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Transmission line-based metamaterials are used to realize and model the conjugate-impedance matched
superabsorbers. Here, we formulate an analytical-numerical approach for maximizing the effective absorption
cross section of the metamaterial wormhole superabsorber, under the goal of minimizing the complexity of the
structure. Analytical expressions for the gradient of the absorption cross section as a function of the structural
parameters are derived. Numerical results showing enhanced absorption are obtained under three different
optimization strategies: a ring-by-ring approach, a gradient-based optimization, and a mixed algorithm. The
best results are achieved with the mixed algorithm, with which it is demonstrated that the optimal wormhole
superabsorber significantly outperforms a black body-type absorber of a similar size. This study is of a
particular interest for applications of the conjugate-impedance-matched superabsorbers as efficient harvesters
of electromagnetic radiation.
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I. INTRODUCTION

As is well known, resonant objects such as plasmonic
nanoparticles may have scattering and absorption cross sec-
tions much greater than those of nonresonant objects with the
same geometric dimensions [1]. For instance, the extinction
cross section in subwavelength particles exhibiting plasmonic
or polaritonic resonances can be many orders of magnitude
larger as compared to a black-body absorber of similar phys-
ical size [2–9]. Effectively, such resonant particles are able
to collect the incident wave power from an area much bigger
than the physical size of the particles.

By realizing the necessary conjugate-impedance match
condition between every spatial harmonic of an incident wave
with a given frequency and a finite-size body, one can show
that there is no upper limit on the effective absorption cross
section of such a body (at a selected wavelength), even
when the body is large as compared to the wavelength. Such
finite-size superabsorbers [10–13], which can be realized with
metamaterials [14], exhibit peculiar behavior when interacting
with passing electromagnetic waves [15].

The present work deals with one of such superabsorber
realizations. Although this work focuses mainly on the op-
timization of absorption by a specific conjugate-impedance
matched object that we call “metamaterial wormhole,” it has
wider physical implications. Namely, this work is a follow-up
of Ref. [16], where we proposed a way of physical modeling
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of conjugate-impedance matched superabsorbers [11]. Such
objects posses unique physical properties, for example, they
allow for free-space super-Planckian thermal emission [12].

A particularly exotic object—“metamaterial thermal black
hole”—formed by a medium with simultaneously negative
permittivity and permeability [17] can be constructed [12]
to posses, theoretically, arbitrarily large absorption cross sec-
tion at a given wavelength, independently of the physical
dimensions of the object. In practice, the performance of such
superabsorbers is limited to a narrow frequency band close
to the resonant frequency, at which the conjugate-impedance
match condition is satisfied [12]. Numerical modeling of such
objects in order to identify the performance limits imposed,
e.g., by the dissipation and granularity of the metamaterials,
can be seen as a prerequisite for first experimental realizations
of such superabsorbers and superemitters.

In the previous work [16] we proposed to model the
above-mentioned objects and the related wave phenomena in
quasi-two-dimensional (quasi-2D) configuration, by using a
topological analogy between a metamaterial thermal black
hole in n-dimensional space and an equivalent wormhole
structure in (n + 1)-dimensional space. Such physical model
preserves the main wave scattering and absorption effects
associated with the metamaterial thermal black holes and,
at the same time, reduces the complexity of the involved
metamaterials. In particular, the so-called transmission line-
based metamaterials can be employed [18–20].

It has to be mentioned that the “black hole” and “worm-
hole” terminology that we use here does not imply a direct
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analogy with the light propagation in a vicinity of similarly
named cellestial objects. However, a few related effects re-
ported previously, such as the trapping of passing beams of ra-
diation and the full absorption of incident light, have resulted
in a wide acceptance of such terminology in the literature
[21–24], especially when dealing with metamaterial structures
realized with the transformation optics techniques [25].

In Ref. [16], the superabsorption effect was demonstrated
in a uniform wormhole structure formed by dual meshes of
loaded transmission lines (TL) realizing the double-positive
(DPS) and double-negative (DNG) metamaterials. Theoretical
analysis of such a structure was carried out based on the
developed analytical model. In the same work, an alternative
realization dealing with rings of DNG unit cells with vary-
ing parameters (the characteristic impedance, the electrical
length, etc.) was proposed, motivated by an observation that,
for optically large objects, the required number of the DNG
cells in the wormhole superabsorber can become too high,
which forbids any practical realization. Therefore, it is nec-
essary to consider alternative realizations, which allow for a
significant reduction in the number of the DNG cells, while
attaining a comparable performance.

As was pointed out already in Ref. [16], achieving this goal
would require formulating and solving a global numerical
optimization problem involving sophisticated optimization
techniques. While an attempt on optimizing the parameters
of every single DNG cell in the system is imaginable, it is
impractical with moderate hardware due to a huge number of
optimization variables. Therefore, in our approach, we sort the
DNG cells in the system into uniform concentric rings, and
optimize the cell parameters per each ring. In this article, we
extend the initial results presented in Ref. [16] by developing
global gradient- and exhaustive search-based optimization
techniques, with the goal of optimizing the model parameters
and maximizing the absorption cross section of the wormhole
object, while keeping the structural complexity at a reasonably
low level.

This article is structured as follows. In Sec. II, we discuss
the mathematical model of the wormhole superabsorber and
derive explicit formulas for the gradient of the absorption
cross section with respect to some model parameters. In
Sec. III we detail the optimization algorithms used in this
work and discuss the numerical results obtained under dif-
ferent optimization strategies. Finally, in Sec. IV the main
conclusions of this work are drawn.

II. PROBLEM FORMULATION

The geometry of the superabsorbing wormhole structure
is shown in Fig. 1. The structure comprises TL-based meta-
materials (i.e., meshes of loaded transmission lines) of two
different types: DPS and DNG. In Fig. 1, most of the top plane
is formed by the DPS metamaterial that has positive effective
permeability and permittivity at the frequency of operation.
The wormhole object in the middle of the structure connects
the two planes and is formed by a DNG metamaterial, in
which the effective material constants are both negative. Fur-
ther details on the unit cell realizations of the DPS and DNG
meshes can be found in Ref. [16].

The software realization of the frequency domain trans-
mission line matrix (FDTLM, [26,27]) model detailed in

(a) (b)

FIG. 1. Top: The geometry of the superabsorbing metamaterial
wormhole object. The structure is formed by meshes of transmission
lines: A mesh with double-positive (DPS) and a mesh with double-
negative (DNG) effective material parameters. The wormhole object
with radius Robj in the middle of the structure is composed of the
DNG mesh. The DPS mesh is electrically connected to the DNG
mesh that continues through the wormhole. In this figure, one quarter
of the DPS mesh is made semi-transparent in order to make the
underlying structure visible. The structure of the DPS and DNG unit
cells [16] is also shown. Bottom: Equivalent circuit of the DNG unit
cell (a) and a zoom-in picture showing the connections between the
unit cells in the top and the bottom planes in the wormhole region
(b), as in Ref. [16].

Ref. [16] had allowed us to perform a number of studies on
the interaction of the wormhole superabsorber with the waves
propagating in the DPS and DNG domains. In Ref. [16],
we presented results demonstrating enhanced absorption of
plane waves and trapping of Gaussian beams under a number
of quasi-2D excitation scenarios. The achieved performance
gain, as compared to the reference black body case, was
about 46% for a wormhole superabsorber comprising about
1.2 × 104 DNG cells characterized by the normalized cell size
β0d = 0.315 and the loss tangent parameter α = 10−4. The
normalized wormhole radius in this case was β0Rwh = 9.45.
For structures with smaller normalized radii and a comparable
number of the DNG cells, the achievable gain can be higher.

For example, the gain of 170% was reported in Ref. [16]
for the case with β0d = 0.1 and β0Rwh = 1.5. However, in
this case, the wormhole’s diameter was subwavelength, and it
was already well-known that subwavelength absorbers could
exhibit performance much greater than what could be esti-
mated based just on their size. Therefore, in the present work,
we concentrate on moderately sized wormhole objects with
the normalized radii β0Robj ≈ 10, i.e., on the objects with
circumference on the order of ten wavelength.

As compared to the uniform wormhole structure studied in
detail in our previous work [16], the wormhole object located
in the middle of the structure shown in Fig. 1 is formed by
concentric rings of the DNG cells with varying parameters,

053310-2



OPTIMIZING PERFORMANCE OF METAMATERIAL … PHYSICAL REVIEW E 100, 053310 (2019)

such as the normalized characteristic impedance Z0 = Zc/Zref ,
with Zref being the TL impedance in the DPS region, and
the normalized cell size β0d = 2πd/λ0, where d is the size
of the square unit cells and λ0 is the wavelength in the
unloaded TL segments. Such a metamaterial wormhole can
be used to model a cylindrical conjugate-impedance matched
superabsorber [10,11].

The unit cells are sorted into the rings based on the distance
from the middle axis of the structure to the cell’s center. If
this distance, r, falls within the interval Rring − h < r � Rring,
where Rring is the outer radius of a given ring and h is the ring
width, then the cell is considered as belonging to the ring. In
our structure, h � Rring and d � Rring, while h � d .

The goal of the present paper is to look for the optimal
geometry and the unit cell parameters of the structure shown
in Fig. 1 in order to maximize its effective absorption cross
section, σabs, defined as

σabs = Pabs

�inc
, (1)

where �inc (W/m) measures the power density of the incident
plane wave (per unit length, due to the quasi-2D propagation)
and Pabs (W) is the total power absorbed by the wormhole
object. We are interested in the cases when σabs > 2Robj,
where Robj is the radius of the object, i.e., when the effective
absorption cross section exceeds the physical size of the
absorber.

The wave scattering and absorption in the structure shown
in Fig. 1 can be studied by using the FDTLM method that
was employed in our previous work [16]. For the sake of
completeness, in Appendix A we give some details of this
method that constitutes the theoretical framework used in this
article, and which results in the calculation of the effective
absorption cross section of the wormhole.

Under this framework, in order to find the wave field
(represented by the incident and reflected voltages in the TL
mesh) at each point in the structure, one has to solve the
following linear system of equations:

(I − CS)Vinc = Vext. (2)

In this system, the matrix A = I − CS relates the the vector
of incident voltages in the TL segments, Vinc, which are the
unknowns of the problem, to the given excitation represented
by the vector of external voltages, Vext. Here, I is the identity
matrix, C is the connection matrix that describes the electrical
connections between the unit cells of the structure, and S =
diag[Scell,1, . . . Scell,N] is a block-diagonal matrix formed by
the scattering matrices of the unit cells. This matrix relates
the vectors of the incident and reflected voltages in the whole
structure: Vref = SVinc.

Using the FDTLM method, we can find the amount of
power entering the wormhole under a quasi-2D plane wave
excitation scenario and then express the derivative of the ab-
sorption cross section σabs with respect to some (structural or
electric) parameter ρ. This will allow us to obtain an explicit
formula for the gradient of the absorption cross section with
respect to a set of optimization parameters.

In doing so, starting from Eq. (1), we may write

∂σabs

∂ρ
= 1

�inc

∂Pabs

∂ρ
. (3)

The absorbed power can be expressed as

Pabs = 1

2Zref
Vext†HVext, (4)

where Zref is the reference impedance, and

H(ρ) = A(ρ)−1†
(DS(ρ) − S(ρ)†D)A(ρ)−1. (5)

Here, D is a matrix that describes the connections of the
wormhole object to the uniform DPS region where the inci-
dent field propagates (see Appendix A).

By substituting this result into Eq. (3), performing
the differentiation, and noting that Vext†A−1† = Vinc† and
A−1Vext = Vinc, we obtain an explicit relation between our
maximization target (σabs) and the parameter under study (ρi):

∂σabs

∂ρi
=

Re
[
Vinc†(D − S†DC)A−1T ∂S

∂ρi
Vinc

]
�incZref

. (6)

In this expression, the derivative of the whole scatter-
ing matrix S with respect to the parameter ρi associ-
ated with a selected unit cell (the ith cell) is ∂S/∂ρi =
diag[0, . . . 0, (∂Scell/∂ρi )i, 0, . . . 0].

The final step in obtaining a complete set of equations to
calculate the gradient of the absorption cross section with
respect to some set of parameters {ρi}, is to choose said
parameters. In this work we choose the normalized unit cell
parameters β0d and Z0 as the optimization variables. In terms
of these parameters, we find that

∂Scell

∂Z0
= − 2

(Z0 + 1)2
(I + RS0)−1(S0Scell − I), (7)

∂Scell

∂ (β0d )
= −(α ± i)(I + RS0)−1S0(I − RScell ), (8)

where R = (Z0 − 1)/(Z0 + 1) and S0 = ( 1
2 U − I)e−β0d (α±i)

are as defined in Appendix B.
Equations (7) and (8), together with Eq. (6), fully describe

the relation between the optimization parameters and the
absorption cross section of the wormhole structure. These
explicit relations are used in the implementation of faster
and more reliable optimization algorithms considered in the
following sections.

III. REALIZATION

The numerical model detailed in the previous section in-
volves, as its central point, a sparse matrix inversion. To
solve this type of problem there are a number of software
libraries available, which are both fast and versatile. In this
work we have chosen the SuperLU library [28,29], which
performs well and has a well-defined programming interface.
The library is programed in C++, but supports interfaces for
other programming languages, including Fortran. Both C++
and Fortran have been used in our work to implement the
solver for the absorption cross section of the wormhole object
with a given set of the cell parameters.

After the forward solver was implemented using the Su-
perLU library, we focused on implementing the explicit gra-
dient formulation and using it in a number of optimization
algorithms to explore the optimization parameter space. In
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what follows we shall introduce the various algorithms used
to obtain the results presented in this article.

A. Optimization algorithms

The gradient formulation of Sec. II has been employed
in the optimization algorithms, which are discussed next,
with the goal of identifying the best optimization strategy for
the system under study and obtaining the highest value of
the absorption cross section. We also include a comparison
with the ring-by-ring optimization algorithm first proposed
in Ref. [16]. This initial algorithm is a simple exhaustive
search in the β0d and Z0 parameter space, with an assumption
that the optimization of the whole wormhole object can be
done by separately optimizing each ring of the DNG cells,
independently of the values of β0d and Z0 in the other rings.
The pseudocode for this and subsequent algorithms are given
in Appendix C.

Let us note that straightforward implementations of op-
timization algorithms that use an explicit gradient function
in order to speed up convergence typically operate based on
the information obtained from the gradient direction (and,
sometimes, value) in order to find the next optimization point.
The algorithms of this type work well when the parameter
space is smooth. However, a preliminary study has shown
that our system is too complex for such a straightforward
approach to be successful. Indeed, the structure that we study
is assembled by many cells with resonant collective response,
which leads to a rather irregular behavior of the target function
over the parameter space. The performed calculations have
demonstrated that a straightforward implementation of the
gradient-based optimization method (such as the well-known
gradient descent method) may not work well in our case.

A known variation on this type of methods introduces an
additional parameter—momentum (ν)—with which the target
function gradient is used in an indirect way, by determining
the change in the momentum, which is then used to compute
the next point in the parameter space during the optimization.
Including such additional variable improves the optimization
performance in the complex parameter spaces such as the one
that occurs in our study.

This method can be further improved by adding a dumping
parameter that may increase the stability of the algorithm.
Below we give the update equations for the momentum vector
ν and the parameter space vector x for such an improved
algorithm (the index t = 1, 2, 3, . . . enumerates the iterations
of the algorithm):

νt = νt−1 + κ∇σabs,t − γ L(νt ,∇σabs,t ),

xt = xt−1 + νt , (9)

where L is the dumping (or loss) function that, in general,
depends on the momentum and the gradient of the target func-
tion (∇σabs). The parameter γ defines the dumping strength.

In this work we use the loss function which is simply
proportional to the momentum: L(νt ,∇σabs,t ) = νt−1. Under
this assumption, the update equations reduce to

νt = (1 − γ )νt−1 + κ∇σabs,t ,

xt = xt−1 + νt . (10)

Here, the factor (1 − γ ) represents the fraction of the previ-
ous momentum that is considered in the current momentum
calculation, and κ is the fraction of the gradient that is taken
in consideration at a given step of the algorithm.

The next algorithm that we have implemented and tested is
also based on the gradient descent method. However, instead
of using it in the whole space of optimization parameters,
we use it only in the Z0 parameter subspace, because, as
it has been found by direct calculations, the target function
behaves more smoothly in this subspace. For the subspace of
β0d parameters we use an heuristic search method in which
the optimal parameter value is determined from an initial
setting based on the optimization result obtained by the same
algorithm on the previous iteration. For this reason, we refer
to it as the mixed algorithm. The details of this algorithm can
be found in Appendix C.

Let us note that both the gradient descent and the mixed
algorithms can take an initial point in the parameter space as
a free parameter. In Sec. III B we explore the consequences
of a random initial setting versus using a setting based on the
solution obtained for the lower numbers of rings, such as, e.g.,
using the solution obtained when optimizing the structure with
four rings as a starting point for the optimization of the system
with five rings, etc.

B. Results

The results of the numerical simulations obtained using the
FDTLM method are shown in Fig. 2. We consider a wormhole
structure composed of the DPS and the DNG domains, each
occupying an area of 120 × 120 cells (each cell being a square
with size d × d). In the shown example, the wormhole has
a radius Rwh = 20d and no cells occur in the region where
r < Rwh (white space in the figure), such that there is no wave
propagation in this area. Instead, a wave propagating in the
DPS domain will pass to the DNG domain when reaching the
wormhole boundary, through the connections that link the two
domains.

The DNG cells that form the object rings in the (mainly)
DPS domain are limited to a ring determined by Rwh < r �
Robj, where, for all simulations used in this work, Robj = 30d .
This radius sets the upper limit for the radii of the DNG rings
that occur in this domain, i.e., in the top plane. In addition, the
uniform DNG region in the bottom plane is similarly bounded.
So, the number of the object rings in a given simulation
can be determined as Nrings = (Robj − Rwh)/h, where h is the
thickness of each ring. In what follows, h = d .

The structure is illuminated by an incident plane wave of
unitary amplitude propagating along the y axis. The shadow
caused by absorption of the incident wave by the wormhole
can be seen in the DPS domain. The diameter of this shadow
is greater than the diameter of the object, indicating that the
effective absorption cross section is such that

σnorm = σabs

2Robj
> 1, (11)

where σnorm is the normalized cross section, which is the
characteristic feature of the considered superabsorption effect.
To compare, for an ideal black body absorber, σnorm = 1.
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FIG. 2. Distribution of the nodal voltage |Un|, n = 120[(y/d ) +
(x/d )] + 1, 0 � x/d < 120, 0 � y/d < 60, for the wormhole struc-
ture under the plane wave incidence of unitary amplitude, in both
the DPS (top) and the DNG (bottom) domains as functions of the
normalized coordinates x/d and y/d . The radius of the wormhole is
Rwh = 20d . The fixed parameters of the DPS cells are β0d = 0.315,
Z0 = 1, α = 10−4. The initial optimization parameters are set based
on an optimization attempt with a lower number of the DNG rings.

The examples shown in Figs. 2 and 3 demonstrate the
difference between the optimized initial setting of the pa-
rameters and a random one. By comparing these results it
becomes apparent that, for the example shown in Fig. 2, the
absorption cross section must be much higher, because much
more energy is captured by the wormhole and, respectively,
much less is reflected in the DPS plane, as compared to the
example of Fig. 3.

Additional simulations (not presented here) show that the
structural irregularities that exist due to the mismatch between
the shapes of the square unit cells and the circular rings
have insignificant influence as compared to the changes in
the electrical size of the cells β0d , their impedance Z0, or the
loss parameter α. Such irregularities practically do not affect
the maximum attainable value of the absorption cross section,

FIG. 3. Distribution of the nodal voltage |Un|, for the wormhole
with radius Rwh = 25d . Here, the initial optimization parameters are
set randomly. The other parameters are as in Fig. 2. The resulting
beam in the DNG plane is faint and most energy is reflected off the
wormhole, seen as the interference pattern in the DPS plane.

although they do affect the optimal distribution of the β0d and
Z0 parameters in the nearby rings of cells.

The algorithms with further modifications described in
Sec. III A have been used to optimize the wormhole objects
with the ring number Nrings ranging from 1 to 10. The results
for the optimized absorption cross sections are collected in
Fig. 4, depicting the maximum σnorm reached by each algo-
rithm as a function of Nrings.

From the results depicted in Fig. 4, we can realize a
few important details. First, we note that the simple gradient
descent approach results in lower σnorm values than the initial
ring-by-ring optimization approach, and, even when using the
previous solution as the initial point of the optimization, it
may only produce results similar to those of the ring-by-
ring method. This is due to the high sensitivity of the target
function to small variations in any of the selected parameters,
which leads to a very inhomogeneous parameter space.

Introduction of the momentum into the gradient de-
scent algorithm has the purpose of smoothing out this
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FIG. 4. The maximum obtained σnorm as a function of the total
number of rings Nrings = (Robj − Rwh )/h. The optimization parameter
values have been determined by the optimization algorithms pre-
sented in this work. The results of the gradient descent methods with
and without the momentum are presented twice: First, using random
starting parameters and, second, using the optimized solution for the
system composed of (Nrings − 1) rings [marked with “(p)”].

inhomogeneity and obtaining target values that are closer to
the global maximum for the considered set of optimization
variables. Indeed, we can see a clear improvement in the val-
ues of σnorm when the momentum is included. As with the gra-
dient descent method, the initial setting based on the previous
optimization step for the structure composed of (Nrings − 1)
rings does generally result in a better performance, although
in this case the improvement is less pronounced.

Among all optimization approaches that we studied, the
mixed algorithm obtains the maximum σnorm = 1.30, for
the wormhole object with Nrings = 7 and the other parame-
ters listed in Table I. Moreover, the mixed algorithm out-
performs all other ones in the range Nrings ∈ [5, 9], where
even the gradient descent with momentum cannot navi-
gate the parameter space well. We can conclude that the
mixed algorithm performs better, because it uses an ex-
haustive search for some subset of the optimization param-
eters and does not rely solely on the values of the local
gradients.

The distribution of the field around the object with the
optimal structure comprising a rather small number of the

TABLE I. Parameters of the concentric rings of the DNG cells
forming the object: The relative outer ring radius r/d , the normalized
propagation factor β0d , and the normalized characteristic impedance
Z0 = Zc/Zref . These parameters have been obtained using the mixed
algorithm, which gives the maximum value of σnorm = 1.30 obtained
in this work. The last column with r = 24d lists the electrical
parameters of the cells in the DNG plane. For the DPS cells the
parameters are (β0d )DPS = 0.315 and ZDPS

0 = 1.

r/d 30 29 28 27 26 25 24

β0d 0.800 1.000 0.200 1.000 0.400 0.365 0.300
Z0 1.717 2.175 2.082 4.637 2.284 1.549 4.136

FIG. 5. Distribution of nodal voltage |Un| in the structure with
the parameters (listed in Table I) that result in the maximum σnorm

value achieved in this work. The wormhole radius is Rwh = 23d , and
there are seven rings in the wormhole object.

DNG cells is shown in Fig. 5. Despite some reflections which
are still present in this setup, the performance of this object
is 30% higher than that of a black body absorber with the
same diameter. Moreover, such an increase in performance
is achieved with a rather small number of the DNG cells
distributed around the perimeter of the wormhole.

IV. CONCLUSIONS

In this work, we have studied and optimized superabsorb-
ing metamaterial objects characterized with effective absorp-
tion cross sections greater than their physical dimensions.
Such objects can be modeled in a quasi-2D propagation
environment, by using an equivalent wormhole structure com-
prising a pair of the DPS and DNG TL-based metamaterial
planes.

Interaction of the guided waves in the TL mesh with the
wormhole has been studied under the goal of maximizing
the effective absorption cross section, while minimizing the
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structural complexity. We have extended the original worm-
hole structure [16] by adding a set of rings formed by the
DNG cells into the domain of the DPS cells (the top plane)
and reducing the area occupied by the DNG cells in the DNG
domain (the bottom plane) to a narrow ring Rwh < r � Robj.
The electrical size (β0d) and the characteristic impedance (Z0)
of these rings have been used as the optimization parameters
in this work.

We have derived an explicit formulation for the gradient of
the absorption cross section as a function of said optimization
parameters, and applied it to our system. A number of gra-
dient based optimization strategies have been formulated and
compared with the results reported previously [16]. We have
discussed the results obtained by these optimization algo-
rithms and selected the best optimization strategy (the mixed
gradient-descent/search algorithm) that is most suitable for
the rather irregular behavior of the target function over the
parameter space that is observed in our system.

The performed optimization has reduced the number of
the DNG cells dramatically (from about 1.2 × 104 cells in
the original uniform wormhole structure [16] to about 2.3 ×
103 in the structure of Fig. 5), while still allowing for the
superabsorption effect to occur. With the following parameters
of the DPS domain: (β0d )DPS = 0.315, ZDPS

0 = 1, the loss
α = 10−4, and the wormhole object of the radius βDPS

0 Robj =
9.45, the maximum normalized absorption cross section has
been found to reach σnorm = 1.30. Thus, we can conclude
that even for objects with circumference on the order of 10
wavelengths, optimal wormhole superabsorbers with a greatly
reduced complexity (five times smaller number of the DNG
cells, as compared to Ref. [16]) can still outperform the black
body absorbers by, at least, 30%.

The obtained values of σnorm have to be considered as lower
boundary estimates for the global maximum of the absorption
cross section in the relevant structures. The main reason of
this is that, due to limited computing resources, we do not
optimize the parameters of each and every cell separately:
Instead we group cells by rings, and perform optimizations
on the ring basis. A global cell-based optimization can thus
lead to even higher values of the target function.

The superabsorption effect and the considered structures
are of interest for potential applications of the superabsorbers
as efficient harvesters of electromagnetic radiation, which
receive more energy from the incoming radiation than what
is falling directly on their surface.
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APPENDIX A: NOTES ON FDTLM FORMULATION

We can define a unit cell of our structure as the intersection
of two TLs [16]. Here, the scattering parameters for such
intersection are calculated based on the normalized size (β0d)
and the normalized characteristic impedance (Z0) of the unit

cell, without considering any particular geometry of the TLs,
effectively treating the unit cell as a black box.

These scattering factors form a four-by-four matrix for
each cell that relates the incident and reflected wave am-
plitudes as Vref

cell = ScellVinc
cell. This equation can be extended

to the whole structure, with the a block-diagonal scattering
matrix S comprising the individual scattering matrices of each
cell of the structure. Each unit cell has connections to the
four neighboring nodes. One can define a sparse matrix to
represent the connections between the cells, C. In this matrix,
the nonzero elements are Cmn = 1, where m and n indicate the
ports of the neighboring cells that are connected through those
ports, implying that V inc

m = V ref
n + V ext

m , where V ext
m represents

the effect of external sources. The C matrix is also used to
realize the absorbing boundary condition (ABC) at the edges
of the structure [16].

In this work we employ an equivalent Huygens source
defined in the DPS plane in such a way that, in the absence of
the wormhole, the wave solution resulting from the excitation
is a plane wave in the region enclosed by the Huygens source
boundary. The details on realizing such source can be found
in Ref. [16]. The denominator in Eq. (1) is the incident power
density due to this source, which is determined by the incident
wave amplitude (V inc

0 ), and is calculated as

�inc = 1

Zref
(1 − |0|2)

∣∣V inc
0

∣∣2
, (A1)

where 0 is the Bloch reflection coefficient [16] in the TL
mesh.

The total power that enters the wormhole and which is
eventually absorbed by the ABCs at the edges of the DNG
domain can be expressed as (here we use root-mean-square
amplitudes)

Pabs = Re

(
1

Zref
Vinc†

DVref

)
, (A2)

where D is a mask matrix that accounts for the connections at
the interface between the DPS and DNG domains, so that the
matrix multiplication in Eq. (A2) represents the total power
that enters the region of the wormhole absorber. For example,
if that interface is right at the circumference of the wormhole,
then

D =
(

0 −Cwh

CT
wh 0

)
, (A3)

with Cwh defined as the connection matrix that links the top
and bottom meshes together [16].

APPENDIX B: EXPLICIT GRADIENT DERIVATION

By differentiating Eq. (5), we obtain the following expres-
sion:

∂H
∂ρ

= ∂A−1†

∂ρ
(DS − S†D)A−1

+ A−1†
D

∂S
∂ρ

A−1 − A−1† ∂S†

∂ρ
DA−1

+ A−1†
(DS − S†D)

∂A−1

∂ρ
. (B1)
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Considering the following rules for matrix differentiation:

∂A−1

∂ρ
= −A−1 ∂A

∂ρ
A−1, (B2)

∂A
∂ρ

= −C
∂S
∂ρ

, (B3)

∂A†

∂ρ
= −∂S†

∂ρ
C†, (B4)

and rearranging the terms of Eq. (B1), we obtain

∂H
∂ρ

= A−1†
(

[D(I + SA−1C) − S†DA−1C]
∂S
∂ρ

)
A−1

− A−1†
(

∂S†

∂ρ
[(I + C†A−1†

S†)D − C†A−1†
DS]

)
A−1.

(B5)

We note that the two addends on the right-hand side of
Eq. (B5) are conjugate-transpose of each other, therefore, we
can work with just one of them and then apply the same results
to the other.

Furthermore, knowing [16] that CT = C and, similarly,
ST = S, we can get the following relation: A−1C = CA−1T .
Using this result in the above equations, we find that

A−1†
(DA−1T − S†DA−1C)

∂S
∂ρ

A−1

= A−1†
(D − S†DC)A−1T ∂S

∂ρ
A−1. (B6)

Next, we define the Scell matrix (the scattering matrix for a
single cell of the TL mesh):

Scell = (I + RS0)−1(S0 + RI), (B7)

where R = (Z0 − 1)/(Z0 + 1) (scalar) and S0 = ( 1
2 U −

I)e−β0d (α±i), is the S-matrix of the TL crossing, where the
plus sign corresponds to the DPS cells and the minus sign is
for the DNG cells; and α = αDPS or α = αDNG is the relative
loss parameter for the respective cells, and i = √−1 is the
imaginary unit. Here, U represents a 4×4 matrix with all
components equal to unity and I is the 4×4 identity matrix.

Starting with the Z0 parameter, we can write

∂Scell

∂Z0
= −(I + RS0)−1 dR

dZ0
(S0(I + RS0)−1(S0 + RI) − I)

= −(I + RS0)−1 dR

dZ0
(S0Scell − I). (B8)

By using the result dR/dZ0 = 2(Z0 + 1)−2, we get the follow-
ing formula for the derivative,

∂Scell

∂Z0
= − 2

(Z0 + 1)2
(I + RS0)−1(S0Scell − I). (B9)

Performing the same steps for the β0d parameter, we obtain
the following relation,

∂Scell

∂ (β0d )
= (I + RS0)−1 dS0

d (β0d )
[I − R(I + RS0)−1(S0 + RI)]

= (I + RS0)−1 dS0

d (β0d )
(I − RScell ). (B10)

Finally, by noting that dS0/d (β0d ) = −(α ± i)S0, we can
reduce this equation to

∂Scell

∂ (β0d )
= −(α ± i)(I + RS0)−1S0(I − RScell ). (B11)

APPENDIX C: ALGORITHMS

Here we present the algorithms for the three optimization
strategies used in this work. The following common notations
are used: r is the ring index; N is the total number of rings;
M and L are the maximum numbers of iterations in i and j,
respectively; {β0d, Z0} denotes the whole sequence (or vector)
of the optimization parameters; SIMULATION () is the FDTLM-
based procedure that calculates the absorption cross section
σabs (and its gradient ∇σabs) for a metamaterial wormhole
object with the given set of parameters; APPEND (elem, seq)
appends an element elem to the sequence seq; REPLACE

(n, seq, elem) returns a sequence with the nth element of seq
replaced by elem.

Algorithm 1. Ring-by-ring algorithm.

function RINGBYRING(N)
sol ← {} � Start with empty sequence
for r ← 1, 2, . . . N do � Loop for N rings

max ← 0
for b ← 0.01, . . . 1.0 do

for z ← 0.01, . . . 5.0 do
{β0d, Z0} ← APPEND((b, z), sol)
σabs ← SIMULATION({β0d, Z0})
if σabs > max then

max ← σabs

sol ← {β0d, Z0}
end if

end for
end for

end for
return max, sol � Return optimal σabs(β0d, Z0 )

end function

Algorithm 2. Gradient descent algorithm.

function GRADIENTDESCENT(N, {β in
0 d, Z in

0 }, M, κ, γ )
ν ← 0
max ← 0
{β0d, Z0} ← {β in

0 d, Z in
0 } � Initial params for N rings

for i ← 1, 2, . . . M do
(σabs, ∇σabs ) ← SIMULATION({β0d, Z0})
ν ← (1 − γ )ν + κ∇σabs

{β0d, Z0} ← {β0d, Z0} + ν

if σabs > max then
max ← σabs

sol ← {β0d, Z0}
end if
if ν = 0 then break

end for
return max, sol � Return optimal σabs(β0d, Z0)

end function
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Algorithm 3. Mixed algorithm.

function MIXEDGRADIENT(N , {β in
0 d}, {Z in

0 }, M, L)
ν ← 0; max ← 0
bsol ← {β in

0 d}; zsol ← {Z in
0 } � Initial set for N rings

for i ← 1, 2, . . . M do
{Z0} ← zsol
for j ← 1, 2, . . . L do �Z0 optimization loop

(σabs, ∇σabs ) ← SIMULATION({bsol, Z0})
ν ← (1 − γ )ν + κ∇σabs,Z0

{Z0} ← {Z0} + ν

if σabs > max then
max ← σabs; zsol ← {Z0}

end if
if ν = 0 then break

end for
for r ← 1, 2, . . . N do �β0d optimization loop

{β0d} ← bsol
for b ← 0.01, . . . 1 do

{β0d} ← REPLACE(r, {β0d}, b)
(σabs,∇σabs ) ← SIMULATION({β0d, zsol})
if σabs > max then

max ← σabs; bsol ← {β0d}
end if

end for
end for

end for
return max, bsol, zsol � Return optimal σabs(β0d, Z0)

end function
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