
PHYSICAL REVIEW E 100, 053312 (2019)

Calculation of tensorial flow properties on pore level: Exploring the influence of boundary
conditions on the permeability of three-dimensional stochastic reconstructions
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While it is well known that permeability is a tensorial property, it is usually reported as a scalar property or
only diagonal values are reported. However, experimental evaluation of tensorial flow properties is problematic.
Pore-scale modeling using three-dimensional (3D) images of porous media with subsequent upscaling to a
continuum scale (homogenization) is a valuable alternative. In this study, we explore the influence of different
types of boundary conditions on the external walls of the representative modeling domain along the applied
pressure gradient on the magnitude and orientation of the computed permeability tensor. To implement periodic
flow boundary conditions, we utilized stochastic reconstruction methodology to create statistically similar (to
real porous media structures) geometrically periodic 3D structures. Stochastic reconstructions are similar to
encapsulation of the porous media into statistically similar geometrically periodic one with the same permeability
tensor. Seven main boundary conditions (BC) were implemented: closed walls, periodic flow, slip on the walls,
linear pressure, translation, symmetry, and immersion. The different combinations of BCs amounted to a total
number of 15 BC variations. All these BCs significantly influenced the resulting tensorial permeabilities,
including both magnitude and orientation. Periodic boundary conditions produced the most physical flow
patterns, while other classical BCs either suppressed crucial transversal flows or resulted in unphysical currents.
Our results are crucial to performing flow properties upscaling and will be relevant to computing not only
single-phase but also multiphase flow properties. Moreover, other calculation of physical properties such as some
mechanical, transport, or heat conduction properties may benefit from the technique described in this study.
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I. INTRODUCTION

The exact description of pore-scale flow and transport is
of great interest in numerous scientific and industrial fields:
petroleum engineering [1,2], hydrology [3,4], soil science [5],
fuel cell development [6], nuclear waste disposal [7,8], and
food engineering [9], to name just a few. Such description is
helpful in numerous instances, one of which is the possibility
of supplying input data to larger-scale Darcian continuum
models for potential future usage. Depending on the degree
of anisotropy and statistical inhomogeneity of the modelled
porous media domain, the introduction of tensorial flow prop-
erties into hydrodynamics simulators may significantly influ-
ence results [10–12], as only diagonal terms (i.e., flow prop-
erties derived from flow rate collinear with pressure gradient
along three major orthogonal directions) are usually utilized
for parametrization. However, the possibility to compute the
full tensor of flow properties is especially attractive due to the
increasing complexity of its measurements in the laboratory
(e.g., Ref. [13]). Tensorial flow and transport properties may
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include permeability, relative permeabilities, and capillary
curves for two- and three-phase filtration, dispersion tensor
for species transport, and other useful properties. While all
of them are important in the aforementioned research fields,
from now on we shall mainly focus on permeability due to the
pervasiveness of the problem; also, permeability is crucial in
the evaluation of all other properties (e.g., defines the absolute
maximum for relative permeability curves or represents flow
field necessary to simulate dispersion).

Although tensorial permeabilities were reported in re-
search studies previously, the accuracy of the obtained so-
lutions may be low due to the uncertainty with boundary
conditions (BCs). In order to compute permeability tensor,
one needs to simulate the velocity field, which is usually
obtained using the lattice Boltzmann (LBM) method [14,15],
finite-difference (FDM) Stokes solver [14,16], finite-element
(FEM) or finite-volume method [17,18], or pore networks
[19]. Each approach has some specific implementation of the
boundary conditions, but in general, they utilize conventional
options such as closed walls along imposed pressure gradi-
ent or periodic boundary conditions on these walls (within
a rectangular or cubic modeling domain). As was recently
discussed by Guibert et al. [18], such boundary conditions
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are not necessarily physically meaningful. They explored a
number of additional, more physically based, boundary con-
ditions (e.g., linear pressure or immersion into porous region
of known properties) but limited their study to nonperiodic
two-dimensional (2D) pore structures.

It is important to understand that implementation of bound-
ary conditions for pore-scale simulations is generally affected
by two different factors: (1) the principles of the numerical
method utilized and its computational efficiency and (2) the
way the 3D pore geometry images are obtained. In the case
of the first factor, for example, the linear pressure boundary
condition is not easy to impose in LBM and FDM models
due to inherent numerical schemes; the periodic or symmetric
configuration requires the enlargement of the modeling do-
main 8 times for 3D simulations, which is computationally
expensive. The 3D images of porous media are usually ob-
tained using x-ray computed tomography imaging [20–22] or
combinations of methods to fuse multiscale images [23–25].
The resulting structure represents a limited volume of pores
connected to pores outside the sample, which readily conduct
flow if placed within porous media massif. But these pores
are no longer interconnected if the sample is extracted from
the surrounding media, and a simple application of periodic
boundary conditions or copying with translation is not a
relevant solution. This is due to the fact that real porous media
images are rarely, if ever, periodic or symmetric. This explains
why these conventional boundary conditions are not accurate,
yet more physically meaningful conditions are nearly impos-
sible to implement. To solve this problem, Guibert et al. [18]
proposed a novel boundary condition that technically applies
flow periodicity to nonperiodic structure by adding continuum
homogeneous layers outside the pore-scale modeling domain
and utilizing effective medium approximation. While nondi-
agonal values of the tensor obtained using this approach were
naturally more symmetrical than for any other method they
tested, the diagonal values were significantly lower. Moreover,
the method involved Brinkmans model of coupling between
continuum- and pore-scale domains and iterative solutions
for simultaneous modeling in both of them, which requires
additional meshing and computational effort.

Our study was inspired by the stimulating work of Guibert
et al. [18] and the idea that permeability tensor computed
on 3D periodic geometries applying periodic flow conditions
can be a relevant approach. There is a method to produce 3D
images based on limited input data called stochastic recon-
struction. Originally the idea of this approach was to create
3D structure from its 2D representation when x-ray microto-
mography devices were not yet available for extensive usage
[26,27], but later it was recognized that stochastic reconstruc-
tion can be useful in many other instances [28–32], including
building multiscale structure digital models [25,33–35] or
characterizing subsurface geological domains via multiple-
point statistics [36,37]. Regardless of the exact methodol-
ogy employed, if during reconstruction geometrical periodic
boundary is applied, it is possible to create a statistically
similar replica of the original porous media where any pore
leaving one boundary of the domain will reconnect to the pore
on the other side. The objective of this paper is to explore
the influence of boundary conditions on pore-scale simu-
lated permeability tensor. But unlike previous works, here we

utilized stochastic reconstructions to create statistically simi-
lar replicas of real pore geometries with periodic pore struc-
tures. This idea establishes a new approach to assess tenso-
rial flow properties based on stochastic reconstructions with
simple, yet physically meaningful, flow modeling boundary
conditions.

II. MATERIALS AND METHODS

A. Three-dimensional pore geometries

To create stochastic replicas, we chose two porous media
of different genesis—shale and soil samples. Original images
are 2D slices obtained using x-ray microtomography [38] and
thin sectioning [30], respectively. These already-segmented
(separated into pores and solids) images were rotated to redi-
rect the major anisotropy in a diagonal direction (to increase
the magnitude of the off-diagonal terms of the computed
permeability tensors) and then cropped to 350 × 350-pixel
squares to use as input data for stochastic reconstructions.
The general scheme of the image processing and 3D input
geometries preparation is shown in Fig. 1.

For stochastic reconstructions, we utilized a correlation
function (CF) method based on a modified Yeong-Torquato
technique [27]. For faster convergence and better accuracy,
we also implemented hierarchical simulated annealing [39].
At first, the original 2D image is used to compute a set of two
types of correlations functions: (1) the two-point probability
function S2 describing the probability that two points sepa-
rated by a vector displacement r(x1, x2) between x1 and x2 lie
in the same phase and (2) the lineal function L2 describing
the probability that the whole segment r lies within the given
phase. Note that while S2 is computed for the pore phase only,
the lineal correlation function is computed separately for both
pore and solid phases (black and gray on Fig. 1). There is no
point in computing S2 for both binary phases, as each one of
them can be calculated from the other [40]. We calculate S2

and L2 in two orthogonal and two diagonal directions. Details
of directional CF computation have been previously described
elsewhere, and thus only a brief description is provided here;
for more information please refer to Gerke et al. [41] and
Karsanina et al. [30]. As we reconstruct the 3D structure,
the third dimension is not known from the 2D input image
and to estimate it we simply average CFs from two known
dimensions. While not necessarily an accurate method in the
case of reconstructing real anisotropic porous media, here we
desirably create a different third dimension that should make
more distinct off-diagonal terms of the permeability tensor.

For any set of correlation functions considered in the 3D
reconstruction technique, matching correlation functions of
a given realization with an original reference 2D image is
based on voxel permutations. If a set of two-point correlation
functions used in reconstruction is provided in the form of
f α
2 (r), where α is a type of CF and r is a segment of varying

length, then the difference between two realizations of the
structure can be expressed as the sum of squared differences
between sets of correlation functions [27,33]:

E =
∑

α

wα

∑
r

[
f α
2 (r) − f̂ α

2 (r)
]2

, (1)
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FIG. 1. General scheme of the image processing, 3D stochastic reconstructions, and preparation of the pore geometries for pore-scale
simulations (pores are shown in black).

where f α
2 (r) and f̂ α

2 r are the values of the CF sets for two re-
alizations (where the former represents a reference 2D image
while the latter represents the structure under reconstruction)
and wα is a weight factor used to improve convergence. In
Eq. (1), E represents the “energy” of the system, which is
minimized by the simulated annealing algorithm [42]. We
start from a random structure and change voxel positions
while checking the systems energy according to Eq. (1) and
sequentially jump from coarser to finer scales [39]. The
Metropolis algorithm is used [43] for the simulated annealing
algorithm, which describes the probability p of accepting (or
rejecting) every single random permutation of pixels between
pore and solid phases in the following way:

p(Eold → Enew) =
{

1,�E < 0
exp(−�E/T ),�E � 0 , (2)

where T is the so-called temperature of the system and

�E = Enew − Eold. (3)

The initial temperature T is chosen so that the probability p
for �E � 0 equals 0.5 [27]. We utilized the following cooling
schedule based on the geometrical progression of the form:

T (k) = T (k − 1)λ, (4)

where k is time step and λ is a parameter smaller than but
close to unity. We used the annealing schedule parameter λ =
0.999999 for all reconstructions.

To improve the speed of convergence, we adopted a rel-
atively simple permutation approach following Čapek et al.
[44] and Veselý et al. [45]: (1) choosing a random location
within a phase of interest and (2) choosing two random
directions in which two pairs of pixels with a minimum
distance in-between are selected such that they satisfy the
conditions of lying in opposite phases and at the interface.
The size of all 3D reconstructions was 1603 voxels, which is a
good trade-off between the volume of the reconstruction and
computational resources required later for flow simulations.
We chose a cut-off length of r = 80 for all CFs computa-
tions and stochastic reconstructions, which actually makes
sense as this value is half of the reconstruction size. Periodic
boundary conditions were applied for CFs evaluation during
reconstruction procedure, which is critical to be able to apply
desired flow modeling boundary conditions later. The re-
construction procedure was terminated after 106 consecutive
unsuccessful permutations. Weight factors wα in Eq. (1) were
chosen according to the methodology described in Gerke and
Karsanina [33].

After stochastic replicas were obtained as described above,
we meshed the pore space only (as later we simulate single
phase creeping flow within the pores). To mesh 3D pore
geometries, we utilized a free Matlab toolbox iso2mesh [46].
While creating unstructured meshes, we varied meshing pa-
rameters, mainly the size of the maximum element (MES),
to find a good trade-off between the coarseness of the mesh
(relevant to CPU and RAM resources usage) and the accuracy
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FIG. 2. Schematic diagrams of all boundary conditions explored shown in 2D for clarity: (a) the flow in real subsurface system containing
the modeling domain, (b) CW BC, (c) Per BC, (d) Slip BC, (e) Free BC, (f) Trans BC, (g) Sym BC, and (h) Subim BC (a more-detailed
description of each boundary condition is presented in the text).

of the solution (see the results of the mesh sensitivity study
below).

B. Boundary conditions

In this subsection, we discuss all the BCs on the ex-
ternal walls of the modeling domain carried out in this
study. For simplicity and in line with previously described
3D pore geometry reconstruction procedure, we work with
cubical modeling domains which have six faces. Potentially,
all BCs discussed below can be extended to noncubical
modeling domains. The general scheme of all boundary
conditions explored here is shown in Fig. 2, and all the
major details are explained in the respective subsections
below.

1. Closed walls

The first classic boundary condition, closed walls (CW),
is probably the most commonly used for flow simulations
[Fig. 2(b)]. It is a pressure imposed type of BC where one face
serves as an inlet and the face opposing it serves as the outlet.
A pressure gradient is imposed between inlet and outlet to

induce the flow. All four other faces of the cube parallel to the
pressure gradient are treated as closed walls, thus simulating
the permeameter laboratory measurement technique. This BC
type is very easy to implement in most numerical methods, as
the external walls have the same no-slip boundary condition
as a pore-solid boundary in the rest of the modeling domain.
However, this results in suppressed transversal flow within the
sample.

2. Periodic

Periodic (Per) is another type of classical boundary condi-
tion where each face connects to the opposite face [Fig. 2(c)].
Simply put, the flow leaving the domain from one side re-
enters from the other one. This is the most critical BC for
our study and we created 3D stochastic reconstructions with
periodic pore geometries to fully exploit all the possibilities
from this boundary condition type. Transversal flow is, thus,
allowed within the sample in a manner similar to being within
a porous media massif [Fig. 2(a)]. Notably, this BC type was
not studied in the work of Guibert et al. [18].
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FIG. 3. Preparation of larger 3D images from original stochastic replicas by translation and symmetry for (a) shale and (b) soil samples
(pores are in black).

3. Symmetry or slip on the walls

Symmetry or slip on the walls (Slip) represents an interme-
diate step between closed walls and periodic BCs [Fig. 2(d)].
The velocities tangential to the walls are allowed to develop as
if there were no walls at all (slip flow), yet all velocities nor-
mal to the walls are zeros. This BC also suppresses transversal
flow within the sample but partially circumvents the issue of
no-flow boundary along all four faces of the modeling domain
in terms of diagonal permeability tensor terms by allowing
nonzero velocities along the boundaries. Note that this BC is
also refered to as free-slip BC [47] and is not related to slip on
the pore-solid boundaries, e.g., during rarefied gas flow.

4. Free or linear pressure

Free or linear pressure (Free) comes from Darcy-scale
upscaling procedures [48] and tries to emulate the situation
in Fig. 2(a) where fluid around the sample can enter and leave
the sample depending on the local pressure conditions, thus
allowing for transverse flow. In addition to the pressure im-
posed on inlet and outlet faces, all the other four faces parallel
to the main pressure gradient have imposed pressures varying
linearly along their length from inlet to outlet [Fig. 2(e)].

5. Translated and symmetrical configurations

As our 3D pore geometries are periodic, we can check the
classical closure problem solution by geometrical translation
and symmetry [49]. The idea of the translated and symmet-
rical configurations (Trans and Sym) boundary conditions is
to allow transverse flow by connecting pores to the mirror
image (symmetry) for nonperiodic pore structures. Simple
translation may result in nonpercolating images (see Fig. 1
in Guibert et al. [18]) but applicable to our periodic images.
Thus, we explore both options for completeness. The resulting
3D images are 8 times more voluminous and are shown

in Fig. 3. The flow is simulated using regular closed walls
and periodic boundary conditions. We estimate permeability
tensor in the whole image and in the center 1603 voxels cube,
as was previously done by Guibert et al. (2016).

6. Subvolume immersion

Subvolume immersion (Subim) is another way to promote
the transversal flow in nonperiodic geometry configurations,
which requires the immersion of the sample into a larger
volume [Fig. 2(g)]. The novel approach of Guibert et al. [18]
was to encapsulate the nonperiodic sample into some porous
media (Darcian scale) and to iteratively adjust its permeability
tensor so that it would equal the computed tensor for the
whole domain. This very interesting idea is actually quite
simple: to immerse the sample in the same periodic (thanks
to Darcian continuum-scale representation, the nonperiodicity
of the pore geometry is not an issue any more) porous media,
thus creating realistic boundary conditions as in Fig. 2(a),
although we do not implement the same approach exactly,
as this condition is already fulfilled within our stochastic
reconstructions. However, to further elucidate some important
aspects of the immersion technique we considered its modifi-
cation: immersion of the sample into the fluid which can freely
flow in and out of the sample. The width of the fluid layer
l f is the parameter of this type of boundary condition (and
excluded from the analysis during tensor evaluation). Pressure
gradient is applied through inlet and outlet faces, while all the
other four faces are treated with periodic BCs.

C. Numerical methods

In order to compute permeability tensor, we solve Stokes’s
equation within 3D pore geometries to simulate flow with low
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Reynolds number, referred to as creeping flow:{
μ��v − ∇p = 0
∇ · �v = 0 , (5)

where �v is velocity field, μ is fluid viscosity, and p is pres-
sure field. No-slip boundary condition is maintained across
all pore-solid interfaces. If pressure boundary conditions are
applied, one can solve this problem numerically to obtain
velocity field, which we do using two different methods: (1)
finite-difference Stokes solver (FDMSS) [16] and (2) FEM-
based commercial software Comsol Multiphysics, v5.3. The
reason we utilize two different methods lies with the wide
variety of boundary conditions and computational resources
needed to obtain a solution.

The FDMSS software is computationally efficient, oper-
ates on voxel-based images such as shown in Figs. 1 and
3, and has CW and Per BCs already implemented. Other
BCs are not simple to implement within a staggered grid
scheme, except for Subim, which simply required an addition
of fluid voxels around the 3D pore geometry (which was
done separately by creating a larger 3D input geometry). The
Trans and Sym BCs were also naturally easy to implement, as
those are the special case of Per BC after a new geometry
configuration is created. For more details on the FDMSS
methodology, see Gerke et al. [16].

Flow modeling with Comsol Multiphysics requires mesh-
ing and more abundant computing resources, especially RAM.
But it provides a number of very powerful choices to imple-
ment boundary conditions, namely Slip BC using the “Sym-
metry” condition on four faces of the cubic domain parallel to
the pressure gradient, and Free BC using “Inlet” and “Outlet”
conditions with unchecked suppressed back-flow and a linear
pressure gradient along each of the four faces. The choice of
fluid discretization affects the quality of the solution, so we
explored a number different options, namely P1+P1, P2+P1,
and P2+P2 for velocity and pressure (which guarantee the
global conservation) options, respectively. We chose a parallel
sparse direct solver (PARDISO), which proved to be a good
compromise among stability, RAM, and CPU time require-
ments.

All input parameters for both FDMSS and Comsol simula-
tions (e.g., fluid viscosity and pressure gradient) were adjusted
in such a way that all resulting flow velocities would be in
pixels per second and permeability in pixels squared (i.e.,
the unit size of the lattice of the stochastically reconstructed
images). Using pixels as dimensionless units is convenient to
combine the results, as no comparison of computed perme-
abilities against measured real data was performed.

D. Tensor evaluation

The permeability tensor is computed according to Darcy′s
law:

K = −μφ〈�v〉
∇p

, (6)

where 〈�v〉 is the average flow velocity vector coming as the
solution of Stokes’s flow problem, φ is the porosity of the
3D image, and ∇p is pressure gradient. If ∇p is imposed in
three orthogonal directions and pressure and velocity fields

p and �v are assessed numerically by solving Eq. (5), then
the full-permeability second-rank tensor can be evaluated. For
our cubic modeling domains, we apply a pressure gradient in
three major orthogonal directions, x, y, and z, and solve the
following system of linear equations to obtain tensor K:⎛

⎜⎝
vx

x v
y
x vz

x

vx
y v

y
y vz

y

vx
z v

y
z vz

z

⎞
⎟⎠ = − 1

μφ

⎛
⎝Kxx Kxy Kxz

Kyx Kyy Kyz

Kzx Kzy Kzz

⎞
⎠

×

⎛
⎜⎝

∇px
x ∇py

x ∇pz
x

∇px
y ∇py

y ∇pz
y

∇px
z ∇py

z ∇pz
z

⎞
⎟⎠, (7)

where superscripts for flow velocity and pressure fields refer
to the orientation of the imposed pressure gradients and sub-
scripts represent the direction of the solution, both along the
same major x, y, and z axes. The transverse (subscript �= su-
perscript) pressure gradients on the right-hand side of Eq. (7)
are computed based on results of the numerical solution of
the Stokes equation [Eq. (5)] by averaging pressure values,
p, between the opposed faces of the modeling domain. To
elucidate the importance of the diagonal transverse pressure
gradients we also compute permeability tensor K0, which is
also frequently used in the literature:⎛

⎜⎝
vx

x v
y
x vz

x

vx
y v

y
y vz

y

vx
z v

y
z vz

z

⎞
⎟⎠ = − 1

μφ
K0

⎛
⎜⎝

∇px
x 0 0

0 ∇py
y 0

0 0 ∇pz
z

⎞
⎟⎠. (8)

While it is well established that the permeability tensor is
symmetrical [50], the numerical solution of Eqs. (7) and
(8) usually results in nonequal corresponding off-diagonal
terms [14,15,18,51]. Therefore, it is a common practice to
symmetrize it, for instance, by:

Ksym = 1
2 (K + KT ). (9)

The second approach (usually referenced to as the Durlof-
sky method according to the corresponding paper) is to en-
force symmetry by adding additional constrains while solving
Eq. (7) or Eq. (8) [52,53]:

⎧⎪⎨
⎪⎩

Eq. (7) or Eq. (8)
Kxy = Kyx

Kzx = Kxz

Kzy = Kyz

. (10)

We shall routinely report the results of tensor permeabil-
ities K and K0 calculations for both soil and shale samples
according to all boundary conditions described in Sec. II B.
The values of Ksym [Eq. (9)] and that according to the
Durlofsy method [Eq. (10)] were also computed but will
be reported only in relevant special cases to highlight their
potential usefulness.

III. RESULTS AND DISCUSSION

A. Major properties of 3D pore geometries

The 3D stochastic reconstructions rendering of the pore
space is shown in Fig. 4 together with two-point probability
and lineal correlation functions computed in different direc-
tions for each sample of pore phase. As expected from the

053312-6



CALCULATION OF TENSORIAL FLOW PROPERTIES ON … PHYSICAL REVIEW E 100, 053312 (2019)

FIG. 4. The rendering of the pore geometry in 3D and directional two-point probability and lineal correlation functions for 3D stochastic
replicas of (a) shale and (b) soil. The y and z directions are similar to original images shown in Fig. 1, while the x direction is the one deduced
as their average (according to correlation function statistics as shown on the right side).

input 2D geometries (Fig. 1), the most connected is the diago-
nal zy direction, while yz is the least-connected one. All other
diagonal directions are between those two as by the design of
the reconstruction procedure. Note that in Fig. 4 the diagonal
correlations are computed to longer lengths; this is due to the
fact that the diagonal of the voxel is

√
2 larger than its side.

The major orthogonal directions are almost the same in terms
of both correlation functions with the y direction being only
slightly more connected than z, with x (the average) lying
in between. All S2 reache values close to φ2 with increasing
correlation length and all L2 decay to 0. This indicates that 3D
pore geometry can be considered as representative elementary
volume (REV) according to correlation functions statistics
[44,54]; note that the correlation length shown is half of the
actual 3D cubical image with the volume of 1603 voxels. It is
important to highlight that this REV is purely morphological
and does not guarantee REV for permeability (which we shall
study later on after establishing correct BCs). The aim of the
stochastic reconstruction was to create a complex and highly
anisotropic structure with possible large off-diagonal terms of
permeability tensor. The visualization of the pore geometry in
Fig. 4, as well as correlation functions statistics, both suggest
that the 3D images created satisfy these requirements and
could be loosely described as porous samples with trans-
versely oriented cracks highly connected by smaller pores
spanning in all directions. The connectivity was also checked

by computing directional cluster correlation function, which
was very close to two-point probability S2 (and, thus, not
shown here), as pores mainly formed one large cluster.

B. Mesh sensitivity and validation of consistency
between FDMSS and Comsol solutions

The unstructured meshes for both samples, which were
used for simulations with Comsol, are shown in Fig. 5. Note
that while FDMSS automatically addresses the problem of
unconnected porosity, for meshing purposes all such pore
voxels were removed with the help of Hoshen-Kopelman
clustering. The meshing parameter of maximum element size
was chosen based on mesh sensitivity study, which was

TABLE I. The results of the mesh sensitivity study: The influ-
ence of the mesh coarseness on the solution obtained.

MES (voxels)
Total number of

elements in the mesh
Permeability

error(= Value
Reference − 1)

10 450 329 −3.22 ×10−1

3 474 684 −3.20 ×10−1

1.5 732 465 −2.04 ×10−1

1 1 453 080 −3.79 ×10−2

0.75 4 242 978 0
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FIG. 5. The meshes used to perform simulations with Comsol for (a) shale and (b) soil samples.

carried out on five meshes of different coarseness. For each
mesh, we simulated flow in the x direction using CW bound-
ary conditions. The results of the simulations for the soil
sample are shown in Table I for P2+P1 fluid discretization.
While P1+P1 required significantly fewer RAM and CPU
resources, computed velocities or permeabilities were sig-
nificantly lower than with other discretizations. As P2+P1
(default recommended Comsol parameter for Stokes flow
simulations) had only 1.5–3% error compared to P2+P2 for
soil and shale samples, we decided to utilize P2+P1 for all
computations. Based on the results in Table I we concluded
that the meshes with a maximum element size of 1 voxel are
optimal for simulations, as they have shown only −3.8% error
compared to MES = 0.75. The change of MES from 1 to
0.75 resulted in an increase in the number of mesh elements
of 2.9 and such <5% increase in accuracy is not compen-
sated for by the significant rise of computational resources
demands.

Now we need to verify whether FDMSS and Comsol
solutions are consistent, i.e., they provide similar permeability
tensors for the same pore geometry and boundary conditions.
To do so, in addition to complex Free and Slip BCs, we
also simulated simple WC boundary conditions for both sam-
ples with Comsol. In Table II we now compare K evalu-
ated according to Eq. (7) with transverse pressure gradients

between two computational approaches. It is clear that the
congruence between FDMSS and Comsol tensors is not
perfect; in particular, we observe some large discrepancies
between major orthogonal directions—the xx term is lower
for FDMSS soil sample numerical solution, while for shale
sample the yy and zz terms are lower for Comsol. We
see two obvious reasons why solutions with two different
methodologies are disparate here: (1) The FDM and FEM
methods have different sensitivity to the original voxelized 3D
image discretization (i.e., its quality in terms of resolution-to-
characteristic pore size ratio) and (2) some pore connectivity
losses during meshing. The loss of connectivity is the second
reason, but it was probably unclear because of due to some
pore connectivity losses during meshing. The first problem is
complex; however, sensitivity of different pore-scale model-
ing approaches to the 3D image quality is a topic of current
active research [14,16,55,56]. Due to the high anisotropy of
the 3D pore geometries under study, the accuracy of the
FDM voxel-based and FEM mesh-based solution may differ
locally within the sample and such differences result in the
observed discrepancies. The second problem can be seen
on some Comsol-based pressure field visualizations [e.g.,
Fig. 7(c)], but we could anticipate negligible effect from such
small disconnected pore clusters, as they disappear with MES
= 0.75 and the accuracy of the solution with MES = 1 is

TABLE II. Comparison of full permeability tensors K with transversal pressure gradients accounted for as obtained for closed walls
boundary conditions using FDMSS and Comsol modeling frameworks.

Sample FDMSS K(i j) (voxels2) Comsol K(i j) (voxels2)

Shale 0.010529 −0.00504 −0.00188 0.010722 −0.00492 −0.00102
−0.00827 0.015045 −0.00104 −0.0061 0.010819 −0.00078
−0.00083 −0.0006 0.014869 −0.00052 −0.00055 0.012007

Soil 0.019636 −0.01322 0.004433 0.024534 −0.019 0.008274
−0.01391 0.025435 −0.00015 −0.01372 0.024534 −0.0016
−0.00046 0.0018 0.019562 0.001664 0.000277 0.019719
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FIG. 6. Visualization of tensorial permeabilities for the shale sample using 3D ellipsoids (color shading of ellipsoids does not represent
any values and is solely for visual purposes): (a) CW, (b) Per, (c) Slip, (d) Free, (e) Sym (CW, subvolume), and (f) Subim (one pixel) boundary
conditions. Note that coordinate system positioning and magnitude are not the same for each subplot due to visibility issues.

FIG. 7. Visualization of simulated pressure (left) and velocity (right) fields under different boundary conditions: (a) CW, (b) Per, (c) Free,
(d) Sym (CW, subvolume).
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only 3.8% different. Nonetheless, as qualitative deviations
along orthogonal directions are moderate and we actually
observe general correspondence between FDMSS and Com-
sol solution in terms of sign and magnitude for off-diagonal
terms, the accuracy of the solutions with these two methods
is more than satisfactory to address the main aim of our
study and analyze the influence of boundary conditions on
permeability tensor.

C. Influence of boundary conditions
on permeability tensor: Results

The main results of this paper demonstrating tensorial
permeabilities [as computed using Eq. (7) and Eq. (8)] for
shale and soil samples depending on all the investigated
boundary conditions are presented in Table III and Table IV.
For better readability and ease of comparison, all terms have
been normalized by a maximum value in the CW boundary
condition for K tensor.

From the presented results it is clearly evident that except
for the Sym boundary conditions all obtained tensors are
nonsymmetrical. While it is well established that Stokes’s
flow should result in periodic boundary conditions [50,57],
unless Eq. (9) is used, pore-scale computations in the literature
usually report significant nonsymmetry (e.g.,
Refs. [14,15,18,51]. Our experimentation with Eq. (10),
which produces overdetermined system of equations, also
generated nonsymmetrical tensors and, thus, they are not
reported here due to the lack of usefulness from this approach.

The influence of transverse boundary conditions is as ex-
pected: For all CW-based, except Sym, conditions K0 usually
has somewhat lower values as compared to K. For Per-based
conditions the difference is tantamount to simulation errors
due to zero transverse gradients. The same is observed for
Sym subvolume cases where these gradients are also practi-
cally zero. The Free boundary condition has zero transver-
sals by definition (linear pressure drop on all faces parallel
to applied pressure gradient). From the computational point
of view, obtaining K0 and K presents very little difference
compared to the expensive Stokes flow solution. In this light,
computing K at all times is a simple strategy to prevent
any misinterpretation. Thus, we shall consider only Eq. (7)
(full tensor with transversal pressure gradients) results from
now on.

For visualization purposes, it is convenient to compute the
eigenvector of the permeability tensor. This is very useful in
terms of permeability orientation, which in this regard is more
visually informative than the raw tensorial data in Tables III
and IV. Figure 6 depicts permeability tensors in such a way
that both orientation and magnitude are evident.

From Fig. 6 visualizations, we observe that boundary
conditions not only significantly affect magnitude but also
the orientation of the flow. Boundary conditions that are
not shown, namely Trans and multiple subversions of Sym
and Subim, are omitted as they are generally similar to CW
and Per (depending on the side faces flow conditions), e.g.,
Fig. 6(e) and Fig. 6(f), respectively. Notably, the Per and
Subim boundary conditions show identical orientations. Both
the orientation and magnitude of the permeability tensor are
of utmost importance for upscaling, transport, and Darcian-

scale modeling (e.g., Refs. [53,58–60]). Understanding of the
observed differences requires interpretation of the pressure
and velocity fields for each boundary condition, which is
presented in the following subsection.

D. Influence of boundary conditions
on permeability tensor: Interpretation

We carefully analyzed the pressure and velocity fields
for the modelled boundary conditions; some of the most
interesting cases are visualized in Fig. 7. We start with the
comparison of the CW and Per cases in Figs. 7(a) and 7(b).
While pressure fields (images on the left sides) look quite
similar, they are actually very different in terms of transversal
pressure gradients: Due to friction along the walls, CW pro-
duced significant transversal pressure differences, while Per
BCs produced none. Flow fields for these two cases look very
different due to the absence and presence of transversal flow.
Periodic flow resulted in higher velocities and their orientation
along major anisotropy (Fig. 4), thus producing tensors with
different orientations and higher magnitudes (Fig. 6). Such
behavior is expected and was previously observed when com-
puting permeabilities for stochastic reconstructions [33]. The
Slip boundary condition produced pressure and velocity fields
somewhat similar to CW (thus not shown here) with only
one obvious difference: Velocities along the closed walls were
higher, which slightly affected orientation and magnitude of
the permeability tensor compared to CW case. The Free
boundary condition clearly stands out from all other BC types
and produces very specific flow velocity field [e.g., Fig. 7(c)].
While the pressure field generally looks similar to that of
other types, its linear pressure drop with free boundaries
produces inflow into the domain closer to high-pressurized
walls and outflow later [see the red arrow in Fig. 7(c), which
highlights such inflow and outflow areas]. Each domain wall
along the applied pressure gradient exhibits similar behavior
in terms of such inflow-outflow areas creating convection-like
zones within the domain. This severely affects both magnitude
(roughly 5 times higher for Free compared to CW) and
direction of the permeability tensor [Fig. 6(d)]. All Trans BCs,
including both with CW and Per walls, produced pressure
and flow velocity fields similar to pure CW and Per cases,
respectively. This is simply due to the fact that we have
increased the volume of the modeling domain by 8 times by
replicating the same 1603 voxels cubes (i.e., tiling as shown
in Fig. 3). The situation with subdomains is the same as for
full domains as subvolumes are the same original 1603 voxels
images translated by half of their width. We note that the Trans
results are interesting only from the viewpoint of the modeling
domain size (as will be discussed shortly), but its relevance
for computing tensorial flow properties is limited, due to the
fact that for real 3D images translation does not work due to
the absence of geometrical periodicity [18]. The Sym case is
very different from Trans and all other BCs. While original
1603-voxel volumes may behave similarly in terms of pres-
sure and flow velocity fields, the total picture for the whole
3203-voxel symmetry images or their subvolumes [Fig. 7(d)]
differs, as transversal flows within each subdomain negate
each other. This results in zero off-diagonal terms in the
permeability tensor [Fig. 7(e)], which also makes Per flow
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TABLE III. Tensorial permeabilities for shale sample (normalized by 0.015 voxels2).

BC Normalized K0(i j), – Normalized K(i j), –

CW (FDMSS) 0.625842 −0.295635 −0.135928 0.699821 −0.33466 −0.12484
−0.324703 0.950339 −0.081833 −0.54962 1 −0.06897
−0.072938 0.068225 0.991104 −0.05533 −0.04005 0.988281

Per 1.05397 −0.59485 0.034402 1.044269 −0.58005 0.037978
−0.690596 1.582546 −0.004304 −0.66464 1.573106 −0.01643
−0.080391 −0.039526 1.329646 −0.08657 −0.04494 1.330111

Slip 0.687662 −0.27606 −0.08101 0.787254 −0.32677 −0.07508
−0.21518 0.760297 −0.06491 −0.4231 0.810441 −0.05751
−0.04668 0.058638 0.868719 −0.02742 −0.04216 0.869402

Free 2.541671 −0.991134 0.074258 2.526086 −0.82472 0.019246
−0.945979 2.589404 −0.695846 −0.81475 2.558462 −0.78376

0.15541 −0.63308 3.141695 −0.00615 −0.6794 3.186392

Trans (CW) full 0.638734 −0.250758 −0.034239 0.729199 −0.36995 −0.02588
−0.341701 1.104178 −0.011671 −0.63868 1.210328 −0.03468
−0.025137 0.022512 1.010688 −0.01508 −0.00592 1.010756

Trans (CW) subvolume 0.675044 −0.265368 −0.011888 0.75305 −0.40705 0.020285
−0.31321 1.237633 −0.024563 −0.57071 1.345179 −0.04903

0.00564 0.00683 1.023349 0.02249 −0.00261 1.024309

Trans (Per) full 0.902453 −0.563199 0.0211765 0.897933 −0.55749 0.022706
−0.606876 1.476957 −0.009506 −0.59511 1.473173 −0.01562
−0.025059 −0.02313 1.166177 −0.03005 −0.0234 1.166321

Trans (Per) subvolume 0.778853 −0.588079 0.020205 0.788545 −0.5981 0.030706
−0.485918 1.409963 −0.013118 −0.50823 1.416461 −0.02679

0.016321 −0.007410 1.0297101 0.030925 −0.01373 1.030057

Sym (CW) full 0.725804 4.8 ×10−8 1.2 ×10−8 0.725804 4.65 ×10−8 1.18 ×10−8

−3.9 ×10−8 0.975732 −1.1 ×10−8 −3.4 ×10−8 0.975732 −1.2 ×10−8

−2.7 ×10−8 −1.9 ×10−8 1.010865 −2.2 ×10−8 −2.2 ×10−8 1.010865

Sym (CW) subvolume 0.429754 1.6 ×10−7 −1.9 ×10−8 0.429755 1.32 ×10−7 −1.6 ×10−8

−1.6 ×10−8 3.048603 3.7 ×10−8 −3.8 ×10−9 3.048603 6.94 ×10−8

−8.9 ×10−9 −3.4 ×10−7 2.694853 1.17 ×10−8 −3.3 ×10−7 2.694853

Sym (Per) full 0.0.729244 3.7 ×10−8 1.2 ×10−8 0.729244 3.71 ×10−8 1.24 ×10−8

−2.9 ×10−8 1.026878 5.0 ×10−9 −2.9 ×10−8 1.026878 5.2 ×10−9

−4.2 ×10−8 −1.8 ×10−8 1.013677 −4.2 ×10−8 −1.8 ×10−8 1.013678

Sym (Per) subvolume 0.429826 8.2 ×10−8 −4.1 ×10−8 0.429826 7.32 ×10−8 −4.7 ×10−8

1.8 ×10−8 3.073092 1.1 ×10−7 2.85 ×10−8 3.073092 1.9 ×10−8

−4.4 ×10−8 1.7 ×10−7 2.678078 −4.5 ×10−8 1.74 ×10−7 2.678078

Subim (l f = 1 voxel) 1.820209 −0.857433 0.037559 1.802971 −0.83716 0.043159
−0.861077 2.02946 −0.146302 −0.81897 2.021031 −0.16442

0.012022 −0.181073 1.94148 −0.00765 −0.19159 1.943308

Subim (l f = 5 voxels) 3.284926 −1.203717 −0.044104 3.265777 −1.17478 −0.03622
−1.192515 3.372159 −0.658691 −1.13029 3.367408 −0.68809
−0.036891 −0.654005 3.804991 −0.08352 −0.68338 3.811216

Subim (l f = 30 voxels) 6.965928 −1.737805 −0.624981 6.952155 −1.70134 −0.59566
−1.661312 7.11751 −1.3273335 −1.57533 7.122699 −1.38639
−0.414468 −1.1955163 7.754522 −0.48461 −1.26633 7.763253

conditions on the walls the same as CW due to mirror-
ing on these walls. Finally, Subim produces the same nor-
malized pressure and velocity fields, but they are different
in magnitude due to the influence of the fluid layer out-
side of the porous media domain. This case produces the
same orientation of the tensor but much larger permeability
values.

While the highlights of Fig. 7 provide some general visual
information about the flow field, such visualizations are not
enough to depict all the local separate components that are
important to produce the resultant tensor [Eq. (7)]. To further
visually explain the difference between different investigated
boundary condition cases, in Fig. 8 we present a general
scheme (2D for simplicity and in the same manner as was
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TABLE IV. Tensorial permeabilities for soil sample (normalized by 0.0254 voxels2).

BC Normalized K0(i j), – Normalized K(i j), –

CW (FDMSS) 0.547783 −0.079084 0.020259 0.772017 −0.51963 0.174304
−0.112857 0.690753 0.166672 −0.54685 1 −0.00583

0.018278 0.078852 0.778622 −0.01819 0.070778 0.769121

Per 1.682165 −0.862225 0.041116 1.692362 −0.86587 0.051751
−0.685779 1.309949 0.072154 −0.70173 1.310782 0.069725

0.018862 0.099922 1.191890 0.01359 0.09105 1.19218

Slip 0.769833 −0.1765 0.055905 1.163081 −0.75374 0.335401
−0.11376 0.724942 0.172323 −0.53981 1.043933 −0.06637

0.007686 0.062311 0.839652 0.066886 0.009569 0.849702

Free 4.215826 −1.645263 −0.043003 4.255221 −1.53345 0.033788
−1.641811 4.023835 −0.90001 −1.68128 3.977891 −0.75599
−0.061798 −0.942343 3.745335 0.03758 −0.83675 3.733831

Trans (CW) full 0.725940 −0.218769 0.020731 0.91852 −0.59007 0.058104
−0.238556 0.802090 0.073350 −0.57492 1.035091 0.052365

0.019491 0.063729 0.904490 0.006135 0.067334 0.904998

Trans (CW) subvolume 0.745443 −0.2479446 0.026053 0.927912 −0.60521 0.012345
−0.241912 0.829956 0.09077 −0.55928 1.050741 0.129866

0.021595 0.059433 1.043203 −0.01451 0.106623 1.047785

Trans (Per) full 1.218578 −0.688238 0.008969 1.221944 −0.68754 0.008753
−0.631726 1.160912 0.102033 −0.63752 1.160179 0.103104

0.004945 0.113560 1.116849 0.003323 0.109703 1.116982

Trans (Per) subvolume 0.981353 −0.692438 −0.035034 0.985458 −0.68839 −0.03652
−0.527622 1.058120 0.127789 −0.53442 1.054958 0.126735
−0.008608 0.120974 1.049175 −0.01669 0.111401 1.048928

Sym (CW) full 0.640853 −1.6 ×10−8 −7.9 ×10−9 0.640853 −1.3 ×10−8 −6.5 ×10−9

−8.6 ×10−9 0.714769 −6.5 ×10−9 −5.4 ×10−9 0.714769 −4 ×10−10

3.2 ×10−8 2.6 ×10−8 0.801697 3.26 ×10−8 3.67 ×10−8 0.801698

Sym (CW) subvolume 0.577481 −5.6 ×10−8 1.2 ×10−8 0.577481 −1.2 ×10−8 9.36 ×10−9

−1.9 ×10−8 0.657982 −1.3 ×10−8 −8.5 ×10−9 0.657983 −1.8 ×10−10

1.9 ×10−8 4.1 ×10−8 0.264680 2.01 ×10−8 3.73 ×10−8 0.26468

Sym (Per) full 0.643011 4.1 ×10−8 −2.2 ×10−8 0.643011 4.11 ×10−8 −2.2 ×10−8

−7.2 ×10−9 0.716719 −2.7 ×10−8 −6.9 ×10−9 0.71672 −2.7 ×10−8

1.8 ×10−8 3.3 ×10−8 0.803523 1.83 ×10−8 3.31 ×10−8 0.803523

Sym (Per) subvolume 0.577520 −6.4 ×10−8 −2.8 ×10−8 0.57752 −4.5 ×10−8 −2.6 ×10−8

−2.6 ×10−8 0.657974 8.1 ×10−9 −2.6 ×10−8 0.657974 6.34 ×10−9

3.7 ×10−8 3.4 ×10−8 0.264646 3.67 ×10−8 2.96 ×10−8 0.264647

Subim (l f = 1 voxel) 2.090728 −0.999958 0.094767 2.099355 −1.00028 0.102494
−0.8969784 1.699184 −0.003424 −0.91299 1.699056 −0.0037

0.029684 0.048184 1.581497 0.016745 0.037808 1.581671

Subim (l f = 5 voxels) 5.027286 −2.06213 −0.1151569 5.047299 −2.06356 −0.07676
−1.968577 4.084249 −0.648477 −1.99923 4.087375 −0.66427
−0.266148 −0.559289 3.872259 −0.30344 −0.57343 3.870076

Subim (l f = 30 voxels) 13.020648 −3.733625 −1.085037 13.07684 −3.79502 −1.01717
−3.850933 11.15109 −2.3809 −3.955 11.17836 −2.4345
−1.486225 −2.33157 11.546347 −1.58909 −2.36035 11.5474

done on the scheme at Fig. 2) for observed flow patterns.
Again, we draw attention to the differences between the
CW and Per cases which highlight the distinction between
the absence and presence of transversal flow. The Free case
shows inflow-outflow pathways on the walls which divide
the domain into a central zone (with flow in the direction
of the gradient) and convective-like zones along the walls
which significantly accelerate the ensemble flow velocities.

The Sym case is better explained using eigenvectors instead
of flow velocity vectors, as shown in Fig. 8(e). Each orig-
inal subvolume (or a part of the central subvolume) has its
own permeability eigenvector. By mirroring the subvolume
geometries, their directions cancel out all transversal flow and
immediately result in zero off-diagonal permeability tensor
terms. The Trans and Subim cases have similar patterns to
that of the Per case, as discussed above, while the magnitude
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FIG. 8. General scheme of the flow patterns observed in the soil and shale reconstructed samples based on the following boundary
conditions: (a) CW, (b) Per, (c) Slip, (d) Free, (e) Sym, and (f) Subim. This scheme does not follow soil and shale sample flow lines closely
but provides the general difference between those under the conditions investigated.

increment for Subim depends on the l f values. Notably, only
Per and Subim BCs produce flow patterns that we expect to
happen in real conditions when porous rock is part of the
larger matrix domain [Fig. 2(a)].

E. General discussion and outlook

The usage of 3D stochastic reconstruction technique al-
lowed us to utilize periodic flow boundary condition and
physically reproduce real flow patterns in the rock massif.
Based on all results of our pore-scale modeling study (mainly
Tables III and IV and Figs. 6–8) we argue that the Per
boundary condition is the most suitable to simulate tenso-
rial flow properties. The immersion of the studied sample
into homogeneous media such as fluid or continuum-scale
representation [18] preserves the tensors orientation but may
change the magnitude. The way to preserve the magnitude
is to encapsulate the sample into its statistically similar ge-
ometrically periodical shell with the same permeability tensor
and stochastic reconstructions providing a readily available
solution.

Now that we have observed significant differences between
different BCs and established the correct one, it is important
to show that these differences are not due limited size effects.
Conventionally this is done by showing that the sample is rep-
resentative in terms of a studied physical property. To perform
conventional permeability REV analysis we calculate a full
tensor for cubical subdomains with widths of 40–160 voxels
around the center of the full-sized sample. For each simulation
we calculate eigenvalues and plot them against the domain

size. If with increasing domain size permeability eigenvalues
converge to stable values, then this would indicate reaching
REV. The results of such an analysis for shale and soil samples
are shown in Fig. 9. To further facilitate the comparison
between different subdomains we included visualizations of
the full permeability tensor similar to those in Fig. 6 for each
subdomain size. Our analysis clearly indicates that both shale
and soil samples are permeability REVs. The shale sample’s
flow property converges around 120 voxels, while the soil
sample hits the plateau around 110 voxels—both in very good
agreement (decay of L2) with statistical measures as shown in
Fig. 4. While this is not necessarily true for many real porous
media samples where different physical properties may have
very different REV sizes, such excellent agreement between
morphological and permeability REVs for both samples is
most likely due to a correlation functions-based stochastic re-
construction methodology that insures statistical homogeneity
of the reconstruction if morphological REV is reached.

The study as described here is not without limits, which
hindered carefully explaining all processes related to pore-
scale single-phase flow and its upscaling to a tensorial perme-
ability. In particular, we studied stochastic reconstructions of
shale and soil samples of limited size (1603 voxels) with both
having somewhat similar structure by design. The numerical
tools we used to solve Stokes’s equation put a limit on
inlet-outlet boundary conditions we utilized for simulations.
However, insights are provided below on how to circumvent
such issues in future.

The samples of porous media studied here, namely
stochastic reconstructions of shale and soil, while clearly
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FIG. 9. Permeability REV analysis for (a) shale and (b) soil
samples. The analysis is based on permeability tensor evaluation
(based on Per boundary conditions) in terms of eigenvectors along
the x, y, and z major directions (y axis) plotted versus increasing
volume of the cubical domain (x axis). In addition to eigenvalues, a
visual representation of the full permeability tensor is shown for each
domain size to facilitate the comparison.

demonstrating REV permeability behavior (Fig. 9), had a
somewhat limited volume of 1603 voxels, which was mainly
due to limitations in available computational resources. For
larger samples, the effects of the boundary conditions could
be less pronounced as the volume grows faster than the
boundary area with increasing cube width. Some effects of
the increasing volume can be seen from the Trans (CW)
case for the full domains of 3203 voxels (Tables III and
IV)—with an 8 times increase in volume Trans (CW) the
permeability tensor magnitude grows by approximately 9.75
and 12.49% compared to CW for shale and soil (as computed
using eigenvalues), respectively. The fact that permeabilities
of full Trans (CW) cases for both porous media types were
higher than CW clearly supports the idea that transversal flow

is crucial for permeability tensor evaluation. It is possible
to investigate the influence of volume size further in future
studies by considering larger samples. On the other hand,
using smaller samples as used here allowed for highlighting
the differences between different boundary conditions.

The size of the modeling domain definitely affects the
influence of different BCs. Strictly speaking, the inaccuracies
introduced by, for example, CW or Free, will diminish to
practically zero in the limit of infinite domain size. From the
practical point of view it seems to be possible to find a size
with inaccuracies not exceeding some threshold, say, error of
5% in terms of tensor eigenvalues. However, we argue that
a possibility to find such a volume may be hindered by the
inhomogeneity of the sample under study. While it is possible
to increase the volume of stochastic reconstruction and still
obtain the same permeability tensor due to statistical stationar-
ity, this is hardly true for real porous media such as rocks and
soils that have distinct layers, multiscale structure, or genetic
horizons—all with their limited sizes or correlation lengths.
In such complex porous media, for example, carbonates, it
is sometimes even not possible to establish a permeability
REV on the pore scale [16,61]. Such examples seems to
be the norm rather than the exception for real rocks and
soils, thus diminishing the scientific and practical value of the
conventional REV upscaling approach. For these reasons we
speculate that the methodology to evaluate tensorial properties
using the Per BC will be invaluable for the majority of real
upscaling cases where an increase in the simulation domain
will average out the effects of local imhomogeneities (e.g.,
Ref. [62]).

Both 3D stochastic reconstructions used to calculate ten-
sorial permeabilities are somewhat similar by design: They
are both statistically homogeneous and highly anisotropic
media. The anisotropy in the diagonal direction was intended
to produce permeability tensors with significant off-diagonal
terms. While it was exactly what was needed to magnify the
manifestation of the tensorial permeability calculation, two
factors were left out of consideration. First, we included no
sample with a zero off-diagonal permeability term, for which
the influence of the Per boundary condition is known to be
less pronounced and similar to that of the Slip BC [33,47].
Second, only statistically homogeneous structures were con-
sidered, while nonstationary porous media are ubiquitous in
nature. Both topics are of utmost importance for upscaling and
experimental flow measurements (see discussion below), but
well beyond the scope of this paper.

Both CW and Slip BCs produced transversal pressure
gradients, as opposed to the applied gradient in a single direc-
tion only (by creating pressure difference between inlet and
outlet only), while Per-Free-Subim BCs maintained pressure
gradient in the applied direction. From the viewpoint of the
Eq. (7) it does not matter if transversal pressure gradients
are present, e.g., one can compute tensorial properties by
applying pressure gradient in nonorthogonal directions. Yet,
from the theoretical point of view, the presence of transversal
components if the gradient is applied in a given direction is
unphysical. Here we can speculate that both Dirichlet (first
type or pressure gradient used in this work) and Neumann
(second type or flux) are an incorrect choice to simulate a
case as shown in Fig. 2(a), as the resulting pressure gradient
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may be different from that intended to be applied. Thus,
immersing the simulation domain into an external gravity
field or creating a body force as done in LBM simulations
[15] seems to be a better alternative. Such pressure-gradient
behavior in our simulations actually could be one reason
for nonsymmetry of the tensorial permeability, as velocity
fields are not normalized by local pressure perturbations. The
symmetrization of tensors using either Eq. (9) or Eq. (10)
does not seem to be a physically adequate approach, but if
symmetrization is unavoidable, for example, to provide input
data for continuum-scale model, hten Eq. (9) is a better option.
We observed all Sym BC simulations to produce a symmet-
rical tensor (all pressure gradients are located at subdomain
boundaries); this suggests that artificial symmetrization is
indeed unphysical and proper pressure gradient application is
a correct solution of the nonsymmetry issue.

The results obtained clearly indicate that numerous clas-
sical boundary conditions, such as CW, Free, and Sym, are
unphysical to obtain flow tensorial properties simulated on the
pore level. However, application of all BCs on the continuum-
(or Darcian) scale understudy is still ongoing and requires
thorough investigation. The Free boundary condition is popu-
lar for fractured porous media equivalent permeability tensor
evaluation [48], but as observed in this study spurious flow
patterns cause erroneous tensor values. To what extent this
problem will arise in large-scale problems, especially with
heterogeneous matrix in between the fractures, is impossible
to predict without detailed simulations. The leap from the
pore scale to continuum scale, or upscaling, is a crucial step
necessary for adequate parametrization of large-scale hydro-
dynamic models and is usually performed using laboratory
measurements on the rock and soil cores. If not aligned
along the permeability eigenvector [63], then conventional
permeameter types of laboratory investigations on the core
sample may result in severe errors in permeability magnitude
and orientation.

IV. SUMMARY

Pore-scale simulations of single-phase flow within 3D ge-
ometrically periodical porous media obtained using stochastic
reconstructions from real soil and shale images allowed for
the implementation of periodic flow boundary conditions.
Unlike numerous classical boundary conditions utilized to
compute permeability on the pore scale, namely closed walls
(parallel to applied pressure gradient), linear pressure on the

walls, translation, and symmetry, the periodic flow boundary
condition reproduces the physical flow patterns within porous
media. Reproducing such flow patterns is important for up-
scaling of flow properties from pore to continuum scale. Our
results strongly suggest that correct upscaling is not possible
without considering tensorial flow properties.

We anticipate that the description of other physical prop-
erties relevant to porous media and materials in general, for
example, mechanical properties, transport properties (disper-
sion), electricity and heat conduction, and related properties,
may benefit from applying periodic boundary conditions. In
particular, we believe that multiphase flow properties (e.g.,
relative permeabilities) should be computed in a manner
demonstrated in this study. Stochastic reconstructions allow
for the creation of statistically identical 3D replicas with
periodic geometries. A variety of existing techniques could
be used for this purpose: correlation functions-based methods
[[30,39,41,44],[64,65]], multiple-point statistics [66–68] and
related techniques [69–71]. A more general solution appli-
cable to experimentally obtained images is currently under
development.
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