only offers the
possibility to perform multiphase reconstruction but also allows us (i) to improve binary reconstruction quality,
as quantified, e.g., by multiple-point histograms by up to one order of magnitude and (ii) to achieve an overall
speed-up. The proposed algorithm is also shown to outperform the direct sampling multiple-point statistics
method for the generation of cement paste microstructure with respect to both generation time and quality.
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I. INTRODUCTION

To develop a detailed process understanding of flow and
transport in heterogeneous materials such as natural or engi-
neered porous media like clay and concrete, an in-depth de-
scription of the pore and solid phase structure is needed [1–4].
This requires a high resolution three-dimensional (3D) rep-
resentation of the materials. The first step in obtaining this
information in a nondestructive way is the use of a 3D imaging
technique [5]. The most popular 3D imaging method since
the 1980s is computed tomography (CT) [6,7]. While CT
and μCT provide information on the bigger structure of the
material in three dimensions, they cannot resolve structures
below half a μm. Hence, they have insufficient resolution to
image the pores and their throats in low permeable materials
such as clay [8]. To reveal these pore throats, it is necessary
to use higher resolution imaging techniques such as scanning
electron microscopy (SEM) [9], which has a resolution of a
few nm. Another advantage of SEM imaging is that it also
provides the capability to distinguish between different min-
eralogical phases through the use of EDS spectroscopy [9].
The shortcoming of SEM, however, is that it only offers 2D
information and thus does not allow for a direct calculation
of the 3D transport properties. This is especially problematic
for anisotropic materials. Recently focused ion beam scanning
electron microscopy (FIB-SEM) gained popularity for 3D
imaging at the nanoscale [10]. Nevertheless, FIB-SEM has a

small field of view with an edge length of a few μm, as well
as its high cost of acquiring the images in terms of equipment
and operating costs. In general, it can be stated that for clay
and cement paste none of the existing imaging methods on its
own can derive a sufficiently representative representation of
the material and that a combination of the different imaging
methods is required [8].

One popular alternative to obtain the 3D structure repre-
sentation of a porous medium is stochastic reconstruction.
Overall, it consists of processing the available information
and to generate stochastic structure realizations that are in
agreement with the derived medium characteristics. There are
basically two types of reconstruction methodologies [3].

The first type relies on process-based modeling. This
method attempts to mimic the formation of natural materials
in their original geological environment, or the process of
creating engineered materials. A commonly used process-
based algorithm to reconstruct sandstones was, for example,
introduced by Øren [11]. Methods for producing cement paste
structures are HYMOSTRUC [12] and CEMHYD3D [13].
This class of methods is good at modeling the temporal
evolution of the considered material during diagenesis or for
example hardening. Diagenesis is thereby defined as the en-
semble of material transformation processes after sedimenta-
tion and before final lithification. However, currently available
process-based methods only consider certain aspects and have
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difficulties for describing the material structure accurately
even in terms of plain visual inspection. An approach which
tries to tackle those issues is the phase field method as
described by Ankit et al. and Prajapati et al. [14,15].

The second type of reconstruction methodologies takes a
more data-driven approach, and makes use of statistics [3].
Those statistics are mainly derived from segmented images
obtained at various resolutions. This reconstruction method-
ology itself can be further subdivided into two subclasses.

The first subclass uses two-point statistics information such
as the autocorrelation or probability [2], lineal path [16], and
cluster functions [2] (see Sec. II A for more details). The most
frequently used two-point statistics reconstruction methodol-
ogy is simulated annealing (SA) [4,17–19]. As opposed to
multiple point statistics (MPS) based approaches (see next
paragraph) that can be quite complex and may require a lot of
hyperparameter tuning, the simplicity of SA is conceptually
appealing. Yet SA classically suffers from a large computa-
tional demand, which is caused by the pixel or voxel switching
process (see Sec. II B 1 for details). This problem becomes
more prominent when more than two phases are considered.
It is therefore often not possible to do multiphase recon-
structions with SA. Furthermore, standard SA also typically
shows a decreased long-range connectivity [20]. To reduce
computational burden and to improve long-range connectivity
Pant et al. [20] recently proposed a multigrid approach. The
underlying idea is to first generate a coarse representation
and to refine the grid resolution afterward. Doing so, the
larger clasts are generated faster and hence fewer iterations
are needed. More details about the approach can be found in
Sec. II B.

The second subclass relies on MPS simulations. MPS
techniques were introduced at the beginning of the 1990s [21]
and the field has been flourishing ever since. Nowadays, some
widely used MPS algorithms are the single normal equation
simulation algorithm (SNESIM) [22], the direct sampling
method (DS) [23], and the cross-correlation simulation (CC-
SIM) [24]. In addition, MPS simulations using deep genera-
tive models have recently been proposed [25–29].

We propose a SA reconstruction algorithm, which per-
forms nested, multiresolution, hierarchical reconstruction.
The computational efficiency of our approach makes it pos-
sible to perform multiphase simulations. Besides decreasing
computation time compared to standard SA, the proposed ap-
proach improves long-range connectivity of the realizations.
Our algorithm extends the multigrid hierarchical simulated
annealing approach by Pant et al. [20] to the multiphase case.
We use the term multiresolution instead of multigrid because
multigrid has a different meaning in the MPS field. In the MPS
framework, multigrid means that a given realization is gen-
erated using a number n of increasingly finer grids, whereas
the spatial distribution of the pixel remains constant. Each of
the i = 1, . . . , n grids thus features 2i − 1 pixels in the final
simulation grid [22]. In the approach by Pant et al. [20] each
pixel of a coarser grid is replaced by 2 × 2 pixels on the
refined grid, hence we find the term “multiresolution” more
appropriate.

The remainder of this paper is structured as follows: In
Sec. II A, we describe the structural descriptors that are used
to judge the reconstruction quality throughout the SA process,

and the other descriptors used to validate our methodology.
Section II B details the functioning of our proposed algorithm
before its performance is compared against that of both stan-
dard SA and the DS code in Sec. III. This comparison includes
two case studies involving hardened cement paste and natural
clay together with 2D and 2D–3D reconstructions. In Sec. IV,
we discuss the advantages and drawbacks of our approach
before concluding with a summary of our most important
findings in Sec. V.

II. METHODS

This section details all the building blocks of our approach.

A. Structural descriptors

To define the different descriptors, we follow the notation
of [2], and use the characteristic function I j

r :

I j
r =

{
1, if r εj
0, otherwise. (1)

The first structural descriptor used within our SA algorithm is
the two-point probability function S j

2(r1, r2), short S2, which
gives the probability that two pixels at positions r1 and r2

belong to the same phase. S j
2(r1, r2) is defined as

S j
2(r1, r2) = 〈I jr1I jr2〉. (2)

The second descriptor considered by our SA algorithm is
the lineal-path function, L j

2(r1, r2), in short, L2. This function
calculates the probability to find a line segment spanning from
r1 to r2 that lies entirely in phase j [2].

Note that to perform a reconstruction, our SA algorithm
solely uses S2 and L2.

To assess reconstruction quality, we use the two-point clus-
ter function C j

2 (r1, r2), in short, C2. C2 computes the probabil-
ity to find two pixels at positions r1 and r2 that belong to the
same cluster j [2]. In this context, a cluster is defined as the en-
semble of pixels which belong to the same phase and are con-
nected to each other. Note that in practice, two-point structural
descriptors such as S2, L2, and C2 are computed for each phase
along spatial directions: typically along the x and y axes, and
the main diagonals dxy and dyx for the 2D case, together with
the z axes and main diagonals dxz, dzx, dyz, and dzy for the 3D
case. Furthermore, S2, L2, and C2 are evaluated in a function
of the distance between pairs of pixels (cf. classic two-point
variogram-based geostatistics [31]). For instance, for the two-
point probability function along the x direction one calculates
S j

2,x(h) where the h (“lag”) vector contains the i = 1, . . . , nx

possible number of pixels separating two points along the x
direction of the considered 2D (or 3D) image, and S j

2,x(hi ) is

the average over all the S j
2,x (ri

1, ri
2) values belonging to hi.

The three probability curves are shown for each phase of
the the hardened cement paste image in Figs. 1(b)–1(e).

For the the quality assessment, we used three additional
reconstruction quality criteria. The first one is a multiple-
point histogram (MPH) [32] using a seven-point template
(Fig. 2). To calculate the MPH, the frequency of all possible
pattern combinations within the selected seven-point tem-
plate is determined. The second is the particle or pore area
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FIG. 1. Training image of cement paste from Phung et al. [30] with the probability curves of the different cases. The length of the TI is
192 × 256 pixels.

distribution function (PPA), calculated by counting the num-
ber of pixels within a single component. The third is the
perimeter distribution function (P), calculated by counting the
number of edges on the outer surface of a particle.

Because SA tries to optimize S2 and L2, to such a degree
that they cannot be distinguished anymore from the training
image (TI), the Euclidian distance is used to compare the
different structural descriptor functions between the TI and the
produced reconstruction. PPA and P require specific attention
owing to their logarithmic behavior and the need to work
with classes rather than with continuous values. The derived
log-transformed continuous PPA and P values were therefore
sorted into deciles from which the individual mean values
were calculated. To account for the low probability events of
observing either a very small or a very large particle or pore,
the first and the last decile were not taken into account for the
PPA and P calculations.

For the assessment of reconstruction quality for Boom clay
in Sec. III B, we use an additional descriptor called the mean
relative histogram difference (HIS). The descriptor calculates
per subphase the absolute difference in the frequency for this
subphase between a given realization and the TI normalized

FIG. 2. Template used for the multiple point histogram. The
cross, always marks the central cell element, which is put on top of
each pixel in the structure that is analyzed, for the MPH calculation.

by the frequency of this phase in the TI. In this context a sub-
phase is defined as a small subpart of the phase; more details
are found in Sec. II B 4. This descriptor is only used for Boom
Clay (see Sec. III B), as we resegmented the realizations after
the simulation. Hence, only for this material, the HIS misfit
will not be zero for SA.

B. Reconstruction methodology

This section is subdivided into five different parts. The first
part describes the basic principles of SA for the statistical
reconstruction of a binary image using a single resolution.
In the second part, the hierarchical approach is detailed. The
third part details the multiresolution approach and is followed
by a part about the nested approach of the algorithm. The final
part details the full principle of the proposed algorithm.

1. Simulated annealing (SA)

The basic SA reconstruction scheme introduced by Yeong
and Torquato [17] is given in Algorithm 1. The approach uses
a simulated annealing process to minimize the energy E of
a system. In the context of porous media reconstruction, E
encodes the deviations of the generated image from the TI in
one or more structural descriptor values. For a given two-point
descriptor calculated for phase j along spatial direction s and
vector distances, h, D j

2(h), E is typically expressed as a sum
of squared residuals (SSRs),

E =
ns∑

i=1

[
D j,T I

2,s (hi ) − D j,R
2,s (hi )

]2
. (3)

In this formula ns is the considered maximum number of
pixels along a spatial direction s (e.g., x, y, z, dxy, dxz, or
dyz), the i = 1, . . . , ns hi values are the considered distances
along s, TI signifies the training image and R denotes the
considered realization generated by the SA.
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Algorithm 1. Standard simulated annealing.

1: procedure SGnew = SA(TI, SGold , λ, Nite, Nsto, Ethr)
� SGnew ≡ Final representation of simulation grid
� TI ≡ Training image
� SGold ≡ Previous representation of simulation grid
� Nite ≡ Max number of iterations
� Nsto ≡ Max number of consecutively denied pixel swaps
� Ethr ≡ Energy threshold
� λ ≡ Cooling tuning factor

2: if SGnew == empty then
3: Initialize SGnew

4: else
5: SGnew= SGold

6: end if
7: Calculate descriptors for TI
8: Calculate descriptors for SG
9: Calculate energy E of the system

10: Determine initial temperature T0

11: Set number of consecutive denied swaps Ncon to 0
12: for i in 1 to Nite do
13: Swap two pixels
14: Calculate energy E ′ of current state
15: Determine �E =E − E ′

16: if �E < 0 then
17: Set E to E ′

18: Set Ncon to 0
19: if E < Ethr then
20: end procedure
21: end if
22: else
23: Calculate Metropolis probability MP

24: if MP > random number between 0 and 1 then
25: Set E to E ′

26: Set Ncon to 0
27: else
28: Reswap the pixels
29: Ncon = Ncon + 1
30: if Ncon == Nsto then
31: end procedure
32: end if
33: end if
34: end if
35: end for
36: end procedure

For the 2D case, our algorithm calculates E for four
different spatial directions: x, y, dxy, and dyx. For the 3D
case, nine spatial directions are considered: x, y, z, dxy, dyx,

dxz, dzx, dzy, and dyz. While for all directions an individual
E is calculated, eventually only the total sum is optimized and
analyzed during the quality assessment.

In principle, any structural descriptor or combination of
descriptors can be used to compute E . Overall, the more de-
scriptors considered to define E , the larger the computational
demand. Although our proposed algorithm is capable of using
any combination of the descriptors described in Sec. II A,
as written earlier we only used herein a combination of S2

and L2. We decided to use the S2 − L2 combination for the
following reasons: First, the S2 − L2 set is commonly used
in literature [17–19]. Second, evaluation of the S2 and L2

incurs a smaller computational cost than that of MPH, PPA or
P. Restricting the calculations to the S2 − L2 set is therefore
CPU efficient. Third, prior extensive testing revealed that the
incorporation of additional descriptors does not significantly
improve the reconstruction quality for the considered case
studies (not shown herein). Last, using the S2 − L2 set leaves
us with C2, MPH, PPA, and P for quantitative validation of
our approach, in addition to visual inspection.

The SA reconstruction process starts with a random struc-
ture that honors the different phase fractions found in the TI.
After the energy E of this 2D or 3D field is determined, new
fields (or states) are sequentially proposed by swapping the
values of two randomly chosen pixels belonging to different
phases. After each swap, the energy E ′ of the resulting state
is calculated, which leads to the energy difference �E =
E ′ − E between the current and proposed state. The new state
is then accepted with the Metropolis probability p(�E ),

p(�E )

{
1, if �E � 0

exp
(−�E

T

)
if �E > 0

, (4)

where T represents the temperature of the system. The swap-
ping process begins with a starting T0 determined by the al-
gorithm of Ben-Ameur [33]. T0 is tuned such that the average
acceptance rate of swaps that result in � E > 0 is 0.5 during
the first iteration. Next, T is decreased throughout swapping
according to the following cooling scheme:

T = T0λ
itt , (5)

where λ is a tuning factor, between 0 and 1, and itt is the num-
ber of iterations. This temperature cooling helps the process to
transition from a more exploratory phase to pure optimization,
both of which contribute to an optimal reconstruction for
a given amount of iterations. The swapping continues until
one of the following three stopping criteria is fulfilled: (i) a
predefined number of iterations (Nite) has been reached; (ii) a
predefined number of consecutive rejected swaps (Nsto) has
been performed; (iii) E becomes smaller than a predefined
threshold (Ethr).

The computational cost incurred by SA depends on the
cost of computing �E per swap and the required number of
swaps. The number of swaps is controlled by the number of
pixels that are considered for a swap at each iteration (e.g.,
limitations to boarder pixels), and the grid dimension [34].
In this work, the cost associated with the evaluation of �E
and the performed number of swaps are reduced as follows: to
begin with, the structural descriptors are not fully recalculated
after each iteration. Instead, only the descriptors’ variations
caused by a given swap are computed. To decrease the number
of pixels considered in the swapping process, the approach
suggested by Karsanina et al. [19] for selecting the pair of
pixels to be swapped is used. This starts by choosing a random
location within a randomly chosen phase. From this location,
a direction (main axis or diagonals) along which two pixels
will be swapped is randomly selected. A random pair of grid
points that fulfills the following conditions is considered for
a swap: (i) the two grid elements must be located at the
interface between two or more phases; (ii) they must belong
to two different phases, and (iii) they cannot be direct neigh-
bors. Finally, our algorithm uses the multiresolution approach
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FIG. 3. Main principle of the hierarchical approach for simulated annealing. The multiphase TI (j) is generated by simulating one target
phase after another. To do so pixels from the current target phase and the remaining phase are swapped. Once one target phase is simulated the
pixels of the previously simulated phase are fixed and cannot be changed anymore and the simulation of the next target phase begins.

described in Sec. II B 3 to reduce the required number of
iterations.

2. Hierarchical simulated annealing (H-SA)

We propose to perform multiphase SA reconstruction using
a hierarchical approach, by simulating one phase after another.
The main principle of the approach is depicted in Fig. 3.
At the beginning of the simulation, the multiphase TI [see
Fig. 3(j)] is transformed into a binary image by assigning one
category to the phase that will be simulated first [colored red
in Fig. 3(a)] and the other category (which we call “remaining
phases,” colored white) to all the other phases. This TI is
then used to produce a binary realization as described in
Sec. II B 1. Once this binary realization has been generated,
the pixels associated with the first simulated phase, e.g., the
red-colored pixels in Fig. 3(c), are fixed. These pixels can
thus no longer be swapped. In the next step, the remaining

is split into two subgroups: the phase that will be simulated
next [colored dark blue in Fig. 3(e)] and the other remaining
pixels. The TI is now accordingly turned into a three-level
categorical image. To generate a realization that honors this
new TI, pixel values from the two subgroups [blue- and
white-colored pixels in Fig. 3(e)] are considered for swap-
ping. Afterward, the remaining phase is again split into two
subgroups, and the TI is updated accordingly. This process
continues until all phases but one present in the original TI
have been simulated. As the last phase equals the remaining
phases from the simulation of the last but one target phase, no
additional simulation is required in the final step [Figs. 3((i)
and 3(k)].

We suggest simulating the phases in decreasing order of
their PPA, with the matrix being simulated last. Doing so
ensures that the algorithm has enough space to reconstruct the
larger particles. Additionally, it also speeds up the computa-
tions.
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FIG. 4. Concept of the multiresolution approach to decrease the computational cost. Initially the TI is coarsened to a coarser scale
representation, while merging the information from a 2 × 2 patch by a single pixel. Once the reconstruction is initialized on the coarse
resolution, the structure is optimized by SA (black arrow). Once the desired accuracy is obtained, the structure is refined (dark gray dashed
arrow) and reoptimized by SA using the appropriate TI.

Moreover, if a phase consists of aggregates of strongly
different shapes and sizes, then we recommend to split this
phase into several subphases. Doing so increases the infor-
mation content of the structural descriptors and hence the
reconstruction quality. More details about this approach can
be found in Sec. II B 4.

3. Multiresolution simulated annealing (MSA)

a. Binary multiresolution simulated annealing
This section details the multiresolution component of our
algorithm. For clarity, a 2D binary case is considered and ex-
emplified in Fig. 4. The approach, however, naturally extends
to 3D reconstruction. The extension to multiphase categorical
images is discussed in Sec. II B 3 b.

To lower the computational demand of SA, Pant et al. [20],
Campaigne and Fieguth [34], and Karsanina and Gerke [35]
suggested a multiresolution approach. The underlying idea

of the multiresolution approach is to first generate a realiza-
tion of the reconstruction on the coarser scale and to refine
the structure afterwards. Once this coarse scale resolution is
obtained, the reconstruction grid is iteratively refined (this
procedure is represented by the dark gray dashed arrow in
Fig. 4). Next, the structure is optimized by SA to account for
small changes due to the enhanced resolution (black arrows
in Fig. 4). To obtain the structural descriptors for the coarse
scale representation two different approaches can be used. In
the one of Karsanina and Gerke [35], the structural descriptors
are simply recalculated while taking each 2n entrance of the
original curve, where n is the number of different resolutions
that are used. In the second approach, the ones used by Pant
et al. [20] and Campaigne and Fieguth [34], the original TI is
a coarsened process that is represented by the light gray dotted
arrows in Figs. 4(a)–4(c). The structural descriptors are then
derived from the coarsened image. We decided to use the latter
approach for this paper as the computational time spent on the
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FIG. 5. Sketch of the TI coarsening scheme. The figure represents the evolution of the TI during coarsening.

coarsening of the TI is negligible, while the derived structural
descriptors are in our opinion physically more meaningful.
Nevertheless all steps in the reminder of the paper could also
be performed using the approach of Karsanina and Gerke [35].

The use of the multiresolution approach has two main
advantages. First, coarser resolution has a much smaller
number of pixels. Larger structures can be generated within
fewer iterations, compared to using pixels that have to be
investigated for the calculation of the structural descriptors,
thereby decreasing the computational cost per iteration.

In the refinement process, each pixel of the coarse reso-
lution is replaced by a specific number of pixels on the next
finer resolution. In the case where a 2 × 2 template is used,
each coarse-resolution pixel is replaced by four pixels on
the next, finer-resolution grid. At this stage, the finer-scale
reconstruction process is already guided in the appropriate
direction as the largest clusters have been generated already.
Hence, only modifications at the interface of particles are

necessary to account for minor changes due to resolution.
To ensure that the fine-scale long-range connectivity is not
destroyed, only pixels located at the border of particles on the
fine resolution are allowed to be exchanged. The associated
speed gain increases with the number of resolution used in the
reconstruction process. However, the pixel size of the coarsest
resolution grid should not be smaller than the size of the
smallest particle in the original TI.

For a deeper understanding of the grid-coarsening step of
the multiresolution approach by Pant et al. [20], consider a
binary 2D TI where the solid particles and pores are assigned
values of 0 and 1, respectively. To decrease the grid resolution
by a factor of 4 Pant and co-workers used the average grid
value over a 2 × 2 template that corresponds to the considered
coarse resolution pixel. If this average is larger than 0.5, the
coarse resolution pixel is assigned a 1. If it is smaller, it is
assigned a 0, while averages of 0.5 are randomly assigned a 0
or a 1 in such a way that the abundance stays constant within
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the different resolutions. Note that this may slightly change
the abundance due to the digitized, and hence discrete, nature
of the image [20].

Despite its advantages over standard SA, the Pant et al. [20]
method has two major drawbacks. First, it is restricted to
binary images. Indeed, the averaging in the coarsening step
does not extend naturally to the multiphase case. Second,
it does not handle well multimodal PPA within one phase.
The reason for this is that to generate the larger inclusions
efficiently, several resolutions need to be used or, alternatively,
larger templates. On the coarsest resolution, the pixel distance
will consequently be larger than the smallest inclusions. In
order to keep the abundance constant between the resolution,
the contributions from several smaller inclusions are merged
into one pixel value on the coarse resolution After the grid
refinement, the contributions of several smaller grains will still
be represented by one large inclusion, for example, a 2 × 2
inclusion on the fine resolution due to the pixel switching rule
suggested by Karsanina et al. [19], it is almost impossible to
resplit these artificially large inclusions into several smaller
ones. Thus the final realization features too little small in-
clusions compared to the TI. To mitigate this problem, one
could choose as coarsest resolution the size of the smallest
inclusion found in the TI. In this case, the multiresolution will
likely no longer show any speedup compared to traditional
SA. However, subphase splitting might provide a solution (see
Sec. II B 4).

b. Multiresolution hierarchical simulated annealing
(MH-SA)
To address the two problems highlighted above, we propose
a nested multiresolution hierarchical SA algorithm. Its three
main innovations are (i) a hierarchical coarsening and refining
component that can handle multiphase categorical images, (ii)
a subphase splitting process that prevents the generation of
artificially large patterns for the multimodal phases, and (iii)
a phase merging scheme to handle complex phase relation-
ships. While the first innovation is detailed in this section the
remaining ones are discussed in Sec. II B 4.

Grid coarsening and refining
The new grid coarsening and refining scheme has two vari-
ants, depending on whether or not our proposed hierarchical
approach (see Sec. II B 2) is used. The latter is important for
the simulation of multiphase categorical images.

Let us start with the simpler, nonhierarchical variant. For
simplicity, the 2D case is considered here. The 3D case
will be addressed later in this section. In addition, in this
example, the resolution of the original TI is reduced at each
step by a factor of 4 (i.e., a factor of 2 in both spatial
directions). However, using any other coarsening factor is
straightforward.

Nonhierarchical coarsening and refining
The central idea of our coarsening approach is to represent
the contribution from multiple pixels (e.g., four pixels, 2 × 2)
on the fine grid by one pixel on the coarser resolution. The
pseudocode of the algorithm that coarsens the images is
described in (Algorithm 2) and works as follows:

(i) First, the number of pixels occupied by each phase
at the original (fine) resolution (nini) is calculated (line 2 in
Algorithm 2).

(ii) Second, the target number of pixels per phase at the
coarse resolution (ntarg) is obtained by dividing nini by the

Algorithm 2. The grid-coarsening approach.

1: procedure coarim=GRID-COARSENING( f inim, ORDER,
HIERARCHICAL, coarimold )
� coarim ≡ Coarsened version of the image
� f inim ≡ Input image
� ORDER = 1D-array featuring labels in which order the
phases are simulated
� HIERACHICAL ≡ boolean determining the use of a
hierarchical approach
� coarimold ≡ representation of the previous simulation stage

2: Calculate phase occurrence of each phase on fine resolution
(ni

ini)
3: Calculate target occurrence on the coarse resolution

(ni
targ = ni

ini
4 )

4: Calculate probability maps (proi
map)

5: Initialize the current count on coarse resolution (ni
curr)

6: If HIERARCHICAL ==1 then
7: Fill previous fixed pixels
8: update (ni

curr)
9: update (proi

map)
10: end if
11: for i in 1 to number of phases in order do
12: for j in each phase of order do
13: if n j

curr < n j
targ then

14: Fill all points in coarim where proj
map == 1

15: update (n j
curr)

16: update (promap)
17: end if
18: end for
19: if ni

curr < ni
targ then

20: Determine difference (ni
di f f ) between ni

targ and ni
curr

21: Determine ndi f f points with the highest probabilities
in proi

map and label them accordingly
22: update (ni

curr)
23: update (promap)
24: end if
25: end for
26: end procedure

reduction factor (e.g., 4 for a patch of 2 × 2). This makes sure
that the abundance stays constant (line 3 in Algorithm 2).

(iii) Third, after splitting the fine resolution grid into 2 × 2
patches, the occurrence probability pi j of each phase i is
calculated for each patch j. pi j is the probability that the
pixel representing the fine-resolution patch j on the coarse
resolution belongs to phase i. Using a reduction factor of 4, it
can only take five values: 0, 0.25, 0.5, 0.75, and 1 (line 4 in
Algorithm 2).

(iv) In step 4, all pixels with a probability of 1 for a given
phase are filled accordingly (blue dotted arrow in Fig. 5). At
this stage, the number of already labeled pixels belonging to
a specific phase, ni

curr, will be smaller than ni
targ [Fig. 5(c)

includes still white pixels] (lines 14–16 in Algorithm 2).
(v) In the final step, the filling process is done phase

by phase. While the filling can be done in any order, it
is suggested to start with the least frequent one over the
whole TI (let us call this phase i0). The algorithm determines
the difference in the number of pixels, Ni

dif, between Ni
targ

053316-8



NESTED MULTIRESOLUTION HIERARCHICAL SIMULATED … PHYSICAL REVIEW E 100, 053316 (2019)

and Ni
curr, that is, the amount of undetermined pixels on the

coarser resolution that should be labeled as phase i in order to
keep the phase distribution constant. Consecutively, the Ni

dif
undetermined pixels on the coarsest resolution that have the
highest probability to be associated with phase i are labeled
accordingly (gray dashed arrow in Fig. 5). If several pixels
have the same probability, the pixels are selected randomly.
Once Ni

targ equals Ni
curr, the pi j of the yet undetermined coarse-

grid pixels are updated to account for the fact that the i0 phase
has been simulated (lines 19–24 in Algorithm 2). The updated
pi j values that have become 1 lead to additional filling of yet
undetermined pixels [e.g., the white pixel that becomes blue,
marked by the black dot-dashed arrow in Fig. 5(d)] and to the
corresponding updates of Ni

curr (lines 13–17 in Algorithm 2).
This process continues with the remaining phases until all
coarse-res pixels have been labeled.

To move from a coarser to a finer resolution, each coarse
pixel is replaced by 2 × 2 pixels with the same phase, on
the finer resolution. Eventually, some pixels are randomly
relabeled in order to honor the phase distributions frequency.

The extension to three dimensions is straightforward.
One just needs to represent the contribution from eight
pixels (2 × 2 × 2) on the fine grid by one pixel on the
coarser resolution. To do so nini is first determined and
ntarg calculated by dividing nini by a factor of 8. Afterward,
the fine resolution grid is split in 2 × 2 × 2 patches, of
which the individual phase probabilities are calculated. The
rest of the coarsening process works the same as in two
dimensions.

Hierarchical coarsening and refining
In the hierarchical variant, once the first phase is simulated

it is necessary to adapt the coarsening approach for fixed
pixels. The reason for this is that, if an image is coarsened by
the algorithm twice independently, the two realizations will
slightly differ due to the random selection of pixels having
the same probability. Consequently, the previously simulated
phase would not occupy the same pixels in a coarsened two-
phase realization as in the three-phase realization. The hierar-
chical approach, however, requires that previously simulated
phases stay unchanged.

To address this problem in hierarchical coarsening, the
pseudocode of Algorithm 2 is modified. The difference is that
the algorithm takes the previous representation of the coarse
scale as an additional input. Additionally, between lines 6 and
10 the algorithm puts all previously fixed pixels at the same
spot in the new empty grid [e.g., red pixels in Fig. 6(b3)].

Similarly, once the first phase in the hierarchical approach
is simulated, a representation of the finer resolution level,
from the previously simulated phase(s), which incorporates
fixed pixels, that needed to be honored throughout the sim-
ulation of all phases, will always be available. Hence, the
grid refining process needs to be updated, analogous to the
grid coarsening. The principle of the algorithm described in
Algorithm 3 is as follows:

(i) Filling of the fixed phases: In the yet empty fine
resolution grid, all fixed pixels of the old fine resolution
representation are placed at the same pixels on the new fine
resolution realization (e.g., see the red pixels in [Figs. 6(b5)
and 6(b7)]. In doing so all fixed phases have been filled and
will not be altered anymore (line 4 in Algorithm 3).

Algorithm 3. The grid-refining approach.

1: procedure f inim=GRIDREFINING( coarim, ni
targ, HIERARCHICAL,

ORDER f inimold )
� f inim ≡ fine scale representation of the image
� coarim ≡ input image
� f ineimold ≡ representation of the previous fine simulation
stage

2: Initialize f inim having 2 x 2 the size of coarim

3: if HIERACHICAL == 1 then
4: Fill fixed pixels from f inimold in f inim

5: Fill empty pixels in f inim represented by nonfixed pixel
in coarim

6: for i in 1 to number of phases in order do
7: Calculate ni

curr

8: Calculate ni
di f f

9: Fill ni
di f f of the remaining pixels accordingly

10: update (ni
curr)

11: end for
12: else
13: Fill all pixels in f inim according to f inimold

14: for i in 1 to number of phases in order do
15: Calculate ni

curr

16: Calculate ni
di f f

17: if ni
di f f < 0 then

18: label ni
di f f occupied by this phase as empty

19: update (ni
curr) and ni

di f f

20: end if
21: end for
22: for i in 1 to number of phases in order do
23: if ni

di f f > 0 then
24: label ni

di f f empty pixels accordingly
25: update (ni

curr) and ni
di f f

26: end if
27: end for
28: end if
29: end procedure

(ii) First filling of the target phases. All empty pixels on the
new fine resolution grid which correspond to a nonfixed pixel
on the coarse resolution get the same labels as the coarse pixel
(line 5 in Alg orithm 3).

(iii) Filling of the remaining empty pixels. The current
fine resolution grid still features empty pixels. These pixels
correspond to a fixed phase pixel representation on the coarse
resolution but do not correspond to a fixed pixel on the old
fine resolution image. These pixels are randomly labeled with
one of the two currently simulated phases, in such a way that
their abundance stays constant (line 9 in Algorithm 3).

After detailing the hierarchical and multiresolution ap-
proaches separately, let us now join them to explain the
basic principles of our multiresolution hierarchical simulated
annealing algorithm. To start the generation of the structure,
one needs to provide the algorithm for each phase with the
appropriate resolution to generate the particles efficiently. One
should choose the number of resolution such that the biggest
particles of a phase are represented by a few pixels on the
coarsest resolution. Concerning the coarsening and refining,
it has to be stated that for all phases the same patch size is
used, the only difference to achieve the appropriate resolution
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FIG. 6. Sketch of the hierarchical multiresolution approach. In the upper red rectangle, the simulation of the first phase is presented. At this
stage, the algorithm does not have to handle fixed pixels, hence the principle is the same as described in Fig. 4. In the lower black rectangle,
the simulation of the second phase (blue pixels) is illustrated. In both the coarsening of the TI and the refining of the simulation grid, the
algorithms needs to honor the fixed (red) pixels, from the first simulation stage at the same resolution.

is the number of consecutive coarsenings. Once the required
number of resolutions has been determined for each phase, the
individual phases will be simulated in a hierarchical way, in
decreasing order of their number of required resolution, with
the most abundant phase coming last. The individual phases
are simulated sequentially from the coarsest resolution to the
finest (original) one.

To illustrate the algorithm let us consider a medium con-
sisting of three phases [as shown in Fig. 6(b1)]: phase 1 (red),
phase 2 (blue), and the matrix (white). Phase 1 features inclu-
sions which require three resolutions [Fig. 6(a)], while phase
2 contains inclusions that require two resolutions [Fig. 6(b)].

In step 1, the algorithm transforms the ternary TI
[Fig. 6(b1)] in a binary version [Fig. 6(a1)] assigning one
category to phase 1. The rest consists of the matrix and
phase 2. In step 2, the algorithm coarsens the binary TI twice
and generates an initial realization on the coarsest resolution
[Figs. 6(a1)–6(a3)], which honors the different phase fractions
found in the TI. This structure is afterward optimized using

SA (black dotted arrow) until the reconstruction resembles
the coarse TI sufficiently well. Next, the structure is refined
for the first time (gray dashed arrow) and optimized again
to resemble the intermediate resolution TI. Subsequently, the
simulated image is refined again to fit the original resolution
and optimized [Figs. 6(a10) and 6(a11)] to match the chosen
descriptors associated with the original TI. All pixels belong-
ing to phase 1 are then fixed at all grid levels.

To start the simulation of the phase 2, the TI is transformed
back to its ternary version. This TI is then coarsened once
using the hierarchical approach described above (Fig. 6).
Next, the nonfixed (white) pixels from the intermediate recon-
struction of phase 1 [see Fig. 6(a9)] are randomly transformed
into phase 2 and matrix in such a way that the obtained image
has the same phase distribution as the TI [Fig. 6(b5)]. Once
this is done, the algorithm swaps pixels from phase 2 and the
matrix in order to minimize E . After the optimization process,
the simulated structure is refined to its original resolution
honoring the frozen pixels that belong to phase 1 [Fig. 6(b7)].
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Last, the structure is optimized by SA again to provide the
final realization.

4. Nested simulated annealing (NSA)

a. Subphase splitting
The problem with the incorporation of multimodal PPA within
the approach of Pant et al. [20] is that different particles would
need a different number of resolutions in order to be generated
efficiently. However, the approach can only use one number
of grid levels per phase i. Moreover, the structural descriptors
(at least as we use them here) just represent an average over
the different modes, which will prohibit reproduction of the
classes in the simulations.

Our proposed algorithm deals with this problem in the
following way: we group all particles from a given phase
in independent subphases, purely based on their size, and
simulate them as if they would be a multiphase medium. Once
the different subphases have been generated independently on
the finest resolution grid, the subphases are remerged together
into a single class. To end the generation, the algorithm
runs again an optimization process, where pixels from the
remerged phase and the matrix are swapped. This ensures that
also the average structural descriptors are well reproduced.
While in theory, the optimization process can use its own stop-
ping criteria, we use the same accuracy as for the individual
subphases and to only decrease the max number of iterations,
for consistency.

The splitted TI has to be provided as an input to the
algorithm, with the information which subphases have to be
remerged at the end.

b. Phase merging to simulate phase relationships
The hierarchical approach, in combination with the set of

structural descriptors used in this paper, has difficulties in
generating structures that honor complex topological relation-
ships between phases, for instance, a phase A that always
grows around a phase B, or small inclusions of B inside A, or
just two phases which always occur together, as represented
by the light blue and red phases in Fig. 7(a). The reason
for this is that S2 and L2 in the multiphase case are phase
specific and do not include information about the topological
relationships (except for the matrix).

Subphase splitting addresses this problem only partly; it
does not constrain topology. To solve this issue, our algorithm
initially merges the two phases into a superphase, e.g., AB′
(dark blue phase in Fig. 7). Assuming that the phase AB′ is
enclosed in the matrix, the approach will then first simulate
phase AB′ by swapping the corresponding yellow and blue
pixels. Once the AB′ structure is generated, AB′ is split back
into A and B (black dashed arrow in Fig. 7). Next, only the A
and B pixels are exchanged by SA (i.e., the remaining phase
pixels are considered fixed). During the phase exchange, the
algorithm is allowed to change pixels across various clusters.
As a result of the subphase splitting, using the S2 and L2

descriptors only is sufficient to generate realizations with the
appropriate topological relationships.

The identification of such phase relationships has to be
done beforehand by the user. This information is then pro-
vided to the algorithm through the use of an additional TI.

FIG. 7. Phase merging principle to simulate phase relationships.
Initially, the red and blue phases are merged to form the new yellow
superphase. This phase is reconstructed using SA. In the phase
splitting step the dark blue phase is split back into red and light blue
pixels, which are eventually optimized by SA. SG = simulation grid.

A phase merging similar in principle to ours was applied by
Gerke et al. [36] to merge information from images at different
resolution.

5. Nested multiresolution hierarchical
simulated annealing (NMH-SA)

Our full algorithm is described in Algorithm 4. In case the
user wants to apply subphase splitting and merging, he needs
to transform the TI and provide both the transformed TIs and
the original one. The number of transformed TIs is thereby
equal to the number of nested levels. The algorithm will need
three TIs for a multiphase reconstruction with both subphase
splitting and merging. During the simulation process, the
algorithm will then simulate first the individual (sub)phases
sequentially using the hierarchical multiresolution approach
as depicted in Fig. 6, from the coarsest to the finest resolution
(Algorithm 4, lines 2–21). Once all individual (sub)phases
have been simulated, the algorithm will then resplit and opti-
mize the individual phases by SA, which were merged during
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Algorithm 4. Nested hierarchical multiresolution simulated
annealing.

1: procedure SG=NHMSA(TI,ORDER, λ, Nr, Nite, Nsto, Ethr ,
MERGING, Timer , Ordermer, Phasespl , T Ispl , Orderspl )
� Order ≡ 1D array featuring the labels in which order the
subphases should be simulate
� Nr ≡ 1D array featuring Nr of resolution per subphase
� Nite ≡ = 1D array featuring max number of iterations per
subphase
� Nsto ≡ = 1D array featuring max number of consecutively
denied pixel swaps per subphase
� Ethr≡ 1D array featuring the Energy threshold per subphase
� Merging = Boolean representing if Merging was applied
� Timer ≡ Ti in which initially merged phases are split
� Ordermer ≡ List featuring labels in which order phases should
be split and simulated
� Phasespl ≡ Boolean representing if phase splitting was
applied
� Tispl ≡ Ti in which initially split phases are merged
� Orderspl ≡ List featuring the labels in which order the phases
should be merged and simulated

2: Transform TI to a binary image
3: for i in 1 to Nr[1]-1 do
4: Coarsen TI non hierarchically (Algorithm 2)
5: end for
6: Initialize SG
7: for i in 1 to Nr[1]-1 do
8: Apply SA (Algorithm 1)
9: Refine SG by one resolution non hierarchically

(Algorithm 3)
10: end for
11: for J in 2 to length of order do
12: Transform TI to current number of phases (Algorithm 2)
13: for i in 1 to Nr[J]-1 do
14: Coarsen TI using hierarchical approach (Algorithm 2)
15: end for
16: Initialize SG on coarsest resolution hierarchically
17: for i in to Nr[J]-1 do
18: Apply SA (Algorithm 1)
19: Refine SG by one resolution hierarchically

(Algorithm 3)
20: end for
21: end for
22: if Merging is == 1 then
23: for i in Ordermer do
24: Split phases initially merged according to Timer

25: Apply SA (Algorithm 1)
26: end for
27: end if
28: if subphase splitting == 1 then
29: for i in OrderSpl do
30: Merge phases initially split according to Tispl

31: Apply SA (Algorithm 1)
32: end for
33: end if
34: end procedure

a potential merging step. Finally, the algorithm will merge
and optimize the individual phases, if subphase splitting was
applied.

III. RESULTS

A. Cement paste

This section studies the performance of our pro-
posed nested multiresolution hierarchical simulated anneal-
ing (NMH-SA) approach. All simulations were performed
sequentially on a Dell Latitude E5570 Notebook with 16 GB
of RAM and a i7-6600U CPU. Two different case studies are
considered: cement paste and Boom Clay. Since the purpose
of this paper is to present and demonstrate our algorithm, we
decided to use images presented in the literature [8,30] as
TIs for our test. We are fully aware that these two TIs might
contain artifacts caused by the way they were acquired but this
is not important for this study.

For each case study, the performance of NMH-SA is
compared with that of the popular DS MPS algorithm. A
temporary academic license of the DS MPS code can be
obtained upon request to one of its developers (Grégoire
Mariethoz, Philippe Renard, Julien Straubhaar). To further
investigate the capabilities of our algorithm and the different
options discussed above, three different settings are used: The
first uses only hierarchical simulated annealing (H-SA). The
second adds the coarsening scheme (MH-SA). This variant
can be seen as a multiphase version of the approach proposed
by Pant et al. [20]. Our third setting is the full NMH-SA and
thus fully takes advantage of the approaches described earlier
in this paper.

1. 2D reconstruction

An SEM image of hardened cement paste using ordinary
Portland cement is used as a TI [Fig. 1(a)] [30]. The sample
has a water-cement ratio of 0.42. Based on manual threshold-
ing in MATLAB the initial grey scale image was transformed in
four different phases (pore, portlandite, clinker, and C-S-H).
The voxel size is half a micrometer. Both the TI and consid-
ered simulation domain have a size of 192 × 256 pixels. More
details about the sample casting, imaging, and segmentation
can be found in [30].

A total of 50 reconstructions was produced with each of
the three different SA settings. The reconstruction scheme
used to generate the NMH-SA reconstructions is depicted in
Fig. 8. Randomly chosen reconstructions derived by the three
settings are displayed in Figs. 9(b)–9(d). The same S2 and L2

descriptors and maximum investigation length (maximum lag
distance used in the descriptor calculations) were used for all
reconstructions. For the reconstruction of an image with half
the original resolution, the number of pixels used to calculate
the S2 and L2 descriptors on the coarse resolution was halved
as well. Figure 10 shows the descriptor misfit over (50) the
different realizations.

It can be seen in Fig. 9(c) that MH-SA produces visually
worse results than H-SA [Fig. 9(b)] and NMH-SA [Fig. 9(d)].
This is confirmed by the associated MPH descriptor values
(Fig. 10). The mean MPH misfit between the TI and the
realizations is one order of magnitude larger for MH-SA than
for the two other variants. This quite large MPH error for
MH-SA is due to the frequent occurrence of larger C-S-H
areas without inclusion in the reconstruction [Fig. 9(c)]. These
large C-S-H clasts are not found in the TI [Fig. 9(a)]. The
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FIG. 8. Settings for the NMH-SA simulation, in order to generate the hardened cement paste. In the first loop (black solid), the individual
subphases were generated in a hierarchical order using different resolutions. In the second loop (dashed line), the portlandite inclusion within
the clinker were split from the clinker as part of the used phase merging step. In the last loop (dotted) the subphase splitting process was
finished.

clasts appear visually so prominent because the MH-SA re-
constructions [Fig. 9(c)] are missing the very small inclusions
of the other phases found in the TI. This observation is also
confirmed by the PPA and P misfit that are one magnitude
higher compared to the other two methods.

The phase merging capabilities of the NMH-SA algorithm
can be observed by comparing the clinker grains (red-colored
areas), Figs. 9(b) and 9(d). In the NMH-SA reconstruction

[Fig. 9(d)], turquoise blue areas, portlandite can be found
within the larger grains. In contrast, H-SA does reproduce this
feature less frequently.

Besides that the reconstructions derived by H-SA and
NMH-SA both visually look almost equally good [compare
Figs. 9(b) and 9(d)]. The MPH error, however, shows that any
of the NMH-SA (purple box plots in Fig. 10) realizations is
of better quality than the best MH-SA realization (green box

FIG. 9. Selected results for reconstruction of hardened cement paste. (a) Training image, (b) H-SA, (c) MH-SA, (d) NMH-SA, (e) DS
reconstruction with perturbation distance 4, (f) DS reconstruction with perturbation distance 6. The perturbation distance is, thereby, defined
as the average distance in pixels until which the probability constraints influence the phase choice by the DS algorithm.
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FIG. 10. Box plots of the descriptor misfits of the different cement paste realizations. The box plot is based on 50 realizations and represents
the SSR misfit of the individual structural descriptors (S2 = 2 point probability curve, L2 = lineal path function, C2 = cluster function, PPA =
particle area, P = perimeter, MPH = multiple point histogram). The four individual subplots represent the different mineralogical phases.
Within a single subplot, the different box plots are always grouped in stacks of five bars, next to each other, where each color represents
a different methodology. One stack of five bars always represents one structural descriptor. In the C-S-H box plot C, PPA, and P are not
represented, as the representation of those descriptors is physically meaningless for the matrix phase.

plots). In addition, while both approaches fit the L2 function
equally well for all phases, NMH-SA is more than a factor
10 better in the reproduction of S2 for the clinker, portlandite,
and C-S-H phases. This can also be deduced from Fig. 9 where
NMH-SA is visually better in reproducing the cluster behavior
of the larger portlandite particles, or in other words the fact
that individual grains always appear as parts of bigger groups.

Overall, NMH-SA also outperforms the other SA variants
with respect to PPA and P.

Figure 10 also shows there is nearly a constant ratio
between that C2 and L2, for all approaches. This may indicate

that C2 only adds limited extra information to L2 given that the
two curves have almost identical shapes (Fig. 1).

Although the main motivation for our multiresolution ap-
proach was to decrease the computational effort, it can be
seen in Fig. 11 that the computations take a longer time
for NMH-SA than for MH-SA. Also, the difference in CPU
time between NMH-SA and MH-SA becomes larger as the
considered number of grid pixels increases. This is because
the TI features a high number of particles, which are so small
that they can be reconstructed at the finest resolution only.
Additionally, the remerging of the phases also consumes time.
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FIG. 11. Cement reconstructions: computational time as func-
tion of the number of nodes in the considered generation grid.

Hence, the only reason to use NMH-SA for simulating cement
paste is the improved reconstruction quality.

For the reconstruction of the cement paste by DS, we used
a neighborhood search tree of 50 pixels. Furthermore, it was
necessary to use DS in combination with phase probability
constraints as introduced by Mariethoz [37]. Without proba-
bility constraints, DS determines the filling of a pixel purely
based on the pattern of already determined pixels, surrounding
the one that is currently filled. With the addition of the proba-
bility constraints, the filling is constrained in such a way that
the reconstruction has to fit the individual phase abundances
additionally to the pattern. Without the probability constraints,
DS was found to produce reconstructions with a too high
proportion of the C-S-H phase (yellow-colored area in Fig. 9)
and a near-zero fraction of the clinker phase (red-colored area
in Fig. 9). While the addition of the probability constraints
leads to a better fit of the MPH histogram, it also reduces
the long-range connectivity in the DS-based realizations. This

observation is more prominent for the smaller perturbation
distance of 4 [DS1, Fig. 9(e)] compared to the one of 6
[DS2, Fig. 9(f)]. The perturbation distance is, thereby, defined
as the average distance in pixels until which the probability
constraints influence the phase choice by the DS algorithm.

For the considered TI, only the C-S-H (yellow matrix in
Fig. 9) contains information about the long range connectivity.
The problems of the DS1 reconstruction with the long-ranged
connectivity is confirmed by the lineal path function of the
C-S-H where the misfit of DS1 is one magnitude higher
than DS2 and three magnitudes higher than the one of SA.
Furthermore, DS1 is not capable of reconstructing the patch
behavior of portlandite (turquoise particles in Fig. 9). The
situation is already better for DS2 reconstruction but is still
visually worse than for the three SA reconstructions [compare
Figs. 9(f) and 9(b)–9(d)]. One could argue that comparing
NMH-SA and DS using the L2 descriptor is unfair as NMH-
SA actually optimizes the L2 property during reconstruction
while DS does not. Nevertheless, the worst NMH-SA realiza-
tion performs also better than the best DS realizations with
respect to the MPH. Additionally, all SA approaches perform
better in reconstructing C2. The only criterion for which DS
outperforms the NMH-SA approach is the P and PPA of the
pores. Also, the shape of the clinker grains (red particles in
Fig. 9) is much smoother in the realizations by DS1 and
DS2 compared to SA approaches and this is closer to the
patterns found in the TI. Nevertheless, it is seen that for the
DS1 and DS2 reconstructions these clinker grains are almost
verbatim copies of those found in the training image [compare
Figs. 9(a) with 9(e) and 9(f)].

Regarding CPU time (Fig. 11), it is observed that for
small generation domains, DS is nearly as fast as the MH-SA
and H-SA variants and slightly faster than the full NMH-
SA algorithm. For larger domain sizes, however, DS leads

FIG. 12. 2D to 3D reconstruction. A) 3D reconstruction using SA, B) and C) are two adjacent slices from A in z direction. D) 3D
reconstruction using DS, E and F) are two adjacent slices from D in z direction. Slice E was generated at the beginning of the reconstruction
and hence featured almost no hard data, slice F in contrast was generated at end of the generation and featured a high amount of conditional
data which decreased the reconstruction quality significantly.
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to a stronger increase in computational time than every SA
variant.

2. 2D to 3D reconstruction

Cement paste is generally in literature assumed to be an
isotropic material [38,39]. Therefore, we use this material to
compare the performance of our simulated annealing algo-
rithm against DS for 2D to 3D reconstruction. Based on the
results from the 2D experiments, only the best performing
NMH-SA (for SA) and DS2 (for DS) codes are considered.
During the NMH-SA optimization process, the S2 and L2

structural descriptors were calculated in nine different di-
rections (along the x, y, z planes, and along the two main
diagonals in each of these three planes). The size of the
reconstruction domain is 200 × 200 × 200. The same NMH-
SA algorithm settings were used as for the 2D case except for
the maximum number of iterations, which was changed from
10 000 to 1 000 000. With respect to DS, we used the s2Dcd
approach introduced by Comunian et al. [40] which basically
consists of sequential two-dimensional MPS simulations with
conditioning data. In this approach, the 3D structure is gen-
erated by alternatively simulating perpendicular 2D slices, in
which previously simulated pixels are used as conditioning
data for the current simulation.

It is noted that the NMH-SA reconstruction [Fig. 12(a)]
visually resembles much better the TI [Fig. 9(a)] than the
DS2 reconstruction [Fig. 12(d)]. This visual assessment is
confirmed by the S2, L2, C2, and MPH misfit depicted in
Fig. 13. While the NMH-SA reconstruction features the patch
behavior of the portlandite particles (turquoise-colored ar-
eas in Fig. 12), the patch behavior is completely missed in
the DS reconstruction. The problems encountered by DS to
reconstruct the portlandite phase translates into 100 times
larger S2, L2, and C2 misfits compared to NMH-SA (Fig. 13).
Overall, DS performs ten times worse than NMH-SA for S2,
L2, and C2 (Fig. 13). For PPA and P, in contrast, no signifi-
cant differences between the two methodologies are observed
(Fig. 13).

Comparing adjacent slices [Figs. 12(b) and 12(c) for
NMH-SA and Figs. 12(e) and 12(f) for DS-s2Dcd] in the gen-
erated 3D volume reveals that the NMH-SA simulation also
has a higher consistency. Furthermore, while comparing the
misfit for the cluster function and the MPH error of the 2D to
3D reconstructions with the 2D reconstruction, no significant
differences can be determined (compare Figs. 10 and 13). This
means that generating a 3D reconstruction does not decrease
the image quality at least for those two descriptors. For P and
PPA, the 3D reconstruction is of lowest quality, as it features
too many small particles, or in other words isolated pixels
(Figs. 12 and 13).

As opposed to NMH-SA, DS-s2Dcd has problems to main-
tain the consistency of the portlandite grains and pores over
consecutive slices [Figs. 12(e) and 12(f)]. The slice shown
in Fig. 12(e) was generated at the beginning of the recon-
struction and features almost no conditioning data. Therefore,
its quality is visually the same as the one generated by the
DS2 approach in the 2D case [see Fig. 9(f)] as both DS
simulations rely on the same parameters. In contrast, the slice
displayed in Fig. 12(f) was produced almost at the end of the
simulation run and hence contains a lot of conditioning data

FIG. 13. Box plots of the descriptor misfits of the different
cement paste 3D realizations. The box plot is based on 50 realizations
and represents the SSR misfit of the individual structural descriptors
(S2 = 2 point probability curve, L2 = lineal path function, C2 =
cluster function, PPA = particle area, P = perimeter, MPH =
multiple point). The four individual subplots represent the different
mineralogical phases. Within a single subplot, the different box plots
are always grouped in stacks of two bars, next to each other, where
each color represents a different methodology. One stack of two bars
always represents one structural descriptor. In the C-S-H box plot
C, PPA, and P are not represented, as the representation of those
descriptors is physically meaningless for the matrix phase.

to honor. The inclusion of these conditioning data strongly
reduces the quality of the DS-s2Dcd reconstruction. Note
that lower reconstruction quality may also be partly due to
shortcomings of the approach by Comunian et al. [40] and
better results might possibly be obtained by using other 2D to
3D reconstruction methodologies.

Regarding computational effort, both NMH-SA and DS
incur a significant computational cost. For the considered
200 × 200 × 200 cubic generation domain DS-s2Dcd needs
13 h to produce a single reconstruction. The NMH-SA algo-
rithm is faster but still needs almost 5 h to do the same task.
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FIG. 14. Reconstruction scheme of the Boom Clay reconstruction.

B. Boom Clay

The Ti used for this case study originates from [8], but
was cropped and artificially coarsened to have a resolution of
0.8 micrometer and a size of 400 × 400 pixels. More details
about how the image was acquired, processed, and segmented
can be found in Hemes et al. [8]. For the reconstruction, we
start again by comparing the three SA approaches against
each other before including DS in the comparison. For each
approach, 50 realizations were generated. For H-SA and
MH-SA, the TI was treated as a single-phase image and the
structural descriptors were calculated for lag distances up to
100 pixels. For NMH-SA, the matrix was subdivided into
three different classes (larger quartz grains, smaller quartz
grains, and clay matrix) and the pores space was split into
four different subclasses based on sizes. At the end of the
NMH-SA simulation run, the reconstruction was back trans-
formed into a binary image (see the NMH-SA simulation steps
depicted in Fig. 14).

To make a detailed quantitative quality assessment, we
transformed the binary realizations derived by each ap-
proach into multiphase realizations using five different classes
[Figs. 15(b), 15(d) 15(f), 15(h), 15(j), and 15(l)]. The first
class consists of pores smaller than 20 pixels, the second
class includes pores with a size between 20 and 100, and
the third class features pores larger than 100 pixels. The
matrix was split into clay particles and clasts. This was done
using an automatic thresholding procedure. Connected matrix
components with a minimum distance of six pixels to a pore
pixel and which feature at least one pixel with a distance to a
pore pixel larger than 9.5 pixels are treated as quartz; the rest
are considered as clay particles. Pixels initially defined as clay
that are included within quartz are also labeled as quartz.

The reason for this transformation from a binary into
a multiphase image for quantitative quality assessment is
that the three different SA reconstructions are found to
fit the binary structural descriptors almost equally well al-
though clear differences in quality are visually observed
[see Figs. 15(a), 15(c) 15(e), 15(g), 15(i), and 15(k)].

While splitting the binary reconstructions into multicate-
gorical ones allows for a better quality evolution for S2,
L2, and C2, it decreases the information content of the
PPA and P descriptors. This is because using five sub-
classes makes the within-class PPA and P values more sim-
ilar. Therefore, we used the so-called mean relative his-
togram difference (HIS) per phase as an additional structural
descriptor.

The H-SA approach appears to fail in reconstructing
the large quartz grains (or what is the rough corresponder
of quartz) or in other words the long-range connectivity
[Fig. 15(c)]. Indeed, the MH-SA reconstruction contains al-
most no quartz at all [green particles in Fig. 15(d)]. This
happens even though the H-SA reconstruction fits the L2 de-
scriptor as well as the MH-SA and NMH-SA reconstructions
in the binary case (not shown). The H-SA reconstruction
features the long segments without any black pixels, but the
S2 criterion does not encode sufficient information to group
those segments together.

The long-range connectivity of the matrix is better re-
produced by MH-SA [Figs. 15(e) and 15(f)]. The MH-SA
reconstruction features more and larger green clasts than the
H-SA one. Compared to that associated with H-SA, the HIS
misfit decreases by almost a factor of 5 for MH-SA for
quartz (Fig. 16). Additionally the reconstruction quality with
respect to S2, L2, and C2 is increased by a factor 5 and each
realization of MH-SA is better than the best reconstruction
generated by H-SA for the same subclass (Fig. 16). While
MH-SA improves the reconstruction quality of the matrix
components compared to H-SA, the reconstruction quality of
the pores decreases. MMSA performs worse than MH-SA for
all pore subclasses and considered descriptors except PPA and
P (Fig. 16).

The visually best SA generations are again those produced
by NMH-SA [Figs. 15(g) and 15(h)]. For instance Fig. 15(h)
has the largest quartz (green) particles. This visual observation
is confirmed by the HIS, S2, L2, C2, and MPH descriptors
for which the misfit is always the smallest for NMH-SA
(Fig. 16). The advantages of NMH-SA become even clearer
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FIG. 15. Boom Clay training image and reconstructions (rec.). (a) TI, (b) relabeled TI, (c), (d) H-SA rec., (e), (f) MH-SA rec., (g), (h)
NMH-SA rec., (i), (j) DS rec using binary TI, (k), (i) DS rec. using multiphase TI.

when looking at the quartz and clay phases’ descriptor misfit
(Fig. 15). Here the L2 descriptor misfit for both phases is more
than one order of magnitude smaller than for their H-SA and
MH-SA counterparts.

Although outperforming H-SA and MH-SA, NMH-SA
nevertheless does not capture well the bedding behavior of
the Boom Clay. The TI clearly has crenulating behavior of
the clay fabric, with the pores following the orientation of
the quartz grains. This pattern is not found in the reconstruc-
tion [Figs. 15(g) and 15(h)], although some fabric can be
identified.

Figure 17 depicts the computational time of the individual
realizations as function of the number of nodes. Among the
SA variants, MH-SA is the fastest. This is because the Boom
Clay TI features a high amount of larger particles, which are
efficiently generated on the coarse resolution. Yet as explained
above MH-SA leads to a much poorer reconstruction quality
than H-SA and NMH-SA. The NMH-SA is almost as fast as
MH-SA, while providing the largest reconstruction quality.

Similarly to the SA, DS cannot reconstruct the Boom Clay
as a binary image [Figs. 15(i) and 15(j)]. In order for DS to
deal with the larger pores, we found it necessary to limit the

number of closest pixels enclosed in each calculation step to
a maximum of 20. However, by doing so the reconstruction
almost does not include any quartz grains [Fig. 15(e)]. More-
over, DS BIN (DS using a binary TI) is found to perform even
worse than MH-SA (Fig. 15).

Therefore, we used Fig. 15(b) as a TI for a multiphase
reconstructions (DSMP). For consistency with the other ap-
proaches, the reconstructions were also first transformed into
a binary image and afterward relabeled. Using the DS-MP
approach allows for DS to generate the big quartz grains in
[Figs. 15(k) and 15(l)]. As of quality, the best DS recon-
structions were obtained using a neighborhood of 20 points.
Using a larger value led to a lower reconstruction quality (not
shown).

DSMP and NMH-SA approaches lead to a similar mean
MPH error, but DS shows a broader error distribution
(Fig. 16). Furthermore, DSMP and NMH-SA induce similar
descriptor’s misfit values for the different pore phases in L2,
C2, PPA, and P, which means that they reconstruct equally
well the shape of the individual particles. For the large par-
ticles DS is even almost one order better in reproducing P
and PPA. Nevertheless, NMH-SA is better in reconstructing
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FIG. 16. Box plots of the descriptor misfits of the different Boom Clay realizations. The box plot is based on 50 realizations and represents
the SSR misfit of the individual structural descriptors (HIS = mean relative histogram difference, S2 = 2 point probability curve, L2 = lineal
path function, C − 2 = cluster function, PPA = particle area, P = perimeter, MPH = multiple point histogram). The five facets represent the
different phases. Within a single subplot, the different box plots are always grouped in stacks of five bars, next to each other, where each color
represents a different methodology applied. In the Clay box plot C, P, and PPA are not represented, as the representation of those descriptors
is physically meaningless for the matrix phase.
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FIG. 17. Boom Clay reconstructions computational time as func-
tion of the number of nodes.

the orientation of the individual pore particles to each other.
This conclusion can be drawn from the decreased SSR misfit
of. Indeed, NMH-SA leads to smaller S2 and HIS misfits.
This difference can also been noticed visually. In Fig. 15(l)
it is seen that the DSMP reconstruction has too many small
pores and too few light blue and yellow particles. While
the difference in descriptor values for the pores are minor,
NMH-SA performs about ten times better than DS for the
quartz particles. (Fig. 17). Additionally, DSMP has the ten-
dency to generate too many larger quartz grains Fig. 15(l).
In addition, compared to NMH-SA, DS visually provides a
worse reproduction of the bedding related pattern observed in
the TI [compare Figs. 15(g) and 15(k)]. The strength of DS
however is its computational efficiency where it is three times
faster than DS (Fig. 17).

IV. DISCUSSION

In this work we propose an SA algorithm termed NMH-SA
for nested multiresolution hierarchical simulated annealing.
Our NMH-SA algorithm is able to handle the multiphase case
and the multiresolution approach. To our knowledge the only
other study using multiphase simulated annealing is the one of
of Jiao and Chawala [41]. Compared to their method our algo-
rithm calculates additionally the descriptor values in the diag-
onal directions which clearly improves reconstruction quality.
Additionally they did not use a hierarchical and multiresolu-
tion approach which increased their computational cost signif-
icantly. Moreover, NMH-SA also improves upon the state of
the art for the binary case. For the considered two case studies,
cement paste and Boom clay, NMH-SA is found to substan-
tially outperform state-of-the-art SA (Figs. 9, 10, 12, 13, 15,
and 16). This much higher reconstruction quality compared
to other SA approaches comes with a moderate 1.5–2 times
increase in CPU time per realization (Figs. 11 and 17) for
the presented 2D case studies. We would like to stress that
if for the Boom Clay case study the traditional approach is
used in combination with subphase splitting without using
the multiresolution approach, NMH-SA becomes seven times
faster.

Among 50 realizations by each method, the best single
Boom Clay reconstruction is generated by DS (Fig. 16). Yet

the reconstruction quality statistics are overall larger for the
50 NMH-SA realizations than for the 50 DS realizations
(Fig. 16). For the computed MPH criterion, the MPS distri-
butions derived by NMH-SA and DS show the same median
value but the NMH-SA distribution is much narrower. We
believe such a small variation in quality between realizations
is a desired property for a reconstruction algorithm. The larger
spread in the MPH distribution by the DS for the Boom Clay is
a result of the nonstationary TI. Indeed, in this work we used
a small template of 20 pixels. This leads to a relatively good
simulation of the different pore fractions [Figs. 15(k)–15(l)].
However the corresponding quartz grains tend to be too big
and the long-range connectivity is relatively badly reproduced
(see the spacing between the individual quartz grains and the
large error for S2 and C2 in Fig. 16). To improve the long-range
connectivity it would therefore be necessary to use a larger
template size. The larger template size would however lead to
the generation of verbatim copies, as only few patterns in the
TI would match the search pattern of the reconstruction. To
overcome this problem it would, hence, be necessary to use
a much larger TI in combination with a larger neighborhood
template. This larger Ti, however might not always be avail-
able and it would also increase the computational time of DS
significantly.

Consequently, it can be stated that our algorithm is more
attractive than DS, in case of TIs which feature inclusions of
various sizes and frequencies, as the target statistics can be set
on a phase, or even sub- or superphase basis.

As any other algorithm based on SA, our proposed NMH-
SA has the limitation that it i.e., the algorithm, can only
reconstruct patterns which can be well described and effi-
ciently quantified by a set of (easy to calculate) structural
descriptors. For example, none of the structural descriptors
used in this study is capable of capturing the crenulating
bedding behavior of the Boom Clay. That is why even if it
is the only tested algorithm that generates realizations which
feature some fabric, NMH-SA nevertheless poorly reproduces
the bedding patterns found in the TI (Fig. 15).

The following extensions could improve NMH-SA:
(i) The simulation time could be further decreased by

distributing the computational burden. The current version of
NMH-SA starts with the simulation of a new phase once the
previous phase has been simulated from the coarsest to the
finest resolution. In a parallel implementation, the simulation
of the newest phase could already start with the coarse resolu-
tion as soon as the previous phase has been simulated on this
same resolution. In doing so, the computational cost could be
strongly decreased, certainly in the case of a large cascade of
calculations, when many different (sub - or super)phases are
involved.

(ii) The problem that the 3D reconstruction does not re-
produce the particle size and shape as well as in two di-
mensions (Figs. 10 and 13), which is related to a too high
number of small isolated pixels, might be resolved using
the pixel selection rule suggested by Tang [42]. While the
current NMH-SA randomly selects any pixel with nonmatch-
ing neighboring pixels, the algorithm of Tang [42] prefer-
ably selects pixels, with high numbers of nonmatching, and
consequently tends to generate realizations without isolated
pixels.
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V. CONCLUSION

We propose a SA algorithm, termed NMH-SA, that over-
comes the typical limitations of SA for microstructure gener-
ation. NMH-SA is shown to outperform both state-of-the-art
SA and the multiple-point statistics DS method for a multi-
phase cement paste image and a binary Boom Clay image.
These two case studies are characterized by strong differences
in size and frequencies between the different phases. The
advantages of NMH-SA are found to be most prominent
for the 2D to 3D reconstruction of cement paste. For Boom

Clay, our NMH-SA approach has difficulties in reproducing
the quite complex bedding patterns present in the training
image.

ACKNOWLEDGMENTS

This research has received partial funding from the
European Union European Atomic Energy Community (Eu-
ratom) Horizon 2020 Programme (NFRP-2014/2015) under
Grant Agreement No. 662147-CEBAMA. The code used in
this study is available [43].

[1] N. Seigneur, A. Dauzeres, M. Voutilainen, V. Detilleux, P.
Labeau, and A. Dubus, J. Porous Media 20, 29 (2017).

[2] S. Torquato, Random Heterogeneous Materials: Microstructure
and Macroscopic Properties (Springer Science & Business
Media, New York, 2013), Vol. 16.

[3] M. J. Blunt, B. Bijeljic, H. Dong, O. Gharbi, S. Iglauer, P.
Mostaghimi, A. Paluszny, and C. Pentland, Adv. Water Resour.
51, 197 (2013).

[4] H. Okabe and M. J. Blunt, Phys. Rev. E 70, 066135 (2004).
[5] H. Izadi, M. Baniassadi, A. Hasanabadi, B. Mehrgini, H.

Memarian, H. Soltanian-Zadeh, and K. Abrinia, J. Pet. Sci. Eng.
149, 789 (2017).

[6] G. C. Conroy and M. W. Vannier, Science 226, 456 (1984).
[7] T. M. Buzug, Computed Tomography: From Photon Statistics to

Modern Cone-Beam CT (Springer Science & Business Media,
New York, 2008).

[8] S. Hemes, G. Desbois, J. L. Urai, B. Schröppel, and J.-O.
Schwarz, Microporous Mesoporous Mater. 208, 1 (2015).

[9] R. F. Egerton et al., Physical Principles of Electron Microscopy
(Springer, New York, 2005).

[10] L. A. Giannuzzi et al., Introduction to Focused Ion Beams:
Instrumentation, Theory, Techniques and Practice (Springer
Science & Business Media, New York, 2004).

[11] P.-E. Øren and S. Bakke, Transp. Porous Media 46, 311 (2002).
[12] K. Van Breugel, Cement Concrete Res. 25, 522 (1995).
[13] D. P. Bentz, P. V. Coveney, E. J. Garboczi, M. F. Kleyn, and

P. E. Stutzman, Modell. Simul. Mater. Sci. Eng. 2, 783 (1994).
[14] K. Ankit, J. L. Urai, and B. Nestler, J. Geophys. Res.: Solid

Earth 120, 3096 (2015).
[15] N. Prajapati, M. Selzer, B. Nestler, B. Busch, C. Hilgers, and

K. Ankit, J. Geophys. Res.: Solid Earth 123, 6378 (2018).
[16] S. Torquato and B. Lu, Phys. Rev. E 47, 2950 (1993).
[17] C. L. Y. Yeong and S. Torquato, Phys. Rev. E 57, 495 (1998).
[18] K. J. Kearfott and S. E. Hill, IEEE Trans. Medical Imaging 9,

128 (1990).
[19] M. V. Karsanina, K. M. Gerke, E. B. Skvortsova, and D.

Mallants, PLoS One 10, e0126515 (2015).
[20] L. M. Pant, S. K. Mitra, and M. Secanell, Phys. Rev. E 92,

063303 (2015).

[21] F. B. Guardiano and R. M. Srivastava, in Geostatistics Troia’92
(Springer, New York, 1993), pp. 133–144.

[22] S. Strebelle, Math. Geol. 34, 1 (2002).
[23] G. Mariethoz, P. Renard, and J. Straubhaar, Water Resour. Res.

46, W11536 (2010).
[24] P. Tahmasebi, M. Sahimi, and J. Caers, Comput. Geosci. 67, 75

(2014).
[25] L. Mosser, O. Dubrule, and M. J. Blunt, Transp. Porous Media

125, 81 (2018).
[26] E. Laloy, R. Hérault, J. Lee, D. Jacques, and N. Linde,

Adv. Water Resour. 110, 387 (2017).
[27] E. Laloy, R. Hérault, D. Jacques, and N. Linde, Water Resour.

Res. 54, 381 (2018).
[28] J. Feng, Q. Teng, X. He, and X. Wu, Acta Mater. 159, 296

(2018).
[29] R. Cang, Y. Xu, S. Chen, Y. Liu, Y. Jiao, and M. Y. Ren,

J. Mech. Des. 139, 071404 (2017).
[30] Q. T. Phung, Ph.D. thesis, Ghent University, 2015.
[31] T. C. Coburn, Technometrics 42, 437 (2000).
[32] X. Tan, P. Tahmasebi, and J. Caers, Math. Geosci. 46, 149

(2014).
[33] W. Ben-Ameur, Comput. Optim. Appl. 29, 369 (2004).
[34] W. R. Campaigne and P. W. Fieguth, IEEE Trans. Image

Process. 22, 1486 (2013).
[35] M. V. Karsanina and K. M. Gerke, Phys. Rev. Lett. 121, 265501

(2018).
[36] K. M. Gerke, M. V. Karsanina, and D. Mallants, Sci. Rep. 5,

15880 (2015).
[37] G. Mariethoz, J. Straubhaar, P. Renard, T. Chugunova, and P.

Biver, Environ. Modell. Softw. 72, 184 (2015).
[38] C. Hua, P. Acker, and A. Ehrlacher, Cement Concrete Res. 25,

1457 (1995).
[39] Y. Xi and H. M. Jennings, Mater. Struct. 30, 329 (1997).
[40] A. Comunian, P. Renard, and J. Straubhaar, Comput. Geosci.

40, 49 (2012).
[41] Y. Jiao and N. Chawla, J. Appl. Phys. 115, 093511 (2014).
[42] T. Tang, Q. Teng, X. He, and D. Luo, J. Microsc. 234, 262

(2009).
[43] https://github.com/LaLemmens.

053316-21

https://doi.org/10.1615/JPorMedia.v20.i1.30
https://doi.org/10.1615/JPorMedia.v20.i1.30
https://doi.org/10.1615/JPorMedia.v20.i1.30
https://doi.org/10.1615/JPorMedia.v20.i1.30
https://doi.org/10.1016/j.advwatres.2012.03.003
https://doi.org/10.1016/j.advwatres.2012.03.003
https://doi.org/10.1016/j.advwatres.2012.03.003
https://doi.org/10.1016/j.advwatres.2012.03.003
https://doi.org/10.1103/PhysRevE.70.066135
https://doi.org/10.1103/PhysRevE.70.066135
https://doi.org/10.1103/PhysRevE.70.066135
https://doi.org/10.1103/PhysRevE.70.066135
https://doi.org/10.1016/j.petrol.2016.10.065
https://doi.org/10.1016/j.petrol.2016.10.065
https://doi.org/10.1016/j.petrol.2016.10.065
https://doi.org/10.1016/j.petrol.2016.10.065
https://doi.org/10.1126/science.226.4673.456
https://doi.org/10.1126/science.226.4673.456
https://doi.org/10.1126/science.226.4673.456
https://doi.org/10.1126/science.226.4673.456
https://doi.org/10.1016/j.micromeso.2015.01.022
https://doi.org/10.1016/j.micromeso.2015.01.022
https://doi.org/10.1016/j.micromeso.2015.01.022
https://doi.org/10.1016/j.micromeso.2015.01.022
https://doi.org/10.1023/A:1015031122338
https://doi.org/10.1023/A:1015031122338
https://doi.org/10.1023/A:1015031122338
https://doi.org/10.1023/A:1015031122338
https://doi.org/10.1016/0008-8846(95)00041-A
https://doi.org/10.1016/0008-8846(95)00041-A
https://doi.org/10.1016/0008-8846(95)00041-A
https://doi.org/10.1016/0008-8846(95)00041-A
https://doi.org/10.1088/0965-0393/2/4/001
https://doi.org/10.1088/0965-0393/2/4/001
https://doi.org/10.1088/0965-0393/2/4/001
https://doi.org/10.1088/0965-0393/2/4/001
https://doi.org/10.1002/2015JB011934
https://doi.org/10.1002/2015JB011934
https://doi.org/10.1002/2015JB011934
https://doi.org/10.1002/2015JB011934
https://doi.org/10.1103/PhysRevE.47.2950
https://doi.org/10.1103/PhysRevE.47.2950
https://doi.org/10.1103/PhysRevE.47.2950
https://doi.org/10.1103/PhysRevE.47.2950
https://doi.org/10.1103/PhysRevE.57.495
https://doi.org/10.1103/PhysRevE.57.495
https://doi.org/10.1103/PhysRevE.57.495
https://doi.org/10.1103/PhysRevE.57.495
https://doi.org/10.1109/42.56337
https://doi.org/10.1109/42.56337
https://doi.org/10.1109/42.56337
https://doi.org/10.1109/42.56337
https://doi.org/10.1371/journal.pone.0126515
https://doi.org/10.1371/journal.pone.0126515
https://doi.org/10.1371/journal.pone.0126515
https://doi.org/10.1371/journal.pone.0126515
https://doi.org/10.1103/PhysRevE.92.063303
https://doi.org/10.1103/PhysRevE.92.063303
https://doi.org/10.1103/PhysRevE.92.063303
https://doi.org/10.1103/PhysRevE.92.063303
https://doi.org/10.1023/A:1014009426274
https://doi.org/10.1023/A:1014009426274
https://doi.org/10.1023/A:1014009426274
https://doi.org/10.1023/A:1014009426274
https://doi.org/10.1029/2008WR007621
https://doi.org/10.1029/2008WR007621
https://doi.org/10.1029/2008WR007621
https://doi.org/10.1029/2008WR007621
https://doi.org/10.1016/j.cageo.2014.03.009
https://doi.org/10.1016/j.cageo.2014.03.009
https://doi.org/10.1016/j.cageo.2014.03.009
https://doi.org/10.1016/j.cageo.2014.03.009
https://doi.org/10.1007/s11242-018-1039-9
https://doi.org/10.1007/s11242-018-1039-9
https://doi.org/10.1007/s11242-018-1039-9
https://doi.org/10.1007/s11242-018-1039-9
https://doi.org/10.1016/j.advwatres.2017.09.029
https://doi.org/10.1016/j.advwatres.2017.09.029
https://doi.org/10.1016/j.advwatres.2017.09.029
https://doi.org/10.1016/j.advwatres.2017.09.029
https://doi.org/10.1002/2017WR022148
https://doi.org/10.1002/2017WR022148
https://doi.org/10.1002/2017WR022148
https://doi.org/10.1002/2017WR022148
https://doi.org/10.1016/j.actamat.2018.08.026
https://doi.org/10.1016/j.actamat.2018.08.026
https://doi.org/10.1016/j.actamat.2018.08.026
https://doi.org/10.1016/j.actamat.2018.08.026
https://doi.org/10.1115/1.4036649
https://doi.org/10.1115/1.4036649
https://doi.org/10.1115/1.4036649
https://doi.org/10.1115/1.4036649
https://doi.org/10.1080/00401706.2000.10485733
https://doi.org/10.1080/00401706.2000.10485733
https://doi.org/10.1080/00401706.2000.10485733
https://doi.org/10.1080/00401706.2000.10485733
https://doi.org/10.1007/s11004-013-9482-1
https://doi.org/10.1007/s11004-013-9482-1
https://doi.org/10.1007/s11004-013-9482-1
https://doi.org/10.1007/s11004-013-9482-1
https://doi.org/10.1023/B:COAP.0000044187.23143.bd
https://doi.org/10.1023/B:COAP.0000044187.23143.bd
https://doi.org/10.1023/B:COAP.0000044187.23143.bd
https://doi.org/10.1023/B:COAP.0000044187.23143.bd
https://doi.org/10.1109/TIP.2012.2233482
https://doi.org/10.1109/TIP.2012.2233482
https://doi.org/10.1109/TIP.2012.2233482
https://doi.org/10.1109/TIP.2012.2233482
https://doi.org/10.1103/PhysRevLett.121.265501
https://doi.org/10.1103/PhysRevLett.121.265501
https://doi.org/10.1103/PhysRevLett.121.265501
https://doi.org/10.1103/PhysRevLett.121.265501
https://doi.org/10.1038/srep15880
https://doi.org/10.1038/srep15880
https://doi.org/10.1038/srep15880
https://doi.org/10.1038/srep15880
https://doi.org/10.1016/j.envsoft.2015.07.007
https://doi.org/10.1016/j.envsoft.2015.07.007
https://doi.org/10.1016/j.envsoft.2015.07.007
https://doi.org/10.1016/j.envsoft.2015.07.007
https://doi.org/10.1016/0008-8846(95)00140-8
https://doi.org/10.1016/0008-8846(95)00140-8
https://doi.org/10.1016/0008-8846(95)00140-8
https://doi.org/10.1016/0008-8846(95)00140-8
https://doi.org/10.1007/BF02480683
https://doi.org/10.1007/BF02480683
https://doi.org/10.1007/BF02480683
https://doi.org/10.1007/BF02480683
https://doi.org/10.1016/j.cageo.2011.07.009
https://doi.org/10.1016/j.cageo.2011.07.009
https://doi.org/10.1016/j.cageo.2011.07.009
https://doi.org/10.1016/j.cageo.2011.07.009
https://doi.org/10.1063/1.4867611
https://doi.org/10.1063/1.4867611
https://doi.org/10.1063/1.4867611
https://doi.org/10.1063/1.4867611
https://doi.org/10.1111/j.1365-2818.2009.03173.x
https://doi.org/10.1111/j.1365-2818.2009.03173.x
https://doi.org/10.1111/j.1365-2818.2009.03173.x
https://doi.org/10.1111/j.1365-2818.2009.03173.x
https://github.com/LaLemmens

