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Nonintrusive reduced order modeling framework for quasigeostrophic turbulence
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In this study, we present a nonintrusive reduced order modeling (ROM) framework for large-scale quasista-
tionary systems. The framework proposed herein exploits the time series prediction capability of long short-term
memory (LSTM) recurrent neural network architecture such that (1) in the training phase, the LSTM model
is trained on the modal coefficients extracted from the high-resolution data snapshots using proper orthogonal
decomposition (POD) transform, and (2) in the testing phase, the trained model predicts the modal coefficients
for the total time recursively based on the initial time history. Hence, no prior information about the underlying
governing equations is required to generate the ROM. To illustrate the predictive performance of the proposed
framework, the mean flow fields and time series response of the field values are reconstructed from the predicted
modal coefficients by using an inverse POD transform. As a representative benchmark test case, we consider
a two-dimensional quasigeostrophic ocean circulation model which, in general, displays an enormous range of
fluctuating spatial and temporal scales. We first demonstrate that the conventional Galerkin projection-based
reduced order modeling of such systems requires a high number of POD modes to obtain a stable flow physics.
In addition, ROM-Galerkin projection (ROM-GP) does not seem to capture the intermittent bursts appearing in
the dynamics of the first few most energetic modes. However, the proposed nonintrusive ROM framework based
on LSTM (ROM-LSTM) yields a stable solution even for a small number of POD modes. We also observe that
the ROM-LSTM model is able to capture quasiperiodic intermittent bursts accurately, and yields a stable and
accurate mean flow dynamics using the time history of a few previous time states, denoted as the lookback time
window in this paper. We show several features of ROM-LSTM framework such as significantly higher accuracy
than ROM-GP, and faster performance using larger time step size. Throughout the paper, we demonstrate our
findings in terms of time series evolution of the field values and mean flow patterns, which suggest that the
proposed fully nonintrusive ROM framework is robust and capable of predicting chaotic nonlinear fluid flows in
an extremely efficient way compared to the conventional projection-based ROM framework.
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I. INTRODUCTION

Large-scale turbulent flows, such as atmospheric and geo-
physical flows, are nonlinear dynamical systems which ex-
hibit an enormous range of complex, coherent spatiotemporal
scales. Over the past half century, computational approaches
have made a significant contribution to characterize and
understand the behavior of such flow phenomena. To re-
solve physical problems with high spatiotemporal variabilities
through numerical simulation, one needs a high-fidelity mod-
eling technique like direct numerical simulation. However, a
huge amount of computational resources are required to cap-
ture the fine details of the flow dynamics which can become
inefficient and unmanageable after some level of accuracy. Al-
though there has been a continuous growth in computer power
and performance following Moore’s law during the past few
decades [1], the progress has started to stagnate in the recent
years [2–5]. As a result, one of the most active research areas
in modeling of turbulent flow dynamics is the development
of efficient and robust algorithms that aim at achieving the
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maximum attainable quality of numerical simulations with
optimal computational costs. Indeed, computational costs can
be reduced by using low-fidelity models such as large eddy
simulation (LES) [6] and Reynolds-averaged Navier-Stokes
[7] with additional approximations in the governing equations
to neglect some of the physical aspects for closure modeling.
Even so, these techniques require parameter calibration to
approximate the true solution to any degree of confidence and
may thus increase costs related to model validation, bench-
mark data generation, and efficient analysis of the generated
data sets. As an alternative to the existing techniques, the
reduced order modeling (ROM) approach has quickly become
a promising approach to reduce the computational burden of
high-fidelity simulations. In general, ROM works in such a
way that the high-dimensional complex dynamical systems
will be represented with much lower-dimensional (but dense)
systems while keeping the solution quality within the accept-
able range [8,9]. An introduction to ROM methodologies can
be found in recent review articles [9–11].

There have been a significant number of strategies pro-
posed over the years to obtain ROMs of nonlinear dynamical
systems. These ROM techniques have been utilized for a wide
variety of applications related to, e.g., flow control [12–14],
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data assimilation in weather and climate modeling [15,16],
and uncertainty quantification [17–19]. Among the different
variants of ROM strategies, the Galerkin projection combined
with proper orthogonal decomposition (POD) -based ROMs
(ROM-GP) have been utilized extensively in various areas
[20–26]. POD, also known as principal component analysis,
is a mathematical technique to extract the dominant statistical
characteristics from turbulent flow fields by identifying the
most energetic modes [10,11,27–29]. These few POD modes
possess the fine-scale details of the system and have the
capability of representing the true physics accurately. Over the
years, considerable work has been done to improve the regular
POD approaches [8–10,12,30–35].

In general, POD uses the data obtained from experiments
or high-fidelity numerical simulations and generates an or-
thonormal set of spatial basis vectors describing the main
directions (modes) by which the flow is represented optimally,
in an L2 sense [32]. The most energetic modes are kept to
generate the reduced order system while the other modes are
truncated. However, it has been observed that the discarded
modes often contribute to the evolving dynamics of large-
scale complex turbulent flow systems, like the geophysical
flows [36], resulting in instabilities and modeling errors in
the solution [25,37–39]. Thus, several research efforts have
been devoted to improve the stability of ROM-GP frameworks
by addressing the truncated modes contributions [40–44].
Noack et al. [45] proposed an extra “shift mode” for accurate
representation of the unstable steady solution. Several closure
modeling ideas are devised to resolve the weak dissipation
associated with POD modes by introducing eddy-viscosity
terms (similar to LES eddy-viscosity models) [46–48]. San
and Iliescu [49] improved the ROM performance by finding
an optimal value for eddy-viscosity parameter with the as-
sumption that the amount of dissipation is not identical for
all the POD modes. We also proposed an automated approach
to find the eddy-viscosity parameter dynamically to stabilize
the ROM-GP model [50,51]. An alternative approach to find
the eddy-viscosity parameter dynamically has been proposed
by using an extreme learning machine architecture [52]. With
the growing interest in data-driven modeling of ROMs using
machine learning (ML) architectures, there has been another
dimension of research introduced to the community for the
improvement in ROM performance, referred as hybrid ROM
approach. Generally, the hybridization is done by combining
an imperfect physics-based model with a data-driven tech-
nique to get a hybrid scheme, and it is observed that the
hybrid model shows better predictive performance than the
component models [53–56].

In this paper, we develop a fully nonintrusive ROM
approach as a potential alternative to already existing
ROM methodologies. Indeed, physics-based (intrusive) ROM
frameworks require an approximation of stabilization or reg-
ularization parameters and depend on underlying governing
equation to get the solution. On the other hand, the hybrid
approaches require computation of both intrusive and nonin-
trusive contributions, which can make the overall computation
expensive. However, it is well known that a nonintrusive ap-
proach can make the framework greatly efficient when it can
be implemented successfully. With the abundance of massive
amounts of data resources from high-fidelity simulations, field

measurements, and experiments, the data-driven modeling ap-
proaches are currently considered some of the most promising
methods across different scientific and research communities.
In the past few years, artificial neural networks (ANNs) and
other ML techniques have started a revolution in turbulence
modeling community [57–66]. Interested readers are directed
to Refs. [67–71] for more on the influence of ML on fluid
mechanics, specifically turbulence modeling.

With a goal to develop an efficient and robust nonintrusive
ROM framework for large-scale quasistationary systems like
geophysical flows, we propose a methodology based on long
short-term memory (LSTM) recurrent neural networks. Since
reduced order modeling of such chaotic large-scale systems
is comparatively difficult due to instabilities, which results
in using a very large number of POD modes to capture the
true physics, our main motivation in this study is to utilize
the time series prediction capability of LSTM [71–75] to
capture the flow physics with very few POD modes. As
detailed in Ref. [74], LSTM is very robust in predicting a
very chaotic sequential time series. In general, for this type
of random time series, LSTM does the prediction using its
own internal dynamics, which is found stable and close to
the true solution [74,76]. For this reason, we choose to utilize
LSTM architecture based on our problem of interest, which
is the large-scale quasistationary turbulence. However, we
emphasize that this nonintrusive model can be developed by
using other relevant neural network architectures as well. We
also mention that the development of ROM using POD and
LSTM has been used only in a few other works and proven
to be successful in capturing the temporal dynamics of fluid
flows. Wang et al. [73] proposed a nonintrusive ROM based on
LSTM and used it to predict laminar flows. In another recent
work, Vlachas et al. [77] proposed a data-driven method
based on LSTM to predict the state derivative of chaotic
systems using the short-term history of the reduced order
states. The predicted derivatives are then used for one-step
forward prediction of the high-dimensional dynamics. The
authors further developed a hybrid framework combining
mean stochastic model and LSTM for data-driven to extend
the forecasting capability of the proposed approach. To do the
dimensionality reduction, the authors utilized discrete Fourier
transform, singular value decomposition, and empirical or-
thogonal functions. Mohan and Gaitonde [76] developed a
nonintrusive ROM using LSTM and POD for flow control
applications through a detailed analysis on different ROM-
LSTM training and testing hyperparameter tuning parameters.
Even though the authors’ idea of developing nonintrusive
ROM-based LSTM by replacing Galerkin projection is similar
to our present work, their work is mostly focused on exploring
the capability of LSTM in modeling the flow in reduced
order space for data sets with less randomness. Indeed, the
data sets with less randomness have more “memory” in it,
i.e., there are persistent or anti-persistent trends and thus,
are more controllable through LSTM hyperparameters. On
the other hand, our present work is focused on exploring
the capability of ROM-LSTM framework in resolving large-
scale geophysical flow problem where the data sets mostly
do not follow any particular trend. To this end, we develop a
modular ROM-LSTM approach in chaotic and quasistationary
systems to see whether it can overcome the instability issues
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FIG. 1. Schematic representation of a typical LSTM network.

associated with conventional ROMs for chaotic dynamical
systems. To assess our proposed framework, we consider the
barotropic vorticity equation (BVE) representing the single-
layer quasigeostrophic (QG) model as an example of the
quasistationary system. We observe a remarkably efficient
predictive performance by the proposed framework based
on LSTM (ROM-LSTM) through a number of numerical
experiments and analyses.

The layout of the paper is as follows: Sec. II provides
an overview of the barotropic vorticity equation describing a

single-layer QG ocean model. In Sec. III dimension reduction
through Galerkin projection and proper orthogonal decompo-
sition is illustrated briefly. Our proposed nonintrusive ROM-
LSTM framework with a brief introduction to LSTM are
presented in Sec. IV. In Sec. V we evaluate the predictive
performance of the proposed ROM framework with respect to
the standard ROM and full order model solutions. We demon-
strate the the ROM-LSTM framework is a robust surrogate
model and show boundedness of the present approach with
larger time step size in Sec. VI. Finally, Sec. VII provides a
summary of this study and the conclusions drawn from it.

II. SINGLE-LAYER QUASIGEOSTROPHIC OCEAN
CIRCULATION MODEL

In the present study, we consider the simple single-
layer QG ocean circulation model to develop and assess the
performance of different ROM approaches. Following
Refs. [78,79], we consider the single-layer QG problem as a
benchmark for wind-driven, large-scale oceanic flow. Wind-
driven flows of midlatitude ocean basins have been studied
frequently by modelers using idealized single- and double-
gyre wind forcing, which helps in understanding various as-
pects of ocean dynamics, including the role of mesoscale ed-
dies and their effect on mean circulation. However, modeling
the vast range of spatiotemporal scales of the oceanic flows
with all the relevant physics has always been challenging.
As a result, the numerical simulation of oceanic and atmo-
spheric flows still requires approximations and simplifications
of the full model. The BVE describing the single-layer QG

FIG. 2. Work-flow diagram of the ROM-LSTM framework. Note that the training phase (offline computation) is computationally heavier
compared to the testing (online computation) phase.
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equation with dissipative and forcing terms is one of the
most commonly used models for the double-gyre wind-driven
geophysical flows [80].

The BVE model shares many features with the two-
dimensional (2D) Euler and Navier-Stokes equations and
has been extensively used over the years to describe var-
ious aspects of the largest scales of turbulent geophysical
fluid dynamics [81–86]. Using β-plane assumption reasonable
for most oceanic flows, the dimensionless vorticity-stream-
function formulation of the forced-dissipative BVE can be
written as [53]

∂ω

∂t
+ J (ω,ψ ) − 1

Ro

∂ψ

∂x
= 1

Re
∇2ω + 1

Ro
sin(πy), (1)

where ∇2 is the standard 2D Laplacian operator. ω and ψ

are the kinematic vorticity and stream function, respectively,
defined as

ω = ∇ × u, (2)

u = ∇ × ψ k̂, (3)

where u is the 2D velocity field and k̂ refers to the unit
vector perpendicular to the horizontal plane. The kinematic
equation connecting the vorticity and stream function can be
found by substituting the velocity components in terms of
stream function in Eq. (2), which yields the following Poisson
equation:

∇2ψ = −ω. (4)

Equation (1) contains two dimensionless parameters,
Reynolds number (Re) and Rossby number (Ro), which are
related to the physical parameters and nondimensional vari-
ables in the following way:

Re = V L

ν
, Ro = V

βL2
, (5)

where ν is the horizontal eddy viscosity of the BVE model and
β is the gradient of the Coriolis parameter at the basin center
(y = 0). L is the basin length scale and V is the velocity scale,
also known as the Sverdrup velocity [87], and is given by

V = τ0

ρH

π

βL
, (6)

where τ0 is the maximum amplitude of the double-gyre wind
stress, ρ is the mean fluid density, and H is the mean depth
of the ocean basin. Despite not being explicitly represented in
Eq. (1), there are two important relevant physical parameters,
the Rhines scale, δI , and the Munk scale, δM , which are the
boundary layer thicknesses for the inertial and viscous layers
of the basin geometry, respectively. As a physical interpreta-
tion of these parameters in BVE model, δI accounts for the
strength of nonlinearity and δM is a measure of dissipation
strength. Here δI and δM can be defined as

δI

L
=

(
V

βL2

) 1
2

,
δM

L
=

(
ν

βL3

) 1
3

(7)

and are related to Ro and Re by the following relations:

δI

L
= (Ro)

1
2 ,

δM

L
=

(
Ro

Re

) 1
3

. (8)

FIG. 3. Evaluation results for hyperparameters search for LSTM
architecture. We perform fivefold cross-validation for different num-
ber of layers L = 4, 6, 8 and number of neurons N = 40, 60, 80.
The mean of the evaluation metric for five data samples is used
to select the hyperparameters. The error bars shows the standard
deviation of evaluation metric score for five samples.

Finally, the nonlinear advection term in Eq. (1) is given by
the Jacobian

J (ω,ψ ) = ∂ψ

∂y

∂ω

∂x
− ∂ψ

∂x

∂ω

∂y
. (9)

Since ocean circulation models where the Munk and Rhines
scales are close to each other, like the QG model, remain
time dependent instead of reaching a steady state as time
approaches to infinity [88], numerical computations of these
models are conducted in a statistically steady state, also
known as the quasistationary state. Hence, in our study, we
utilize numerical schemes suited for simulation of such type of
ocean models and for long-time integration. For the full order
model (FOM) simulations, we utilize the second-order central
finite difference schemes for the derivatives in the linear
terms. The nonlinear Jacobian term in Eq. (1) is modeled
by the second-order skew-symmetric, energy- and enstrophy-
conserving Arakawa scheme [89] to avoid computational in-
stabilities arising from nonlinear interactions. For the time in-
tegration, we use the optimal total variation diminishing third-
order accurate Runge-Kutta scheme [90]. Following previous
theoretical studies of large-scale ocean circulation models
in simplified Cartesian oceanic basins [79,84,85,91,92], we
utilize slip boundary condition for the velocity, which implies
homogeneous Dirichlet boundary condition for the vorticity
and stream function:

ω|� = ψ |� = 0, (10)

where � refers to all boundary coordinates. We start our
computations from a quiescent state, i.e., ωt=0 = ψ |t=0 = 0
initial conditions, and integrate the model until a statistically
steady state is obtained. Details of the relevant numerical
discretization schemes for this study can be found in related
work [53,79,92].
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III. INTRUSIVE ROM-GP METHODOLOGY

The intrusive ROM framework is developed based on a
standard Galerkin projection methodology using the method
of snapshots, an efficient method for computing the POD basis
functions [93]. In this section, we briefly describe the ROM-
GP framework utilized in our work. We obtain N snapshots
for vorticity field, ω(x, y, tn) for n = 1, 2, . . ., N at pseudotime
t = tn from FOM simulation. Algorithm 1 describes the POD
basis construction procedure from the stored snapshots.

Algorithm 1. POD basis construction

1: Compute the time-invariant mean fields and the fluctuation fields
(mean-subtracted snapshots) for the given number of snapshots
of the 2D vorticity field as

ω̄(x, y) = 1

N

N∑
n=1

ω(x, y, tn), (11)

ω′(x, y, tn) = ω(x, y, tn) − ω̄(x, y). (12)

2: An N × N snapshot data matrix A = [ai j] is computed from the
inner product of mean-subtracted snapshots

ai j = 〈ω′(x, y, ti ); ω
′(x, y, t j )〉, (13)

where i and j refer to the snapshot indices.
3: Compute the optimal POD basis functions by performing an

eigendecomposition of A as AV = V�, where � is a diagonal
matrix whose entries are the eigenvalues λk of A, and V is a
matrix whose columns vk are the corresponding eigenvectors. In
our computations, we use the eigensystem solver based on the
Jacobi transformations since A is a symmetric positive definite
matrix [94].

4: Using the eigenvalues stored in a descending order (i.e.,
λ1 � λ2 � · · · � λN ), for proper selection of the POD modes in
�, compute the orthogonal POD basis functions for the vorticity
field φk as

φk (x, y) = 1√
λk

N∑
n=1

vn
k ω

′(x, y, tn), (14)

where vn
k is the nth component of the eigenvector vk . The scaling

factor, 1/
√

λk , guarantees the orthonormality of POD modes,
i.e., 〈φi; φ j〉 = δi j , where δi j is the Kronecker delta.

5: Obtain the kth mode for the stream function, θk (x, y) utilizing
the linear dependence between stream function and vorticity
given by Eq. (4):

∇2θk = −φk, (15)

for each k = 1, 2, . . ., R. To be able to use the same ak (t )
coefficients for both stream-function and vorticity fields, the
following elliptic equation holds true for the mean variables:

∇2ψ̄ = −ω̄. (16)

6: Construct kth time-dependent modal coefficients ak (tn) for N
snapshots by using POD modes and forward transformation:

ak (tn) = 〈ω(x, y, tn) − ω̄(x, y); φk〉. (17)

We can approximate the field variables, i.e., kinematic
vorticity and stream function using the most energetic R
POD modes, where R � N , such that these R largest en-
ergy containing modes correspond to the largest eigenvalues
(λ1, . . ., λR). The resulting full expression for the field vari-
ables can be written as

ω(x, y, t ) = ω̄(x, y) +
R∑

k=1

ak (t )φk (x, y), (18)

ψ (x, y, t ) = ψ̄ (x, y) +
R∑

k=1

ak (t )θk (x, y), (19)

where ak (t ) accounts for both stream function and vorticity
based on the kinematic relation given by Eq. (4). It should
be mentioned that in our ROM formulations, we use the
following angle-parenthesis definition for the inner product of
two arbitrary functions f and g:∫

�

f (x, y)g(x, y) dx dy = 〈 f ; g〉. (20)

We refer to Ref. [50] for the details of the integration tech-
nique utilized in this study. In conventional projection-based
intrusive ROM framework, we apply Galerkin projection to
the governing equation, which yields R coupled ordinary
differential equations (ODEs) for the time evolution of the
temporal modes of the system while the spatial modes are kept
constant [34,40,95]. Any standard time integration technique
can be utilized to solve the coupled ODE system, since the
basis functions and corresponding modal coefficients will be
precomputed in the offline computation stage. The Galerkin
projection approach is summarized in Algorithm 2.

Algorithm 2. Galerkin projection to obtain ROM

1: Given an initial condition ω(x, y, t0 ) at time t0, compute the
initial modal coefficients ak (t0) using the following relation:

ak (t0) = 〈ω(x, y, t0 ) − ω̄(x, y); φk〉. (21)

2: Perform an orthogonal Galerkin projection by multiplying the
governing equation with the POD basis functions and integrating
over the domain [96], which will yield the following dynamical
system for ak :

dak

dt
= Bk +

R∑
i=1

Li
kai +

R∑
i=1

R∑
j=1

N
i j
k aia j, (22)

where k = 1, 2, . . ., R and the predetermined model coefficients
can be computed by the following numerical integration (offline
computing):

Bk =
〈
−J (ω̄, ψ̄ ) + 1

Ro

[
sin(πy) + ∂ψ̄

∂x

]
+ 1

Re
∇2ω̄; φk

〉
,

Li
k =

〈
−J (ω̄, θi ) − J (φi, ψ̄ ) + 1

Ro

∂θi

∂x
+ 1

Re
∇2φi; φk

〉
,

N
i j
k = 〈−J (φi, θ j ); φk〉. (23)
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TABLE I. A list of hyperparameters utilized to train the LSTM
network for all numerical experiments.

Parameters Values

Number of hidden layers 6
Number of neurons in each hidden layer 40
Batch size 16
Epochs 500
Activation functions in the LSTM layers tanh
Validation data set 20%
Training-testing ratio 4:9
Loss function MSE
Optimizer ADAM
Learning rate (α) 0.001
First moment decay rate (β1) 0.9
Second moment decay rate (β2) 0.999

IV. NONINTRUSIVE ROM-LSTM METHODOLOGY

In this section, we discuss our proposed ROM-LSTM
methodology. As outlined in Algorithm 1, we obtain the
time-dependent modal coefficients ak by performing a POD
transform on stored snapshot data. The modal coefficients
are a sequence of data points with respect to time, i.e., a
time series representing the underlying dynamical system. In
intrusive or physics-based ROM, we do Galerkin projection
using governing equation to obtain a coupled system of ODEs
for ak , and then solve the ODE system on the given time
interval. However, the limitations of projection-based ROMs,
such as susceptibility to instability for chaotic data set, nu-
merical constraints for solving ODE system, or inefficient
reduced order modeling, encourage us to replace the physics-
based Galerkin projection phase of ROM-GP methodology
with a data-driven approach. Among the variety of ideas to
resolve the issues associated with projection-based ROM, a
number of published works related to ROM based on POD
and neural networks have shown signs of future success. The
recurrent neural network (RNN) is one of the widely used
neural network architectures in ROMs which is designed to
operate on input information as well as the previously stored
observations to predict the dependencies among the temporal
data sequences [97,98]. LSTM is a special variant of RNN
which is capable of tracking long-term dependencies among
the input data sequences. Hence, we consider LSTM recur-

TABLE II. Hurst exponents of modal coefficients.

Modal coefficient Hurst exponent

a1(t ) 0.52
a2(t ) 0.35
a3(t ) 0.63
a4(t ) 0.59
a5(t ) 0.49
a6(t ) 0.59
a7(t ) 0.59
a8(t ) 0.46
a9(t ) 0.58
a10(t ) 0.53

rent neural network to develop our nonintrusive ROM-LSTM
framework. Before describing the ROM-LSTM procedure, we
first briefly review the LSTM architecture.

As the name suggests, RNNs contain recurrent or cyclic
connections that enable them to model complex time-varying
data sequences with a wide range of temporal dependencies or
correlations between them. In general, RNNs map a sequence
of data to another sequence through time using cyclic connec-
tions, and constrain some of the connections to hold the same
weights using back-propagation algorithm [99]. However, the
standard RNN architecture suffers from vanishing gradient
problem when the gradient of some weights starts to become
too small or too large [100]. This leads to the development of
improved RNN architectures which overcome the modeling
issues of standard RNNs. There are several variants of RNN
which are found to work well in tackling long-term dependen-
cies [101–104]. One of the most successful forms of improved
RNN architectures is the LSTM network, which solves the
limitation of vanishing gradients [105]. In contrast to most
of the ANN architectures, LSTM operates by cell states and
gating mechanisms to actively control the dynamics of cyclic
connections and thus, resolves the vanishing gradient issues.
Similar to the standard RNNs, LSTM can learn and predict
the temporal dependencies based on the input information and
previously acquired information, i.e., the internal memory of
LSTM allows the network to find the relationship between
the current input and stored information to make a prediction.
There has been a number of variants of LSTM developed later
as well which showed promise for better performance, for
example, grid LSTM [106].

10 20 30 40 50 60 70 80 90 100
0.0

0.5

C
F

L

98.00 98.25 98.50 98.75 99.00 99.25 99.50 99.75 100.00

0.25

0.50

C
F

L

Zoom in t = 98 to t = 100

FIG. 4. Variation of CFL number from time t = 10 to t = 100 for the FOM simulation.
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The conventional LSTM architecture contains memory
blocks in the recurrent hidden layers, which have memory
cells to store the cell states and gates to control the flow
of information. Each memory block has an input gate con-
trolling the flow of input activations into the cell, a forget
gate to adaptively forgetting and resetting the cell’s memory
(to prevent overfitting by processing continuous inflow of
input streams), and the output gate controlling the output
flow of cell activations into the next cell. We have shown
a schematic of a conventional LSTM cell in Fig. 1 to il-
lustrate how the data stream flows through LSTM cells.
In our LSTM architecture, we consider an input sequential
data matrix Xk and the output sequential data matrix Yk .
Each sample of the input training matrix Xk is constructed
as {a(n)

1 , . . . , a(n)
R ; . . . ; a(n−σ+1)

1 , . . . , a(n−σ+1)
R } and the corre-

sponding output sample in output sequential data matrix Yk is
{a(n+1)

1 , . . . , a(n+1)
R }. In our study, we call σ as the lookback

time window. The lookback time window, in our definition,
means the time history over which the LSTM model does
the training and prediction recursively. Indeed, increasing the
value of σ increases the quality of training the model but

makes the model dependent on an increased number of initial
states during prediction. Considering input gate as I, the for-
get gate as F , the output gate as O, the cell activation vectors
as c, and the LSTM cell output activation vector or the hidden
state vector as h, the LSTM model does the mapping from the
input sequence to an output sequence by using the following
set of equations iteratively [74,75,105,107]. The equations for
input network and gate functions, respectively, are

z(n+1)
k = λ

(
Whh(n)

k + WXX (n+1)
k

)
, (24)

m(n+1)
k = ζ

(
Wmz(n+1)

k + bm
)
, (25)

where m ∈ (I,F ,O). The internal cell state equation is given
by

c(n+1)
k = F (n+1)

k 	 c(n)
k + I (n+1)

k 	 ξ, (26)

where ξ = tanh(Wcz(n+1)
k + bc). The output state of the LSTM

cell and the output network can be expressed by the following
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FIG. 5. Mean stream-function and vorticity fields obtained by the FOM simulation and the standard ROM-GP simulation at Re = 450 and
Ro = 3.6 × 10−3 flow condition. (a) ψFOM at a resolution of 256 × 512, (b) ψROM-GP with R = 10 modes, (c) ψROM-GP with R = 20 modes,
(d) ψROM-GP with R = 40 modes, (e) ψROM-GP with R = 80 modes, (f) ωFOM at a resolution of 256 × 512, (g) ωROM-GP with R = 10 modes,
(h) ωROM-GP with R = 20 modes, (i) ωROM-GP with R = 40 modes, and (j) ωROM-GP with R = 80 modes.
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FIG. 6. Time series evolution of the first and tenth modal coefficients, a1(t ) and a10(t ), respectively, between t = 10 and t = 100 for
standard ROM-GP simulation at Re = 450 and Ro = 3.6 × 10−3. (a) a1(t ) for ROM-GP with R = 10 modes, (b) a10(t ) for ROM-GP with
R = 10 modes, (c) a1(t ) for ROM-GP with R = 20 modes, (d) a10(t ) for ROM-GP with R = 20 modes, (e) a1(t ) for ROM-GP with R = 30
modes, (f) a10(t ) for ROM-GP with R = 30 modes, (g) a1(t ) for ROM-GP with R = 40 modes, (h) a10(t ) for ROM-GP with R = 40 modes,
(i) a1(t ) for ROM-GP with R = 80 modes, and (j) a10(t ) for ROM-GP with R = 80 modes. True projection series is underlined in each figure
with black straight line. The training zone is shown with orange dashed line (from t = 10 to t = 50) and the out-of-sample testing zone is
shown with red dashed line (from t = 51 to t = 100) in ROM-LSTM solution series in each figure.

equations, respectively:

h(n+1)
k = O(n+1)

k 	 tanh
(
c(n+1)

k

)
, (27)

Y (n+1)
k = λ

(
WYh(n+1)

k + bY
)
, (28)

where z vector is given by the input vector and hidden state
vector of previous time step, W represents the weight matrices
for each gates, b denotes the bias vectors for each gates, 	
is the elementwise product or Hadamard product of two
vectors, λ is the network input and output activation function
which is tanh in our paper, and ζ is the logistic sigmoid
function.

Similar to the ROM-GP methodology, the workflow of the
ROM-LSTM framework consists of two phases as displayed
in Fig. 2. In the offline training phase, we first obtain POD

basis functions and modal coefficients using Algorithm 1.
The known time series of modal coefficients from training
snapshots are used to train the LSTM model. Based on
the values of σ , the input of the LSTM model M will
be the previous time states of the input modal coefficients
for R retained modes and the output of the model will
be the next time state recursively for R modes. Training
LSTM model is the computationally heavier part of the
ROM-LSTM framework, but this is done offline. In online
testing phase, we recursively predict the modal coefficients
for the total time using the trained model M. When the
model is deployed, the input of the trained model M will
be the initial states {a(1)

1 , . . . , a(1)
R ; . . . ; a(σ )

1 , . . . , a(σ )
R } based

on the preselected value of σ and the output will be re-
cursive prediction of corresponding future time states. Thus,
we bypass the physics-based Galerkin projection part with
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FIG. 7. Mean stream-function and vorticity fields obtained by the ROM-LSTM simulation based on different lookback time window, σ at
Re = 450 and Ro = 3.6 × 10−3 flow condition. (a) ψFOM at a resolution of 256 × 512, (b) ψROM-LSTM with σ = 1, (c) ψROM-LSTM with σ = 2,
(d) ψROM-LSTM with σ = 4, (e) ψROM-LSTM with σ = 5, (f) ωFOM at a resolution of 256 × 512, (g) ωROM-LSTM with σ = 1, (h) ωROM-LSTM with
σ = 2, (i) ωROM-LSTM with σ = 4, and (j) ωROM-LSTM with σ = 5. Note that the LSTM model is trained with R = 10 modes.

completely data-driven neural network approach to predict the
modal coefficients. Also, the computational cost of prediction
through trained LSTM network is significantly lower than
the physics-based approach. Finally, we reconstruct the mean
vorticity and stream-function fields using inverse transform
to analyze the behavior of the quasistationary flow. The key
steps of the ROM-LSTM framework are outlined below in
Algorithm 3.

Algorithm 3. ROM-LSTM framework
Training (offline)

1: Collect N snapshots data for the vorticity field,
ω(x, y, tn) = {ω(1)(x, y), ω(2)(x, y), . . ., ω(N )(x, y)} from the
FOM simulation.

2: Compute R POD modes for kinematic vorticity, φk and stream
function, θk using Eq. (14) and Eq. (15), respectively, for
k = 1, 2, . . ., R.

3: Construct modal coefficients by a forward transform through
projection

ak (tn) = 〈ω(x, y, tn) − ω̄(x, y); φk〉, (29)

where ak (tn) = {a(1)
k , a(2)

k , . . . , a(N )
k }.

4: Train LSTM model on reduced order snapshots for selected
lookback time window σ :

M :
{
a(n)

1 , . . . , a(n)
R ; . . . ; a(n−σ+1)

1 , . . . , a(n−σ+1)
R

}
⇒ {

a(n+1)
1 , . . . , a(n+1)

R

}
. (30)

Testing (Online)
5: Given initial values {a(1)

k , a(2)
k , . . . , a(σ )

k } based on σ ,
precomputed mean values and basis functions.

6: Use the trained LSTM model M to recursively predict ak (t )
until final time reached.

7: Reconstruct the mean fields by inverse transform using Eq. (18)
and Eq. (19).
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FIG. 8. Time series evolution of the modal coefficients between t = 10 and t = 100 for ROM-LSTM simulation at Re = 450 and Ro =
3.6 × 10−3. Note that the LSTM model is trained with R = 10 modes and σ = 5. True projection series is underlined in each figure with black
straight line. The training zone is shown with orange dashed line (from t = 10 to t = 50) and the out-of-sample testing zone is shown with red
dashed line (from t = 51 to t = 100) in ROM-LSTM solution series in each figure.

To design our LSTM architecture for ROM-LSTM frame-
work, we utilize Keras [108], a high-level API designed for
deep learning, combined with standard Python libraries. The
FOM simulation for data snapshots generation and POD basis
construction codes are written in FORTRAN programming lan-
guage. We use grid-search selection procedure coupled with
k-fold cross-validation to study the performance of LSTM net-
work for different sets of hyperparameters. Cross-validation
procedure is used to measure the performance of the model
on unseen data. In this procedure, the training data are first
divided into k groups. For each group, the remaining groups
are used for training the LSTM model and the model’s per-
formance is evaluated for that group. Once the performance is
estimated for all groups, the mean and standard deviation of
the evaluation metric is used to select the hyperparameters.
Therefore, if we use fivefold cross-validation, the model is
trained five times and the process can become computationally
expensive as number of folds increases. For the single-layer
QG ocean circulation model, we are interested in the ability of

LSTM network to predict the mean field and hence we com-
pare mean modal coefficients for hyperparameters selection.
We define the evaluation metric as

Evaluation metric = 1

R

R∑
k=1

∣∣∣∣∣
1

N

N∑
i=1

(
a(i)

k − â(i)
k

)∣∣∣∣∣, (31)

where N is number of snapshots in validation data set, ak is
true modal coefficients, âk are modal coefficients predicted by
LSTM model, and R is the number of modes.

We use three different numbers of layers L = 4, 6, 8 and
three different numbers of neurons N = 40, 60, 80 for each
of these layers. We report the mean evaluation metric for these
hyperparameters along with standard deviation in Fig. 3. It
can be observed that the mean evaluation metric is almost
the same for all hyperparameters. We utilize six LSTM layers
with 40 neurons in each layer. These hyperparameters were
found to be suitable for all our numerical experiments in
which we test the LSTM model for different numbers of
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FIG. 9. PDF for true and predicted modal coefficients between t = 50 and t = 100 for ROM-LSTM simulation at Re = 450 and Ro =
3.6 × 10−3. Note that the LSTM model is trained with R = 10 modes and σ = 5. The training is done using true modal coefficients between
t = 10 and t = 50.

modes and different numbers of lookback time windows.
Also, the computational cost is found manageable in this
deep architecture setup, which encourages us to perform all
the numerical experiments with this same setup. The mean-
squared error (MSE) is chosen as the loss function for weight
optimization, and a variant of stochastic gradient descent
method, called ADAM [109], is used to optimize the mean-
squared loss. The other relevant hyperparameters utilized
in our LSTM architecture are documented in Table I. The
hyperparameters are kept constant for all simulations to obtain
a fair comparison between the results in different numerical
experiment runs. It should be noted that the training data is
normalized by the minimum and maximum of each time series
to be in between the range [−1,+1].

V. NUMERICAL RESULTS

The predictive performance of the ROM-LSTM framework
is thoroughly examined in this section in terms of time
series evolution of the modal coefficients and mean flow
fields. It is well documented in literature that the ROM-GP
framework is incapable of capturing mean flow dynamics
for quasistationary flows using lower number of POD modes
and susceptible to instability [49,110]. There have been a
number of approaches proposed in previous literature to im-
prove the ROM performance. One way to stabilize the ROM
is by adding an empirical stabilization parameter based on
the analogy between large eddy simulation and truncated
modal projection [40,51]. Later, it is found that the ROM
performance further improves taking the optimal value for
the stabilization parameter rather than selecting it arbitrarily
[49,110–112]. In our previous work, we have shown that

computing the stabilization parameter dynamically at each
time step improve the ROM performance significantly [50].
However, the proposed ROM-LSTM methodology has several
advantages over the physics-based approaches, such as no
dependence on the underlying governing dynamical system
to obtain the solution, i.e., the process is free of numerical
constraints, no burden of adding stabilization parameter to
account for instability issues and so on. To reach a conclusion
about the performance of the ROM-LSTM framework, we
compare ROM-LSTM predictions with the FOM simulation
and the standard ROM-GP results. Moreover, we present the
performance of the ROMs based on lookback time window
σ and LSTM training for different number of POD modes
to show the robustness and capability of the proposed frame-
work. Furthermore, we present the L2-norm errors to perform
a quantitative assessment on the accuracy of the ROM-LSTM
solutions with respect to ROM-GP solutions.

We choose the single-layer QG problem as our test bed to
evaluate the performance of ROMs. Because of the complex
flow behavior with wide range of scales, QG problem has been
utilized as test problem in many references [78,79,84,85,113].
To make the analyses simple and easily understandable,
we present simulation results only for Re = 450 and Ro =
3.6 × 10−3 flow condition, which can be considered turbulent
enough and suitable for reduced order modeling. The FOM
simulation is done from t = 0 to t = 100 using a constant
time step of �t = 2.5 × 10−5 on a Munk layer resolving
256 × 512 grid resolution (i.e., consisting of about four grid
points in the Munk scale, i.e., δM/L = 0.02). The computa-
tional domain of our test problem is (x, y) ∈ [0, 1] × [−1, 1].
The time step size �t = 2.5 × 10−5 ensures that Courant-
Friedrichs-Lewy (CFL) condition for stability is met at all
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FIG. 10. Mean stream-function and vorticity fields obtained by the ROM-LSTM simulation based on the number of modes to train the
LSTM model at Re = 450 and Ro = 3.6 × 10−3 flow condition. (a) ψFOM at a resolution of 256 × 512, (b) ψROM-LSTM for LSTM training with
R = 2 modes, (c) ψROM-LSTM for LSTM training with R = 4 modes, (d) ψROM-LSTM for LSTM training with R = 8 modes, (e) ψROM-LSTM for
LSTM training with R = 10 modes, (f) ωFOM at a resolution of 256 × 512, (g) ωROM-LSTM for LSTM training with R = 2 modes, (h) ωROM-LSTM

for LSTM training with R = 4 modes, (i) ωROM-LSTM for LSTM training with R = 8 modes, and (j) ωROM-LSTM for LSTM training with R = 10
modes. Note that the LSTM model is trained with σ = 5.

times as shown in Fig. 4 in which the CFL number is below
1 at all times. In our computations, CFL number is computed
by

CFL = Umax
�t

�x
, (32)

where Umax is the maximum speed |u| at time t within the
entire ocean basin. Therefore, for constant �t and �x, the
time evolution of the CFL number also relates to the variation
of the maximum flow speed in the QG dynamics. Although we
have utilized dimensionless numbers in our analysis, one can
easily compute corresponding dimensional quantities using
typical midlatitude ocean basin dimensions. For example,
CFL = 0.3 refers to a physical maximum speed of approxi-
mately 2.53 m/s with the help of Eq. (6) if we set L = 1000
km, H = 1 km, τ0 = 0.266 N/m2, ρ = 1030 kg/m3, β =
1.5 × 10−11 m−1 s−1, Sverdrup velocity scale V = 0.054 m/s,
and reference timescale L/V = 214 days. Further details of
nondimensionalization can be found in Ref. [92]. We note

that the dimensionless time unit in our computations becomes
approximately 7 months using the above reference values.
To avoid the initial transient time interval, we store 400 data
snapshots from t = 10 to t = 50 to generate the POD bases
and modal coefficients to train the LSTM model. We refer
to Ref. [50] to get an idea on the POD analysis as well
as the instantaneous vorticity field plots for the same flow
condition. To understand the nature of the QG data set, we
compute the Hurst exponent, H , for the modal coefficients.
The Hurst exponent is a statistical measure of the presence
of long-term trends in a nonstationary time series [114]. Thus,
the Hurst exponent can help in selecting the appropriate model
for a given time series prediction. We also note that the
Hurst exponent has been utilized in many research fields, e.g.,
hydrology, finance, and health-care industry [115–119]. H can
be statistically defined as [120]

E

[
Range(n)

SD(n)

]
= knH , as n → ∞. (33)
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FIG. 11. Time series evolution of the modal coefficients between t = 10 and t = 100 for ROM-LSTM simulation based on different
lookback time windows, σ and LSTM training with R = 2 modes at Re = 450 and Ro = 3.6 × 10−3. (a) a1(t ) with σ = 1, (b) a2(t ) with
σ = 1, (c) a1(t ) with σ = 2, (d) a2(t ) with σ = 2, (e) a1(t ) with σ = 3, (f) a2(t ) with σ = 3, (g) a1(t ) with σ = 4, (h) a2(t ) with σ = 4,
(i) a1(t ) with σ = 5, and (j) a2(t ) with σ = 5. True projection series is underlined in each figure with black straight line. The training zone
is shown with orange dashed line (from t = 10 to t = 50) and the out-of-sample testing zone is shown with red dashed line (from t = 51 to
t = 100) in ROM-LSTM solution series in each figure.

Here E is the expected value of the ratio between the range
of the first n cumulative deviations from the mean and their
corresponding standard deviations (SD), n is the time span
of the observations, and k is constant. The range of H is
in between 0 and 1. H → 1 means a persistent series (a
strong trend in the time series at hand), H → 0 means an
antipersistent series (a time series with long-term switching
between high and low values) and H ≈ 0.5 indicates a ran-
dom series (fewer correlations between current and future
observations). Interested readers are directed to Ref. [76] for
a detailed description of suitability of LSTM as a predictive
modeling approach for different time series data using the
measurement of H . We calculate the H for modal coefficients
of QG data set for given flow conditions using the so called
rescaled range (R/S) analysis, popularized by Mandelbrot and
Wallis [121,122]. The details of (R/S) analysis can be found
in Ref. [120]. The Hurst exponents for the modal coefficients

of QG case are tabulated in Table II, where we can see that the
values of H are around 0.5. This indicates the randomness of
the QG problem, which can be a good representative of large-
scale quasistationary geophysical turbulent flow systems.

Figure 5 shows the mean stream-function and vorticity
field contours obtained by the ROM-GP model. To com-
pare the predictive performance of the ROM-GP model with
respect to the true solution, we include the mean contour
plots of FOM simulation on the left column as well. We can
see the full order solution displays a four-gyre circulation
pattern for both mean stream-function and vorticity fields.
Since the instantaneous fields for the QG flow are always
fluctuating in time, it becomes difficult to compare solutions
of different models at the same time state. However, the mean
fields always exhibit the four-gyre circulation for higher Re
(highly turbulent regime, i.e., turbulence with weak dissipa-
tion), which implies a state of turbulent equilibrium between
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FIG. 12. Mean stream-function and vorticity fields obtained by the ROM-LSTM simulation based on different lookback time windows, σ

and LSTM training with R = 2 modes at Re = 450 and Ro = 3.6 × 10−3. (a) ψFOM at a resolution of 256 × 512, (b) ψROM-LSTM for LSTM
training with σ = 2, (c) ψROM-LSTM for LSTM training with σ = 3, (d) ψROM-LSTM for LSTM training with σ = 4, (e) ψROM-LSTM for LSTM
training with σ = 5, (f) ωFOM at a resolution of 256 × 512, (g) ωROM-LSTM for LSTM training with σ = 2, (h) ωROM-LSTM for LSTM training
with σ = 3, (i) ωROM-LSTM for LSTM training with σ = 4, and (j) ωROM-LSTM for LSTM training with σ = 5.

two inner gyres circulation representing the wind stress curl
forcing and the outer gyres representing the eddy flux of
potential vorticity (the northern and southern gyres found in
geostrophic turbulence) [85]. In our study, the time-averaged
(mean) field data is obtained by averaging between t = 50
and t = 100 (since the model has already seen the training
data between t = 10 and t = 50 during training). Another
point to be noted in FOM field plots is that the bright orange
circulations in the four-gyres (top circulation of the inner
gyres and bottom circulation of the outer gyres) indicate the
circulation in counterclockwise or positive direction and the
other two circulations represent the circulation in clockwise
direction. We can observe in Fig. 5 that the ROM-GP simu-
lations with R = 10 and R = 20 modes display a nonphysical
two-gyre circulation for stream function whereas the vorticity
field does not capture almost any conclusive physical pattern.
However, the results improve with increasing the number of
modes as we can see the stream-function contour is showing
clear four-gyre patterns even though the vorticity plots are

very chaotic compared to the true solution. These observations
are supported by the time series evolution of first and tenth
modal coefficient plots in Fig. 6. It is apparent that increasing
the number of modes stabilizes the system to yield a physical
solution for both modal coefficients.

We note that the timescale in our formulation is normal-
ized by L/V to obtain dimensionless time unit. Following
Ref. [123], typical oceanic values (e.g., L = 2000 km and β =
1.75 × 10−11 m−1 s−1) yield approximately L/V = 0.25 year
for Ro = 0.0036. Therefore, a numerical simulation over 100
computational time units refers to the evolution of flow dy-
namics over 25 years in physical time. Therefore, the intermit-
tent bursts in the true projection of the most energetic mode,
i.e., a1(t ), indicate the seasonal variations in QG dynamics.
Although ROM-GP yields nonphysical solution for R = 10
and R = 20 cases, ak (t ) series reaches more meaningful levels
for R = 30 and beyond. However, it is hard to claim from
Fig. 6 that the ROM-GP yields an accurate prediction of these
seasonal bursts even for higher R values.
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FIG. 13. Time series evolution of first two modal coefficients, a1(t ) and a2(t ), respectively, between t = 10 and t = 100 for different
ROMs at Re = 450 and Ro = 3.6 × 10−3. (a) a1(t ) for ROM-GP with R = 10 modes, (b) a2(t ) for ROM-GP with R = 10 modes, (c) a1(t ) for
ROM-LSTM trained with R = 2 modes, (d) a2(t ) for ROM-LSTM trained with R = 2 modes, (e) a1(t ) for ROM-LSTM trained with R = 4
modes, (f) a2(t ) for ROM-LSTM trained with R = 4 modes, (g) a1(t ) for ROM-LSTM trained with R = 8 modes, (h) a2(t ) for ROM-LSTM
trained with R = 8 modes, (i) a1(t ) for ROM-LSTM trained with R = 10 modes, and (j) a2(t ) for ROM-LSTM trained with R = 10 modes.
True projection series is underlined in each figure with black straight line. The training zone is shown with orange dashed line (from t = 10
to t = 50) and the out-of-sample testing zone is shown with red dashed line (from t = 51 to t = 100) in ROM-LSTM solution series in each
figure.

We present the field contours obtained by ROM-LSTM
based on different σ values in Fig. 7. It can be seen that
σ = 1 and σ = 2 do not provide very accurate results as the
patterns get distorted to some extent even though they are
being able to capture the four-gyre. However, both stream-
function and vorticity contours show a stable and accurate
prediction of the true mean fields for σ = 4 and σ = 5.
Though the vorticity field contour is not displaying as smooth
contour lines as the true solution due to the reduction of
dimension order, it is showing a better performance compared
to the ROM-GP solutions. As shown in the recent work of
Yeo [107], the LSTM network trained on chaotic data learns
to reduce the contributions of randomness of input data by
developing its own dynamics and thus, the prediction remains
close to the truth rather than being unstable. Hence, the

LSTM prediction is expected to yield a stable and physical
solution for a fluctuating quasistationary system. It should
be noted that these results are obtained for LSTM training
with R = 10 modes. The time series evolution plots for the
modal coefficients based on σ = 5 and R = 10 modes in
Fig. 8 show that ROM-LSTM time series predictions are
almost on top of the true projection of modal coefficients.
Even though the model is trained for t = 10 to t = 50 only,
the ROM-LSTM model is able to obtain a stable and accurate
prediction up to the final time t = 100. To further evaluate
whether the ROM-LSTM can predict the statistical features of
the temporal variation of POD coefficients accurately or not,
we compare the probability density function (PDF) of true and
predicted modal coefficients in Fig. 9. The PDF is plotted for
modal coefficients only between t = 50 and t = 100. Fig. 9
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TABLE III. L2-norm errors of the reduced order models (with
respect to FOM) for the mean vorticity and stream-function fields.
Note that the ROM-LSTM model trained with R = 10 modes results
are presented here.

Vorticity Stream function

Intrusive ROM
ROM-GP (R = 10) 3.19 × 106 5.59 × 103

ROM-GP (R = 20) 4.46 × 105 9.87 × 102

ROM-GP (R = 30) 9.35 × 102 9.99 × 10−1

ROM-GP (R = 40) 6.60 × 102 4.33 × 10−1

ROM-GP (R = 80) 1.16 × 103 3.84 × 10−1

Nonintrusive ROM
ROM-LSTM (σ = 1) 1.90 × 103 6.12 × 10−1

ROM-LSTM (σ = 2) 2.65 × 103 7.44 × 10−1

ROM-LSTM (σ = 3) 8.31 × 102 4.34 × 10−1

ROM-LSTM (σ = 4) 5.17 × 102 4.68 × 10−1

ROM-LSTM (σ = 5) 8.78 × 102 3.87 × 10−1

shows that the PDF of predicted modal coefficients matches
accurately the true PDF for all modal coefficients.

Another impressive observation on the predictive capabil-
ity of the ROM-LSTM framework is presented in Fig. 10
where we show the mean field plots based on the number of
modes retained to train the LSTM model. We keep σ = 5 for
this numerical experiment. As we can see the ROM-LSTM
model is being able to capture the four-gyre circulation even
with only two modes. Indeed, the first few modes contain
most of the dynamics in the system and we can also see
reduction of some smaller scales for lower mode predictions.
Nevertheless, this finding indicates the prediction capability
of the ROM-LSTM framework to produce a stable solution
of a chaotic system. However, we have seen the ROM-GP
model becomes unstable to predict chaotic data set with lower
number of modes which makes it very inefficient. In contrast,
the proposed nonintrusive framework can be very efficient
to produce stable solution with very few modes. Since we
observe promising predictive performance for training with
two modes only, we present a couple more analyses on results
obtained by the ROM-LSTM framework retaining two modes
for LSTM training. We can see in Fig. 11 that lower σ values
simulations are unable to capture the fluctuations along the
mean and go almost straight along the line after a few time
states. The model starts to capture the fluctuating flow fields
with the increase of σ values. The field plots in Fig. 12 also
yield similar conclusions. Since the lower σ value solutions
stay along the line around the mean (unlike rapid oscillations
in ROM-GP solutions), the field plots still show the mean
physics to some extent. It is obvious that the model with lower
σ ignores most of the scales of the system. However, the
prediction improves with higher σ as displayed in the Fig. 12.

Finally, we include a comparison plot in Fig. 13 where we
present the first two modal coefficients prediction obtained by
different ROM set up. The σ value is kept 5 for all the ROM-
LSTM simulations. As expected, the ROM-GP solutions for
10 modes become totally nonphysical and unstable. On the
contrary, the ROM-LSTM predictions for R = 2, R = 4, R =
8, and R = 10 modes show a good match between the true
solution and the prediction. For the quantitative assessment on

TABLE IV. Computational overhead for the ROM-LSTM model
trained with R = 10 modes. For training, CPU time is presented as
per epoch for 400 samples and for testing, CPU time is presented as
per time step. Note that the time step for testing is set 1 × 10−1 since
the nonintrusive set up is free of numerical stability constraints.

ROM-LSTM Training time (s) Testing time (s)

σ = 1 8.10 × 10−2 1.15 × 10−3

σ = 2 1.07 × 10−1 1.38 × 10−3

σ = 3 1.30 × 10−1 1.56 × 10−3

σ = 4 1.59 × 10−1 1.79 × 10−3

σ = 5 1.80 × 10−1 2.00 × 10−3

the accuracy of both ROM-GP and ROM-LSTM frameworks,
L2-norm errors of the reduced order models (with respect
to FOM) for the mean vorticity and stream-function fields
are tabulated in Table III. The root mean-square error or
Euclidean L2-norm error is computed by

L2 = ||e||2 =
√√√√ 1

NxNy

Nx∑
i=1

Ny∑
j=1

e2
i, j, (34)

where Nx and Ny are the grid resolutions in x and y directions.
For the vorticity field, the error, i.e., the difference between
the predicted mean and FOM solution mean is

ei, j = ∣∣ω̄ROM
i, j − ω̄FOM

i, j

∣∣. (35)

For ROM-LSTM framework, the results are presented for
R = 10 modes. We can observe that the prediction accuracy
increases with the increase in lookback time window σ, and
we can obtain a more accurate result than the ROM-GP
simulation with R = 80 using only 10 modes in ROM-LSTM
framework. We present the CPU time per time step (between
t = 10 and t = 100) for ROM-LSTM framework simulations
based on R = 10 modes and different σ in Table IV. We can
observe a gradual reduction of computational time (for both
training and testing) with lower values of σ . All the simu-
lations of ROM-LSTM frameworks are done in Python pro-
gramming environment and CPU time is computed as per time
step. The computational time step is set to 1 × 10−1 for online
testing. In our FOM simulation in FORTRAN, the CPU time
per time step is about 1.17 × 10−1 s, where computational
time step is set �t = 2.5 × 10−5 due to the CFL restriction
of numerical stability for our explicit forward model, a third-
order Runge-Kutta integrator, on the resolution of 256 × 512.
With the same time integration tool, the computational CPU
time required by the ROM-GP approach using similar flow
conditions can be found elsewhere [50]. It should be noted that
the ROM-GP computations are also computed using FORTRAN

programming platform, where as LSTM-ROM computations
are performed using PYTHON. Even so, we observe our ROM-
LSTM CPU times are on the same order as ROM-GP sim-
ulations with R = 80 modes (i.e., 4.84 × 10−3 s per time
step). Since the ROM-GP requires a small time step to get a
converged solution (i.e., see Fig. 17 in Sec. VI), the total CPU
time required for the time integration of the ROM-GP model
often becomes large (i.e., 1.7 × 103 s). Instead, ROM-LSTM

053306-16



NONINTRUSIVE REDUCED ORDER MODELING FRAMEWORK … PHYSICAL REVIEW E 100, 053306 (2019)

100 200 300 400
Re

0

1

2

3

4

R
o

×10−3

In-sample

Out-of-sample

FIG. 14. In-sample and out-of-sample flow parameters used for
evaluating interpolatory performance of ROM-LSTM model.

can be used with much bigger time step, which constitutes one
of the strengths of this nonintrusive modeling framework.

VI. OUT-OF-SAMPLE PERFORMANCE

The numerical results in Sec. V show that the data-driven
ROM-LSTM framework can predict the mean field with suffi-
cient accuracy. On the other hand, the conventional ROM-GP
framework cannot predict the mean field accurately for fewer
POD modes, since the instability of ROM-GP causes errors in
calculating POD coefficients. It can be argued that the ROM-
LSTM has learned from the history of POD coefficients, and it
is not surprising that the ROM-LSTM was able to predict the
mean field correctly. The fundamental question then is, can
the ROM-LSTM learn something more than the solution field

obtained by simply averaging the training data set? To address
this question, we test the performance of ROM-LSTM model
for operating conditions which are not included in the training
data set.

We generate the FOM solution for different operating
conditions (Re, Ro) for the single-layer QG ocean circulation
model. We construct the global basis functions using Algo-
rithm 1. The only difference is that instead of using snapshots
for only one operating condition, we select snapshots for
different operating conditions. This ensures that the global
basis represents dynamics for different physical conditions.
The different operating conditions used for POD bases re-
construction is shown in Fig. 14. We select 180 snapshots
randomly between t = 10 and t = 100 for each operating
condition, and hence, the total number of snapshots utilized
is 900. The first 10 modes capture around 58% of the energy.
We test the performance of ROM-LSTM model for Re = 250
and Ro = 1.6 × 10−3 which lies within the design space and
hence the POD bases represent the dynamics of test condition
too.

We construct modal coefficients using a forward transform
through projection as described in Algorithm 3 to generate
the training data set for ROM-LSTM model. Since, there are
five operating conditions in the in-sample design space, we get
2000 training samples (400 samples from t = 10 to t = 50 for
five different operating conditions). The input to the LSTM
network is modified slightly with Re and Ro included in input
features. Therefore, the LSTM model can be given as

M :
{
Re, Ro, a(n)

1 , . . . , a(n)
R ; . . . ; a(n−σ+1)

1 , . . . , a(n−σ+1)
R

}
⇒ {

a(n+1)
1 , . . . , a(n+1)

R

}
. (36)
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FIG. 15. PDF for true and predicted modal coefficients between t = 50 and t = 100 for ROM-LSTM simulation at Re = 250 and Ro
= 1.6 × 10−3. Note that the LSTM model is trained with R = 10 modes and σ = 5. The training is done using true modal coefficients between
t = 10 and t = 50 for (Re, Ro) = (100, 1.6 × 10−3), (200, 0.9 × 10−3), (200, 1.6 × 10−3), (200, 3.6 × 10−3), and (450, 3.6 × 10−3).
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FIG. 16. Mean stream-function and vorticity fields obtained by the ROM-LSTM simulation based on the number of modes to train the
LSTM model at Re = 250 and Ro = 1.6 × 10−3 flow condition. The model is trained for five different operating conditions and is evaluated
for out-of-sample parameters. (a) ψFOM at a resolution of 256 × 512, (b) ψROM-LSTM for LSTM training with R = 2 modes, (c) ψROM-LSTM for
LSTM training with R = 4 modes, (d) ψROM-LSTM for LSTM training with R = 8 modes, (e) ψROM-LSTM for LSTM training with R = 10 modes,
(f) ωFOM at a resolution of 256 × 512, (g) ωROM-LSTM for LSTM training with R = 2 modes, (h) ωROM-LSTM for LSTM training with R = 4
modes, (i) ωROM-LSTM for LSTM training with R = 8 modes, and (j) ωROM-LSTM for LSTM training with R = 10 modes. Note that the LSTM
models are trained with σ = 5.

This approach was found to be robust and accurate for nonlin-
ear transient flows [124].

We run a similar numerical experiment with a different
number of modes and σ = 5 as in Sec. V to examine the
effectiveness of ROM-LSTM framework for prediction of the
mean field for out-of-design parameters. Figure 15 shows
the PDF for true and predicted modal coefficients for Re =
250 and Ro = 1.6 × 10−3 test case. The statistics of all
modal coefficient are accurately captured by the ROM-LSTM
framework which will lead to accurate prediction of mean
field. Figure 16 shows the performance of interpolatory ROM-
LSTM model in predicting mean field for different numbers
of modes. We use the same lookback time window σ = 5
for all these cases. The ROM-LSTM model can capture the
four-gyre even when only two POD modes are used since
the first two modes are the most dominant modes. As we
increase the number of modes, we see an improvement in
the prediction of mean field. The results in Fig. 16

demonstrate that ROM-LSTM model can also be used for
predicting the mean field for parameters that are different from
the one included in the training data set. If we have a high-
fidelity data set for different physical conditions (different
dimensionless numbers characterizing the flow, in the present
case Re, Ro), a robust surrogate model can be obtained using
LSTM network which can go beyond the training data.

In addition to acting as a robust surrogate model, we high-
light one more advantage of nonintrusive ROM framework
concerning large time step that can be used. The ROM-GP
results shown in Sec. V were obtained by using third-order
Runge-Kutta numerical scheme with the time step �t =
2.5 × 10−5. The same time step is used for calculating the
FOM solution. In the case of the FOM, the time step that
can be used is restricted by the CFL condition. In the case
of ROM-GP, we can also use a higher time step to speed
up the time integration. It is difficult to estimate the stability
region for ordinary differential equations used in Galerkin
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FIG. 17. Computational overhead for the ROM-GP framework
for different number of modes and different time step size �t for
Re = 250 and Ro = 1.6 × 10−3 test condition. The number in
each box presents the CPU time required for integration of Galerkin
projection ODEs from time t = 10 to t = 100. NaN means the
solution diverges after few time steps.

projection. We perform numerical experiments with a dif-
ferent time step sizes and different numbers of modes for
Re = 250 and Ro = 1.6 × 10−3. We find that for time step
size larger than �t = 2.5 × 10−3, the solution diverges for
all cases as shown in Fig. 17. As we increase the number
of modes, the computational time of time integration also
increases for ROM-GP framework. Even if the solution does
not diverge for fewer modes and smaller time step size, the
predicted modal coefficients are much larger than the true
modal coefficients (as seen in Fig. 5).

The ROM-LSTM framework is purely data-driven, and
hence it is not restricted by time step size that can be used
between two snapshots. For all our previous numerical exper-
iments, the data snapshots were separated by time step size
�t = 1 × 10−1. We can also train the LSTM network using
data snapshots that are separated by some other time step size.
We illustrate the performance of ROM-LSTM framework us-
ing the same data snapshots separated by time step size �t =
2 × 10−1 (i.e., we use every other data snapshots between t =
10 and t = 50, and therefore, we have 200 training examples
in this case). Figure 18 shows field plots for vorticity and
stream function for Re = 250 and Ro = 1.6 × 10−3 test case
using data snapshots separated by �t = 1 × 10−1 for different
σ values with 10 POD modes. This is similar to what we
saw in Sec. V for Re = 450 and Ro = 3.6 × 10−2 test case.
Furthermore, we perform the same numerical experiment
with time step size �t = 2 × 10−1 for Re = 250 and Ro =
1.6 × 10−3 test case, and the field plots are given in Fig. 19.
We observe that the mean field predicted by ROM-LSTM
framework is not as accurate as the mean field predicted
with �t = 1 × 10−1. We see that the mean field prediction
improves with larger lookback time window σ . However, the
modal coefficients and the solution field predicted with larger
time step size are bounded and stable. This can be considered
as one of the main accomplishments of this approach in using
nonintrusive ROM framework for flow-control applications

and surrogate models where computational performance is
one of the main bottlenecks.

VII. SUMMARY AND CONCLUSIONS

In this paper, we propose an efficient and robust fully
nonintrusive ROM framework to capture the large spatiotem-
poral scale of fluctuating quasistationary systems. Due to the
robustness and stability of LSTM recurrent neural network
in predicting chaotic dynamical systems, we consider LSTM
architecture to develop our data-driven ROM, denoted as
ROM-LSTM in this paper. As an example of large-scale
turbulent flows exhibiting a wide range of spatiotemporal
scales, we investigate the reduced order modeling of a simple
general ocean circulation model, single-layer QG turbulence,
to assess the predictive performance of our proposed ROM-
LSTM framework. It was previously observed that the con-
ventional physics-based (or intrusive) ROM of QG model
requires a large number of POD modes to yield stable and
physical flow dynamics. However, the proposed ROM-LSTM
framework shows a very promising improvement in reduced
order modeling since only a few modes are able to capture
a physical solution without any prior knowledge about the
underlying governing equations. We first demonstrate that
the conventional Galerkin projection ROM approach yields
nonphysical predictions when we use a small number of rep-
resentative modes. Although ROM-GP converges to a more
physical solution when increasing the number of modes, it
does not seem to capture the intermittent bursts appearing in
the dynamics of the first few most energetic modes. However,
the proposed ROM-LSTM approach is able to capture these
bursts and yields remarkably accurate results even when using
a small number of modes.

The proposed methodology consists of two phases: of-
fline training and online testing or prediction phase. Initially,
we collect the high-fidelity simulation or experimental data
snapshots for a certain flow condition. The data snapshots
are collected up to a certain time of the FOM simulation
for training. Then we do a mapping of the high-resolution
instantaneous data snapshots into a reduced order, i.e., low-
dimensional space through POD transform. In this process,
we generate POD basis functions of the field variables and
time dependent modal coefficients for training the LSTM
architecture. The LSTM architecture is trained for the modal
coefficients based on a preselected lookback time window,
σ . In the online phase, the trained model is used to predict
the modal coefficients recursively for the total time based on
initial time history and σ . Finally, we reconstruct the mean
fields for analyses using the predicted coefficients, precom-
puted basis functions, and mean field values.

We demonstrate the performance of the ROM-LSTM
through time series evolution of modal coefficients and mean
vorticity and stream-function fields. To assess the perfor-
mance of the proposed model, the ROM-LSTM predictions
are compared with the high-dimensional solutions as well as
with the conventional Galerkin projection-based ROM (ROM-
GP) solutions. We also compare the PDF of true and predicted
modal coefficients to estimate the ability of ROM-LSTM
framework to capture mean flow dynamics. We find that the

053306-19



RAHMAN, PAWAR, SAN, RASHEED, AND ILIESCU PHYSICAL REVIEW E 100, 053306 (2019)

0 1x
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

y

(a)

0 1x

(b)

0 1x

(c)

0 1x

(d)

0 1x

(e)

0 1x
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

y

(f)

0 1x

(g)

0 1x

(h)

0 1x

(i)

0 1x

(j)

−1.9 0.0 1.9 −2.8 −0.8 1.2 −1.9 −0.2 1.6 −1.7 −0.3 1.2 −2.4 −0.4 1.6

−180 −7 165 −120 4 128 −128 0 128 −120 4 128 −160 −10 140

FIG. 18. Mean stream-function and vorticity fields obtained by the ROM-LSTM simulation based on different lookback time windows, σ

and LSTM training with R = 10 modes at Re = 250 and Ro = 1.6 × 10−3. The model is trained using 400 snapshots stored at time interval
�t = 1 × 10−1 from t = 10 to t = 50. (a) ψFOM at a resolution of 256 × 512, (b) ψROM-LSTM for LSTM training with σ = 2, (c) ψROM-LSTM

for LSTM training with σ = 3, (d) ψROM-LSTM for LSTM training with σ = 4, (e) ψROM-LSTM for LSTM training with σ = 5, (f) ωFOM at a
resolution of 256 × 512, (g) ωROM-LSTM for LSTM training with σ = 2, (h) ωROM-LSTM for LSTM training with σ = 3, (i) ωROM-LSTM for LSTM
training with σ = 4, and (j) ωROM-LSTM for LSTM training with σ = 5.

ROM-LSTM predictions are stable and accurate even with
only a couple of POD modes. On the other hand, the ROM-
GP framework, as expected, requires a very large number
of modes to obtain a physically stable solution, since the
ROM-GP framework is susceptible to numerical instability in
quasistationary flow fields. We further observe that the ROM-
LSTM framework gives accurate and physical predictions
based on a few time history data points. Indeed, if we increase
the value of σ , the prediction accuracy will increase, but the
computational cost of offline training and online prediction
will also go up. To quantify the accuracy of the prediction of
ROM-LSTM framework, we present the L2-norm errors for
ROM-GP and ROM-LSTM frameworks, which show that the
proposed framework trained with 10 modes and σ = 5 gets a
better accuracy than the ROM-GP predictions with 40 or 80
modes.

We extend the ROM-LSTM framework as a surrogate
model and demonstrate the performance of the present

approach for unseen training data. It is seen that the ROM-
LSTM trained using a set of parameters can produce a
bounded mean solution field for parameters which are not
included in the training. This shows that if the high-fidelity
data set is available for different parameters characterizing the
flow, then these parameters can also be included during the
training process to predict the solution field for out-of-sample
parameters with good accuracy. This opens up the application
of ROM-LSTM framework in surrogate modeling, and flow
control areas. We analyze the predictive capability of ROM-
LSTM framework for different time step sizes between data
snapshots and show that the mean field prediction remains
bounded even with a large time step size. This can be consid-
ered as one of the major advantages of nonintrusive ROM over
the conventional ROM-GP framework, which is restricted by
certain stability conditions.

Based on our findings, we conclude that the ROM-
LSTM framework provides a stable emulator for large-scale

053306-20



NONINTRUSIVE REDUCED ORDER MODELING FRAMEWORK … PHYSICAL REVIEW E 100, 053306 (2019)

0 1x
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

y

(a)

0 1x

(b)

0 1x

(c)

0 1x

(d)

0 1x

(e)

0 1x
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

y

(f)

0 1x

(g)

0 1x

(h)

0 1x

(i)

0 1x

(j)

−1.9 0.0 1.9 −15.0 −5.5 4.0 −2.2 0.0 2.1 −2.7 −0.3 1.9 −2.0 0.4 2.8

−180 −7 165 −700 0 700 −170 −15 140 −160 −10 140 −225 −45 135

FIG. 19. Mean stream-function and vorticity fields obtained by the ROM-LSTM simulation based on different lookback time windows, σ

and LSTM training with R = 10 modes at Re = 250 and Ro = 1.6 × 10−3. The model is trained using 200 snapshots sampled at time interval
�t = 2 × 10−1 from t = 10 to t = 50. (a) ψFOM at a resolution of 256 × 512, (b) ψROM-LSTM for LSTM training with σ = 2, (c) ψROM-LSTM

for LSTM training with σ = 3, (d) ψROM-LSTM for LSTM training with σ = 4, (e) ψROM-LSTM for LSTM training with σ = 5, (f) ωFOM at a
resolution of 256 × 512, (g) ωROM-LSTM for LSTM training with σ = 2, (h) ωROM-LSTM for LSTM training with σ = 3, (i) ωROM-LSTM for LSTM
training with σ = 4, and (j) ωROM-LSTM for LSTM training with σ = 5.

quasistationary flows in terms of prediction and reduced
order modeling. Since the ROM-LSTM framework is fully
nonintrusive, it does not rely on the governing equations to
obtain the solution, which means that there are no numerical
constraints while predicting the solutions. Additionally, it is
computationally more efficient to predict the solution using
a trained model rather than the physics-based approach of
solving ODEs. Hence, the proposed ROM-LSTM framework
can be considered a very promising approach in developing a
robust and efficient ROMs for large-scale flows with chaotic
spatiotemporal behavior. In our future studies, we will inves-
tigate how physics can be incorporated into ML-based emula-
tors to enforce certain symmetries and physical considerations
to build more robust and interpretable ML methods [125].

We will also focus on testing the ROM-LSTM framework
in more complex three-dimensional turbulent flow problems.
Furthermore, we plan to improve extrapolation capabilities of
the existing framework based on our findings, and implement
the proposed approaches in several ROM-in-the-loop applica-
tions, such as flow control, parameter estimation, uncertainty
quantification, and data assimilation.
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