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Recent work on quantum annealing has emphasized the role of collective behavior in solving optimization
problems. By enabling transitions of clusters of variables, such solvers are able to navigate their state space and
locate solutions more efficiently despite having only local connections between elements. However, collective
behavior is not exclusive to quantum annealers, and classical solvers that display collective dynamics should also
possess an advantage in navigating a nonconvex landscape. Here we give evidence that a benchmark derived from
quantum annealing studies is solvable in polynomial time using digital memcomputing machines, which utilize
a collection of dynamical components with memory to represent the structure of the underlying optimization
problem. To illustrate the role of memory and clarify the structure of these solvers we propose a simple model
of these machines that demonstrates the emergence of long-range order. This model, when applied to finding the
ground state of the Ising frustrated-loop benchmarks, undergoes a transient phase of avalanches which can span
the entire lattice and demonstrates a connection between long-range behavior and their probability of success.
These results establish the advantages of computational approaches based on collective dynamics of continuous
dynamical systems.
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I. INTRODUCTION

Nonconvex optimization problems draw their difficulty
from the complexity of their associated landscapes [1]. These
landscapes are often highly corrugated, dotted with hills,
valleys, and saddles of varying heights which obscure the
search for a lowest (or highest) point. The complexity of this
space, combined with the “curse of dimensionality” yields
an exponentially large number of potential solutions which
are very difficult to prune down by any systematic method.
The innate difficulty and variety displayed by optimization
problems, as well as their widespread applications have made
their study a continuously active field of research across
science and mathematics [2,3].

The exponential growth of the state space with problem
size often renders any exact algorithm for locating the op-
timum impractical as they require an exponential amount
of time to sift through the states. As a result, practitioners
must rely on incomplete or approximate methods which will
often generate better solutions in a limited time but are not
guaranteed to converge to the exact solution [4,5]. Despite
this, incomplete methods can often converge to the global
solution in times orders of magnitude faster than complete
solvers [6].

Early work on approximate methods relied on analo-
gies with the dynamics of physical systems [7] which will
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minimize their energy as they cool, i.e., during annealing. For
example, to find the ground state of the Ising spin glass [8],

E = −
∑
〈i j〉

Ji jsis j, si ∈ {−1, 1}, (1)

simulated annealing gradually improves an initial state {si}N
i=1

by stochastically exploring the state space and steadily low-
ering an effective temperature [9]. The early success of this
approach on combinatorial optimization problems has led
to the proliferation of solvers based on a similar stochastic
local search and their many variants [10,11]. Cross-pollination
with physics has continued, spawning methods such as par-
allel tempering [12] and quantum simulated annealing [13]
as well as the analytical characterizations of combinatorial
problems [14] and random energy surfaces [15].

Annealing has again jumped to the forefront of modern
research in the form of quantum annealing and the machines
manufactured by DWave [16–18]. These machines contain
two-state quantum mechanical elements coupled together in
a graph realizing a particular energy function. During their
relaxation, the quantum dynamics of the system allows for
collective tunneling of elements through high, thin barriers in
the energy function, which may provide some advantage in
the search for the optimum.

Similar ideas in the context of cellular automata, neu-
ral networks, and neuroscience have received steady inter-
est [19,20]. These examples substantiate the idea that collec-
tive behavior would offer an advantage in the convergence of a
solver by allowing for a more efficient exploration of the state
space. We then expect that classical solvers which incorporate
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this feature in their dynamics will have an advantage in both
the quality of approximate solutions they produce and their
rate of convergence.

We also note that annealers admit cluster flipping variants,
which can drastically increase the rate of thermalization and
thus provide faster convergence to the ground state. Incor-
porating proposed cluster flips into an annealer as in the
Swendsen-Wang and Wolff algorithms can allow the system
to overcome larger energy barriers and reduce correlation
times [21,23]. Modern parallel tempering variants incorporat-
ing iso-energetic and thus rejection-free cluster moves [22,24]
have proven effective at converging to the ground state of
spin-glass instances. While here we have chosen to focus on
introducing DLRO in continuous systems, a more detailed
comparison between the properties of clusters generated by
continuous and discrete solvers and their effect on conver-
gence time is a direction of future work.

The purpose of this work is to explore the presence and
advantages of collective dynamics in the context of specific
deterministic dynamical systems: digital memcomputing ma-
chines (DMMs) [25–27]. In DMMs, a combinatorial opti-
mization problem is first transformed into a physical system
described by differential equations whose equilibrium points
correspond to solutions of the original problem. Theoretical
work [28,29] and simulations of DMMs [26,27,30,31] have
indicated the presence of long-range order in their dynam-
ics. However, as their native problem form involves several
distinct dynamical elements, the complexity of the resulting
solver obscures the physical principles underlying its design
and function.

Here we first show that this collective behavior, in the form
of dynamical long-range order (DLRO), allows the efficient
solution of a class of benchmarks based on the Ising spin
glass (1). Then, by drawing on the structure of the equations
governing a DMM, we propose a simplified model that cap-
tures several features of their dynamics and illuminates the
essential roles played by continuity and memory.

The paper is organized as follows. In Sec. II we briefly
introduce the concept of DMMs. In Sec. III we discuss the
Ising frustrated-loop instances used for benchmarking several
methods and show the results of this benchmark. In Sec. IV
we introduce a simplified model of DMMs that captures its
main features. In Sec. V we discuss the dynamical long-range
order that emerges in these dynamical systems. In Sec. VI we
offer our conclusions.

II. DIGITAL MEMCOMPUTING MACHINES

In this section we present a very brief introduction to the
concept of DMMs [26]. A thorough discussion of the physics
behind them and the problems they have been applied to can
be found in the perspective article [27].

DMMs are dynamical systems designed as circuit elements
to solve circuit satisfiability (SAT) problems [25–27], so
that despite operating in continuous time, initial and final
states are digital, and hence the machines are scalable. A
particular problem may be translated into circuit SAT format
as a combination of AND, OR, and NOT gates, which are
then replaced with dynamical circuit elements. The elements
are composed of resistors, capacitors, voltage or current

generators and resistors with memory (memristors) whose
dynamics conspire to lead the circuit voltages to a state where
all logical constraints are satisfied.

These elements are governed by ordinary differential equa-
tions and constraints imposed by Kirchoff’s laws, and thus
they may be efficiently simulated. Numerical studies have
shown that DMMs are effective at solving a wide range
of combinatorial optimization problems [27,30–32]. For in-
stance, DMMs have proven effective at solving integer-linear
programming problems (a DMM solver compared favorably
to standard algorithms when applied to instances in the MI-
PLIB 2010 library and was able to establish the feasibility of
an instance for which this was previously unknown [32]), and
maximum satisfiability (MAXSAT) problems derived from
XORSAT where DMMs displayed linear scaling in their ap-
proach to a satisfiable threshold while all other solvers tested
scaled exponentially [30].

III. FRUSTRATED-LOOP INSTANCE BENCHMARKING

Recent progress on fabricating quantum mechanical hard-
ware has generated renewed interest in problems of the
form (1), or as it is known in the optimization community,
quadratic unconstrained binary optimization (QUBO), which
can be mapped into a MAXSAT problem [33]. When the
couplings Ji j are assigned randomly, this is known as the Ising
spin glass and is a simplified model for the behavior of glassy
systems [8]. Studies of the thermodynamic properties of these
systems have shown that, below a certain temperature, the
phase space can become separated into clusters of states and
may admit an exponential number of metastable states. This
proliferation of metastable states obscures the search for the
global minimum and gives a physical interpretation for the
computational hardness of the optimization problem.

The problem of benchmarking MAXSAT solvers is gen-
erally hindered by the fact that the problems are NP-hard,
and, for an arbitrary instance, even confirming a solution may
require exponential time [34]. For this reason, planted solution
instances are commonly employed in which instances are
generated such that they have a known solution [35].

Benchmarking studies on quantum annealing have intro-
duced the class of frustrated-loop Hamiltonians [16,36] in
which the total Hamiltonian is written as the sum of Hamil-
tonians of a set of loops containing a single frustrated bond
(see schematic in Fig. 1),

H =
∑

i

HFL,i. (2)

The loops are formed such that the planted solution minimizes
all of the Hamiltonians HFL,i simultaneously and so mini-
mizes their sum.

In order to generate these instances, we first construct
an underlying lattice which we take to be hypercubic in D
dimensions with periodic boundary conditions. Each loop is
generated by beginning at a randomly selected site and per-
forming a random walk until it crosses itself. The length, l , of
the loop formed is generally required to be above some limit,
otherwise it is rejected. For example, the instances solved on
DWave employ a loop length limit of l � 8 [16]. It is also
noted that discarding the length limit seems to lead to very
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FIG. 1. A schematic representation of instance creation. Separate
frustrated loops (blue and red curves) are generated by random
walking around the lattice until the walk crosses itself. Each loop
has its own Hamiltonian consisting of Ji j = 1 for all bonds except
one with Jkl = −1 such that the ground state of the loop will have
one unsatisfied bond. When the loops are combined, overlapping
bonds (shown in black) have a coupling Ji j which is the sum of the
contributions from each separate loop.

difficult instances, although an explanation for this feature is
not given. In our investigations of the instances, we found
that discarding the loop length limit leads to instances of
widely varying difficulty, and that both the variance and mean
of the solution time (measured with simulated annealing)
decreased as the length limit increased. In order to avoid the
complications of a widely varying difficulty, while generating
the most difficult available instances, we then chose a length
limit of l � 6 for our generated instances.

In order to generate a loop, we consider planting the
ferromagnetic solution si = 1. After generating an instance,
any other solution may be hidden by means of a gauge trans-
formation. All interactions in the loop are chosen to be fer-
romagnetic, Ji j = 1, except one which is selected at random
to be antiferromagnetic Ji j = −1. The solution to the loop
Hamiltonian HFL,i = −∑

〈i j〉∈li
Ji jsis j is thus an assignment

with one unsatisfied interaction.
The number of loops, M, generated must be proportional

to the number of sites N = LD and may be characterized by
a density α such that M = αN . These instances are known to
demonstrate a hardness peak in α such that the most difficult
instances are generated when there are neither too few loops,
in which case they do not overlap and each may be solved
separately, nor too many, in which case the antiferromagnetic
interactions tend to be canceled by the more numerous ferro-
magnetic interactions [16,37]. The value of α at the peak also
tends to align with the amount of frustration in the instance,
as measured by the number of unsatisfied interactions in the
ground state.

In order to generate difficult instances, in D = 2 dimen-
sions we used a simulated annealing solver to test instances
across a range of α, finding that the most difficult instances
lay at α ≈ 0.2, consistent with the results on the pseudoplanar

chimera graphs in Ref. [16]. For D = 3 dimensions, the opti-
mal value of α was estimated using the amount of frustration
in the instances as suggested in Ref. [16] and found to lie at
α ≈ 0.3.

Benchmarking was carried out using instances gener-
ated on a three-dimensional hypercubic lattice with periodic
boundaries. The implementation of the dynamical equations
of DMMs as in Ref. [26] was appropriately modified to
handle the Ising frustrated loop instances expressed as a max-
imum satisfiability problem in conjunctive normal form [38]
(see the Supplemental Material [39] for a discussion of this
transformation). These were then simulated using a commer-
cial sequential MATLAB solver dubbed Falcon provided by
MemComputing, Inc. In addition, we have implemented two
standard annealing algorithms in Python [simulated annealing
(SA) and parallel tempering (PT)], as well as used a well-
known commercial mixed-integer programming solver, IBM
CPlex [40]. Since Falcon was implemented in interpreted
MATLAB and the focus was on scaling rather than runtime,
we used only the simplest implementation of each solver but
performed substantial tuning. Details of the implementation
and tuning on the instance class for SA and PT, as well
as the configuration for IBM CPlex, can be found in the
Supplemental Material [39].

All solvers were run on frustrated-loop instances in three
dimensions, ranging in size from L = 6 (total number of
spins N = 216) to L = 40 (N = 64 000). The sizes used for
tuning were included for the annealers (SA and PT) while
CPlex and Falcon were run on sizes L � 10. Comparisons
between solvers are hampered by ambiguity in the efficiency
of the implementation and differences in processor speed
when run on different machines. In order to skirt the second
of these ambiguities we have displayed the solutions in terms
of estimated floating point operations (flops) calculated by
multiplying solution time by the peak floating point operations
rate of a single core. However, we emphasize that when com-
paring different implementations only differences in scaling
are relevant.

As is clearly visible from Fig. 2, the memcomputing solver
converged to the exact ground state with superior scaling to
all solvers tested, allowing us to achieve sizes much larger
than possible with other solvers within the time limitation
of ≈106 sec. The total number of flops appears to scale
approximately as N1.5 at large sizes, while all other solvers
appear to scale exponentially as exp(bNc), with b and c solver-
specific constants reported in the Supplemental Material [39]
and shown in Fig. 2. Details of the fitting procedure as well
as the figure displaying the recorded time to solution may be
found in the Supplemental Material [39].

IV. A SIMPLIFIED DMM MODEL

As mentioned in Sec. II, a DMM is constructed in corre-
spondence to the logical circuit it will solve. For example,
the subset-sum problem studied in Ref. [26] utilizes a circuit
with the same structure as one used to add a subset from a
group of numbers. Each traditional logic gate is replaced by a
self-organizing logic gate consisting of a set of interconnected
input and output terminals, each of which is dressed with
a number of memristors (resistors with memory), resistors,
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FIG. 2. Scaling of floating point operations necessary for dif-
ferent solvers to reach the ground state of the 3D frustrated-loop
instances as a function of the total number of spins N . Solution
times have been converted to estimated number of floating point
operations. The sequential memcomputing solver implemented in
MATLAB is dubbed Falcon and was run on an Intel Xeon 6148.
Varying numbers of instances were run at each size and solver
depending on required computation time (see the Supplemental Ma-
terial for details [39]). Comparisons with simulated annealing (SA),
parallel tempering (PT), and IBM CPlex run on an Intel Xeon E5430
are also shown. All calculations were performed on a single core. The
solid lines are the best fits of the 95th quantile time to solution for all
four solvers. The exponential fits have the following parameters: for
IBM CPlex, b = 0.12 and c = 0.46, for SA, b = 0.069 and c = 0.67,
and for PT b = 0.32 and c = 0.46.

capacitors, and voltage or current generators forming a dy-
namic correction module (DCM) [26]. When voltages are
applied to the boundaries of the circuit, the dynamics of these
elements are configured to satisfy the constraints enforced by
each gate, and lead the circuit to a state where no logical
contradictions are present.

However, the restrictions imposed by the native hardware
formulation of DMMs necessarily complicate their design and
obscure important features of their implementation. Moreover
the dependence on a large number of physical parameters in
these models makes understanding their dependence on these
parameters difficult. As such, an effective model that discards
the constraints of hardware and that is more tractable for anal-
ysis is desirable. In the following we formulate a simple model
that replicates several features of the full implementation of
digital memcomputing machines, and we use this to probe the
existence of DLRO in the search for a solution.

For our purposes, finding the ground state of the Ising
system provides the advantage that it can be expressed in
terms of very simple homogeneous constraints leading to a
concise set of equations. In addition, its real-space lattice
representation allows for a clearer demonstration of DLRO
since the real-space distance of the lattice corresponds to the
distance in the constraint graph.

We consider the contribution of constraint C to the dynam-
ics of site i (see Fig. 3) [26]. The dynamics of the circuit
are constructed such that the voltage generators impose the

FIG. 3. An arbitrary constraint (C) satisfaction problem ex-
pressed as a factor graph can be translated into an electrical circuit
with memory by considering the effect of each constraint on the site
i. vR is a voltage generator, and gR is the conductance of a standard
resistor. vM is a voltage generator, and gM is the conductance of a
resistor with memory.

logical constraint on the voltage vi at site i. The memristor
conductance gM , sensing a current flowing across it due to
an unsatisfied constraint, will alter its value to accelerate
the convergence of vi to the logically consistent solution.
Generally, this is accomplished by increasing the memristor
conductance, thus allowing more current to flow into or out of
the site. As memristors are polar objects, complex constraints
may require several memristors and generators to accomplish
this, accounting for the number of memristors in DCMs [26].

A few simplifying assumptions give the general form for
the contribution of constraint C to site i as [26]

v̇i = �gMx�VM + gR�VR, (3)

ẋ = h(�VM, x), x ∈ [0, 1], (4)

for the voltage vi representing the variable i and the memory
state variable of the memristor x. We can regard the first
and second terms on the rhs of Eq. (3) as representing the
total memristive and resistive contributions from the DCM,
respectively. These are weighted by the conductances �gM

and gR, respectively, into which we have absorbed a capacitive
timescale. We regard the memory state variable x and function
h in Eq. (4) as an effective representation of the state and evo-
lution of all memristors in the DCM, giving us considerable
freedom in choosing the form of h.

These equations bear a close resemblance to those of
Lagrange programming neural networks (LPNNs) proposed
in Refs. [41,42] and the dynamical systems proposed in
Ref. [43]. In these works a Lagrangian, L, for a constraint
satisfaction problem on variables {si} is formed from a set
of constraint functions Cm({si}) which vary from 0 when
the constraint is satisfied to 1 when unsatisfied and a set of
weights for each constraint xm, L = ∑

m xmCm({si}). In the
case of LPNNs, the equations of motion of the system are then
derived as

ṡi = −∇siL = −
∑

m

xm∇siCm, (5)

ẋm = ∇xmL = Cm, (6)

which in our formulation [Eqs. (3) and (4)] would correspond
to an unbounded, voltage-controlled set of memristors with
equal weight. In Ref. [43] the equations for the multipliers
are altered to ẋm = xmCm, which has the effect of making the
system hyperbolic, and is analogous to choosing unbounded
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current-controlled memristors in Eq. (4). The dynamics of
both systems are such that the variables si of the optimization
problem act to minimize the energy, while the weights xm act
to increase it, forming a sort of competitive dynamics which
seek out saddle points in the Lagrangian. The weights may
be reexpressed as an integral memory term in the si equations
and so may be interpreted asxbrk “memory terms.”

The continuous constraint weighting that these Lagrangian
methods perform bears a close resemblance to DMMs. How-
ever, the existence of DLRO in these systems has never
been explored. In the following we propose a system that
combines the bounded motion of memristive variables and
attempts to explicitly include a form of long-range order in
their dynamics. The model produces a transient phase of
avalanches similar to those seen in DMMs [27–29,44] and
allows us to continuously control the extent to which both
the memory and DLRO are present. Using this we show that
the transitions in these avalanches are capable of flipping an
extensive number of variables in the system and that both the
correlation length and success probability are modulated by
the range of these memory variables. Most importantly, the
behavior this system shows is a consequence of continuity and
does not have discrete analogues.

The inspiration for a simplified model of DMMs draws
on the notion of rigidity in a condensed matter system. For
example, the breaking of translational symmetry also coin-
cides with presence of an elastic potential energy contribu-
tion leading to the collective motion of a solid phase [45].
The presence of a continuous symmetry in the equations
and its effective breakdown can give rise to behavior anal-
ogous to zero modes in statistical physics or field the-
ory [46]. As a consequence, along some directions of the
phase space the system can respond in a correlated, or “rigid,”
manner in which large clusters of variables will transition
together [28,29].

For example, in a lattice of continuous “spins” obeying
[here σ ′(·) is the derivative of σ (·), giving a rect function
which limits the range of vi to [−1, 1]],

v̇i = −
∑

j

|Ji j |[σ (vi) − sgn(Ji j )σ (v j )]σ
′(vi ), (7)

σ (x) =
⎧⎨
⎩

1, x > 1
x, −1 � x � 1
−1 −1 < x

, (8)

the system will exponentially relax to a state in which every
variable vi takes the value sgn(Ji j )v j for all of its neighbors v j .
If the underlying lattice is ferromagnetic (Ji j = 1), then taking
any spin to its limiting value vi = ±1 via an external field
will cause the entire lattice to transition with it in a manner
analogous to long-range order. In contrast, for a discrete
system in the ferromagnetic state si = 1, flipping a single
spin will not cause the rest of the lattice to transition as it
will not change the sign of any local fields. The ability of a
local perturbation to flip large clusters of spins might benefit a
solver attempting to satisfy a constraint while maintaining the
satisfaction of its neighbors.

FIG. 4. During the dynamics, memristive variables xi j act to
interpolate between gradient dynamics on (a) the original interaction,
when a constraint is unsatisfied (xi j → 1), and (b) the “rigid” interac-
tion when the constraint is satisfied xi j → 0. This removes the energy
barrier between the two states that satisfy the interaction, allowing
transitions of large clusters of variables. The satisfied configurations
are denoted for the ferromagnetic case, vi = v j , and below each
surface we give the effective energy function on which the voltages
follow gradient dynamics.

This may be viewed as gradient motion on the potential,

E = 1

2

∑
〈i j〉

|Ji j |[σ (vi) − sgn(Ji j )σ (v j )]
2 (9)

= 1

2
σ (�v)LJσ (�v), (10)

where LJ is a weighted graph Laplacian. For a satisfiable
instance, this operator will always have a zero eigenvalue
corresponding to the ground state and which connects the
two satisfied states. However, the presence of unsatisfiable
or frustrated constraints renders this impossible in the above
model: in this case all spins will relax to vi = 0, and pulling a
single spin to ±1 will not propagate through the lattice.

We can combine the weighted gradient dynamics of the
LPNN-type systems (5) with terms that induce rigidity (7)
by utilizing the bounded motion of memristive variables to
smoothly transition between these two interactions,

v̇i =
∑

j

Ji jxi jσ (v j ) − (1 − xi j )
|Ji j |

2

× [σ (vi ) − sgn(Ji j )σ (v j )], vi ∈ [−1, 1], (11)

ẋi j = βxi j (1 − xi j ){|Ji j |[1 − sgn(Ji j )viv j] − γ }. (12)

When xi j ≈ 1 the voltages follow the fields imposed
by the neighboring voltages as in an LPNN with L =∑

〈i j〉 xi j |Ji j |[1 − sgn(Ji j )viv j], causing them to take the inte-
gral values vi = ±1, which agree with the sign of the overall
local field. Constraints which are satisfied by this configu-
ration will then see their contribution to the field reduced
as xi j → 0. These constraints then move under the equation
of motion v̇i = −|Ji j |

2 [σ (vi) − sgn(Ji j )σ (v j )] which allows vi

and v j to transition collectively between the two satisfied
states of the constraint. The two interaction terms interpolated
between are displayed in Fig. 4. The voltages vi are limited to
the interval [−1, 1]. From a state of the dynamical system,
the spins of the original Ising model (1) are assigned as
si = sgn(vi) such that the spins of the Ising model undergo
the orthant dynamics of the underlying continuous voltages.
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The memory state follows the simplest equation for a
bounded, volatile memristor subject to an effective voltage
|Ji j |[1 − sgn(Ji j )viv j]. This voltage is the energy with which
the constraint is violated, and the constant γ sets a threshold
below which xi j will begin to decay. The constant β indicates
that the memristive timescale is generally different from the
voltage timescale (set by the RC constant at the node), which
will play an important role in our analysis of the system.
While the memory variables do not directly interact, their
coupling through the voltages leads to an effective interaction.
For the memristive network model shown in Refs. [47,48]
it was shown that the network topology leads to pairwise
interactions obeying a Lyapunov function such that despite the
lack of an explicit interaction term in the dynamical equations,
interactions between memristive variables are present through
coupling with the voltages.

To clarify the dynamics of this model and the function of
the rigidity terms, we consider a two-spin system coupled with
J12 = 1, where the first spin is subject to a small local field
1 > h > 0. Initializing the system with x12 ≈ 1, the voltages
will initially obey

v̇1 = σ (v2) + h, (13)

v̇2 = σ (v1). (14)

If set near v1 = v2 = −1 the voltages will quickly relax to this
state, satisfying the J12 constraint and causing x12 to decrease.
For a small field h, the voltages will remain at −1,−1 until
x12 ≈ 0 at which point they will obey

v̇1 = −[σ (v1) − σ (v2)] + h, (15)

v̇2 = −[σ (v2) − σ (v1)]. (16)

The local field h will now cause v1 to drift in the positive
direction, and the interaction will cause v2 to drift along with
it, causing both spins to transition collectively to v1 = v2 = 1.

Over the course of the dynamics, the “rigidity terms” above
allow voltages to form clusters with satisfied constraints that
are capable of transitioning together under the influence of
neighboring unsatisfied constraints. This has a dramatic effect
on the dynamics, and inclusion of these “rigidity terms” to
the gradient-like first terms in Eq. (11) acts to ensure that
these transitions maintain the satisfaction of these clusters.
The form of the interactions that are transitioned between
is displayed in Fig. 4 such that after relaxing to one of the
two states which satisfy the constraint, the decay of xi j →
0 removes the barrier between the two states allowing the
simultaneous transition of the two variables between them.
Any unsatisfiable spin system may be associated with one
or several satisfiable instances formed by removing any un-
satisfied bonds in the ground state. The dynamics of the
system attempt to discover the underlying satisfiable instance
as sublattices where xi j → 0.

We simulate the system described by Eqs. (11) and (12)
from random initial voltages and xi j (0) = 0.99, integrating
the equations of motion until the energy (1) (calculated from
the signs of the voltages) has reached the planted ground
state or some maximum time has elapsed. This is typically
chosen quite long, such that the system solves an instance

with a probability p ≈ 0.95 for a given initial condition. For
a more detailed discussion of the numerical implementation,
see the Supplemental Material [39]. A typical run, showing
the voltages, memristances, and energy of the system is
shown in Fig. 5 on a two-dimensional instance, L = 15, where
we also show that in the absence of constraint weighting
via the memory variables (ẋi j = 0) the system is unable to
reach the ground state [the red curve in Fig. 5(c)]. In this case
the system undergoes gradient dynamics and converges to
a local minimum of H = −∑

〈i j〉 Ji jviv j, vi ∈ [−1, 1]. The
action of the memory variables may be interpreted as slowly
modifying this landscape to destabilize these local minima
and push the system into an avalanche. That these avalanches
display DRLO, is a feature of the added “rigidity terms” in
Eq. (11).

V. DYNAMICAL LONG-RANGE ORDER

The discussion of DLRO in continuous dynamical sys-
tems is complicated by the continuity of the dynamics,
making it difficult to clearly infer causal relationships be-
tween changes in variables. However, we can take advan-
tage of the timescales above to separate the dynamics into
causally related events. As shown in Fig. 5(a) when we slow
the memristor timescale β relative to that of the voltages
(e.g., by choosing β = 1/400), after the initial transient the
dynamics progress through a series of rapid transitions in-
terpretable as avalanches (or instantons in the field-theory
language [28,29]). After an initial relaxation in which the gra-
dient dynamics of the voltages rapidly seek out critical points
in the energy landscape, the slow evolution of the memristive
dynamics transforms the stability of these points [27–29],
leading to a subsequent relaxation. As more constraints be-
come satisfied and transition to a rigid interaction, larger
clusters of voltages begin transitioning together [see Fig. 5(c)]
in a manner analogous to the dynamics of physical systems
in the vicinity of a phase transition [27,49]. We note that in
contrast to gradient dynamics the energy is not guaranteed
to decrease monotonically, but the transitions induced by the
memristive variables allow the system to reach lower values
than are achievable through gradient dynamics alone.

We now argue that the existence of DLRO in the dynamics
of the memcomputing solver is strongly connected to its abil-
ity to solve an optimization instance. As a measure of DLRO
we compute correlation functions over the largest avalanche
that occurs in a simulation. In the limit that the timescales
become separated (i.e., the slow driving limit) the points at
which each avalanche occurs tend towards well-defined times
as seen in Fig. 5(a). For small β these events may be detected
as sharp spikes in the voltage derivatives. (See Supplemental
Material [39] for a detailed discussion of the method used
to extract the structure of the avalanches.) We are interested
in the voltages or spins which change sign in the avalanche
and thus will affect the energy of the system. We define the
avalanche configuration as �i = 1 for all spins which change
sign during an avalanche, and �i = 0 otherwise. A few typical
examples of these avalanches and their sizes occurring during
dynamics are plotted in Fig. 5(c).

Using the avalanche configurations we are able to compute
correlation functions for these events and investigate their
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FIG. 5. When the model of Eqs. (11) and (12) is simulated for a two-dimensional instance (L = 15) under a separation of timescales (β =
1

400 ), the voltage trajectories (a) evolve under a series of sharply defined avalanches due to the slow motion of the memristors (b) modifying
the clause weights. In panel (c) we have plotted the energy (left axis) without the influence of memristors (red, β = 0) and with them (black,
β = 1

400 , γ = 0.65) showing that the motion of the memory variables allows the system to reach a far lower energy, and ultimately the ground
state. The sizes of the avalanches (c, right axis) are plotted as gray bars, showing that their size grows over the course of the simulation until a
large avalanche brings the system to its ground state. The avalanches are depicted in the inset in red with the rightmost inset corresponding to
the largest avalanche in the run.

decay across the lattice. For each run (defined as generating a
unique instance and initial conditions) the system is simulated
until it reaches the ground state or a maximum time is reached.
If the instance is solved within this interval, the largest
avalanche is selected and its configuration and first flipping
spin are stored. By averaging across a sample of configura-
tions generated on different instances and initial conditions,
suitably shifted so that the initial flipping spins coincide, the
probability that a voltage a distance r from the initial spin
changes sign, 〈�〉(r), may then be calculated. In order to
achieve large distances with reasonable simulation times, we
calculated these correlations in both two-dimensional (L =
15, 19, 23) as well as three-dimensional (L = 7, 8) systems.
For the parameters tested, success probabilities ranged from
92.8% to 98.6% depending on size and dimension.

As shown in Fig. 6, the largest avalanches possess correla-
tions that take finite values all the way to the furthest corner of
the lattice, manifesting a form of DLRO. Dimensionally, this
requires that the size of the largest avalanche scales as ∼LD for
a system of dimension D, and is thus extensive. We also note
that, as the system size increases, the correlations appear to
saturate to a dimension (and instance class) -dependent value.

We can control the presence of DLRO by adjusting the
relative magnitudes of terms in the equations of motion.
First, we set a limit to the minimum size of xi j such
that the barrier between the two satisfied states does not
completely vanish. This is accomplished by changing the
memristive equation ẋi j to

ẋi j = β(xi j − xmin)(1 − xi j ){|Ji j |[1 − sgn(Ji j )viv j] − γ }.
(17)

This is simulated for L = 16, D = 2, β = 1/518 and xmin =
0, 0.05, 0.1, 0.2, 0.3. At each value of xmin correlations and
success probabilities were calculated by averaging over 1000,
1000, 800, 600, and 500 runs, respectively, with the results
displayed in Fig. 7. Runs at larger values of xmin are more
computationally expensive due to the low success probability.
Further details on the simulations are included in the Supple-
mental Material [39].

FIG. 6. Spatial correlations, 〈�〉(r), among voltages or spins
calculated from the orthant dynamics in the slow driving limit of
model (11) and (12) for the largest avalanches in two and three
dimensions and for different lattice sizes. The correlations take a
finite value all the way to the lattice edge, indicating that the largest
avalanches are extensive. As the system size increases the values
appear to saturate to a dimension-dependent value for this instance
class.
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FIG. 7. Correlations and success probability (inset) as the min-
imum memristive value xmin is varied. When xmin = 0, no barrier
remains between the two satisfied states of the interaction, and the
avalanche configurations are most long-ranged. As xmin increases,
both the correlations and the success probability decay rapidly such
that by xmin = 0.3 no instances are solved.

We observe that both the correlations and the success
probability decay rapidly as xmin is moved away from zero
such that by xmin = 0.3 the success probability has vanished.
In a continuous dynamical system, the lack of energy barriers
as xmin → 0 is directly connected to the emergence of “zero
modes” along which the system can show collective behavior.
We also note that as gradient dynamics correspond to xmin =
1, none of the instances tested would be solved by gradient
dynamics alone suggesting the existence of many spurious
critical points in this instance class.

We can also vary the magnitude of the added “rigidity
terms” independently, modifying our equation of motion of
the voltages [Eq. (11)] to

v̇i =
∑
〈i j〉

Ji jxi jv j − RLim(1 − xi j )
|Ji j |

2

× [vi − sgn(Ji j )v j], vi ∈ [−1, 1]. (18)

These were simulated on the same instance class for RLim

values from 0 to 2, averaging across 300 runs at each value,
with the results shown in Fig. 8. In this case the ability
of variables to transition collectively is maintained and in
contrast to the previous results, we observe a wide range in
which varying the size of RLim has almost no effect on both the
correlations and the success probability, and that the success
probability vanishes as the size of the rigidity terms is brought
to 0. We interpret this as evidence that during the dynamics,
voltages whose interaction has been satisfied remain close to
the minimum of the interaction term [see Fig. 4(b)] and as
such are not sensitive to the overall magnitude of this term.
Correlations are not plotted for RLim = 0 as these do not un-
dergo qualitatively similar dynamics and the avalanche detec-
tion scheme described in the Supplemental Material [39] fails.

VI. CONCLUSIONS

In this paper, using the frustrated-loop instances based on
the Ising spin glass as a well-known benchmark, we have
shown that a solver exploiting dynamical long-range order can

FIG. 8. Correlations and success probability (inset) as the mag-
nitude of the rigidity terms are varied. In contrast to varying xmin

(as in Fig. 7), which introduces a barrier between the two satisfied
states, adjusting the magnitude of RLim maintains the ability of
interacting variables to freely transition between their satisfied states.
We observe a wide range in which RLim has a negligible effect on both
the magnitude of avalanche correlations and the success probability.

navigate a nonconvex landscape more efficiently than tradi-
tional methods based on annealing despite being composed
of only local connections. First, using a full implementation
of DMMs we have shown results on 3D frustrated loop in-
stances which indicate this approach is extremely effective in
converging to the ground-state solution. In particular, DMMs
demonstrated polynomial scaling in reaching the ground state
on the tested instances, while all other solvers we have
employed scaled exponentially, or possibly polynomially but
with a substantially larger degree.

As the effectiveness of DMMs has been attributed to
the presence of dynamical long-range order (DLRO) in the
dynamics, we have constructed a simple model based on
the structure of DMMs in which long-range behavior was
introduced heuristically, allowing us to probe the connection
between the presence of DLRO and the success probability
of the solver. By calculating correlations (or flipping prob-
abilities) on the largest avalanche in the dynamics, we have
demonstrated the existence of a form of long-range order
which allows a transition to flip spins spanning the entire
lattice. By varying the parameters of the model, we have
further shown that the magnitude of these correlations and
the success probability are controlled by the presence of zero
modes along which variables can respond in a correlated
manner. The utilization of this effect is enabled by the use
of continuous dynamical systems to solve natively discrete
problems. The results presented here further reinforce the
advantages of employing collective dynamics to compute hard
problems efficiently.
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