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The quantum hydrodynamic model is used to study the linear and nonlinear properties of small amplitude
magnetosonic shock waves in dissipative plasma with degenerate inertialess spin-up and spin-down electrons and
inertial classical ions. Spin effects are considered via spin pressure and macroscopic spin magnetization current.
A linear dispersion relation is derived analytically and plotted numerically for different plasma parameters
such as spin density, polarization ratio, plasma beta, quantum diffraction, spin magnetization energy, and
magnetic diffusivity. Employing the standard reductive perturbation technique, a Korteweg—de Vries—Burgers-
type equation is derived for small amplitude waves and studied numerically. We have observed that an oscillatory
and monotonic shock waves are generated depending upon the plasma configurations. The phase portraits of both
oscillatory and monotonic shock waves are also presented. Interestingly, different plasma parameters are found to
play a significant role in the transition of oscillatory to monotonic shock waves or vice versa. Most importantly
it is found that, the magnetosonic excitations obtained with spin-up and spin-down electrons are significantly
different from the usual electron ion quantum plasma. The work presented is related to magnetosonic waves in

dense astrophysical environments such as a pulsar magnetosphere and neutron stars.
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I. INTRODUCTION

The two fundamental plasma configurational parameters,
density and temperature, which characterize plasma can pro-
liferate over several orders. For low density and high tem-
perature situations, the collective modes and instabilities can
be fully described by the classical Newtonian mechanics
[1,2]. However, the form of plasmas found in many cases,
for instance, in compact astrophysical objects [3], planetary
interiors, the cores of giant planets [4,5], the crusts of cold
stars, intense laser-solid density plasma experiments [6,7],
miniaturized semiconducting devices [8], and quantum x-ray
free-electron lasers, are extremely dense and can have tem-
perature substantially lower than that of the classical plasma
[9]. The energy contents in such plasmas (particles and/or
fields) exceed the thermal energy contents. The de Broglie
wavelength, Ap, which is the spatial extent of the particle
wavefunction, becomes comparable to the interparticle dis-
tance, making the wavefunctions of the adjacent particles
overlap; i.e., Ap(=h/2nmv;) > +/n — 3 (where n represents
the equilibrium density, v, is the thermal speed, and m stands
for mass of the constituent particle). As a result the degener-
acy pressure is larger than the thermal pressure so the Fermi
energy of the particles exceeds the thermal energy. Hence,
quantum signatures such as the quantum tunneling effect (via
Bohm potential), quantum degeneracy pressure, exchange-
correlation, and spin effect cannot be ignored in describing
the particle dynamics and collective modes in such systems
[2,10].

The classical magnetohydrodynamic (MHD) theory is ex-
tended to magnetized quantum plasmas via incorporation in
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the infinite conductivity limit developing quantum magneto-
hydrodynamic (QMHD) model [10]. The introduction of spin
effects in the QMHD model was proposed by Marklund and
Brodin [11], where one fluid QMHD equation with electron
spin-1/2 effect was derived with the help of the Pauli equation
of an individual particle and also applied to dense plasma sys-
tems. Some of the works to mention here are those on linear
waves [12,13], nonlinear waves [14,15], low frequency waves
[16,17], solitons [18], shock waves [19-21], and references
therein. Furthermore, the kinetic formalism for spin quantum
plasmas has also been developed, taking the dynamics of
the spin introduced via extended phase space [22,23]. Recent
studies reveal that spin effects lead to the existence of new
modes such as spin waves in quantum plasmas [24,25]. The
linear and nonlinear two dimensional magnetosonic waves
were investigated via a QMHD model featuring Bohm poten-
tial and spin effects via a magnetization term [26]. The spin-
electron-acoustic waves and Langmuir waves were reported
in a spin polarized plasma [27]. The effect of electron spin
on kinetic Alfvén waves were studied in the presence of a
static magnetic field where the wave frequency decreases due
to the spin contribution [28]. Separate evolution of spin-up
and spin-down electrons of different concentration introduces
spin electrostatic waves which depend on the spin polarization
density ratio in magnetized plasma [29].

In our present work we aim to study magnetosonic shock
waves in spin polarized plasma via Bohm potential, spin
polarization, and dissipative effects. We consider the separate
evolution of spin-up and spin-down electrons to derive the
Korteweg—de Vries—Burgers (KdVB) equation which leads to
spin magnetosonic shock waves in spin-1/2 quantum plasmas.
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The organization of the work is as follows: We present the
developed model equations for the ion-scale electromagnetic
excitations, propagating perpendicular to the external mag-
netic field, in Sec. II. The linear analysis is carried out in
Sec. III. The analytical and numerical details of the small am-
plitude magnetosonic shock waves in spin polarized plasma
are given in Sec. IV. Finally, we summarize our results in the
concluding Sec. V.

II. MODEL EQUATIONS

We consider quantum electron-ion magnetoplasma having
classical ions and spin-up and spin-down nonrelativistic de-
generate electrons. In the Cartesian coordinate system, the
external magnetic field and spin magnetization are assumed
to be along the z direction and can be expressed as B =
B(x,1)Z and ]\_/I> = M (x, t)Z, respectively, where Z is the unit
vector along the z coordinate. The one fluid QMHD model is
considered in the framework of low frequency perturbations;
therefore, we neglect the electron inertia and displacement
current. The ion dynamical equations are given by [11,30]

dV[

R;
mi— =ceE +e(v; xB)+ —, (D)
dt n;

on;
8—’; + V- (i) = 0. ®)

The momentum equation for inertialess spin-up and spin-
down electrons can be expressed as

0= —l’le¢€(E + Vep X B) — VPeT + FQ¢ + ReTa (3)
0=—n.e(E+v, xB)— VP +Fp +R,, (@

and their continuity equations are

BneT

7 +V. (neTveT) = O, (5)
8I’le¢
7+V~(neive¢)=0. (6)

The spin vector (S) appears during Marklund’s decomposition
of the wave function of the Pauli equation which is caused
by the S - B interaction of the spin of each single particle.
The space variation in spin modifies the spin magnetization
and introduces a new spin pressure, also called the magnetic
pressure. For the propagation of spin magnetosonic waves
the spin evolution equation along with the above equations
is given by

ds 2,[1,3

= h (S x B). 7
The external magnetic field B is along the z axis perpendicular
to the wave propagation vector k = kx, and |up| = efi/2m, is
the Bohr magneton. Here the spin of the electrons is chosen
as a constant field and aligned antiparallel to the background
magnetic field. The spin is not a dynamic variable; however,
the spin pressure effect can vanish when the spin pressure
is completely aligned, whereas the spin magnetization force
effect cannot vanish in the momentum equation. Therefore,
the spin term only appears in the usual spin magnetization
force in the electron momentum equation. The spin flip can be
produced when the temporal variations of the magnetic field

are faster than the inverse electron cyclotron frequency. It can
also be produced by particle collisions but it can be observed
from the Pauli Hamiltonian that the probability for this type
is far less than unity. Therefore, we consider dynamics on a
time scale shorter than the inverse spin interaction frequency,
but longer than the inverse cyclotron frequency; as a result,
the spin flip can be neglected. It should also be noted that
the inverse spin interaction frequency is greater than the
inverse collision frequency. In such case the spin evolution
equation becomes S x B =0, and gives the solution Sy, =
:|:h/2]§, with the + (—) sign for spin-up (spin-down) state
electrons. Hence, the physics associated with spin flips can
also be neglected and the continuity equation is conserved.
The magnetization due to spin population electrons is My | =
—2upner Sy /h = :t/LBneNﬁ, which can also be written as
M = up tanh(%)ﬁ, where the difference in spin-up and
spin-down state electrons is proportional to tanh (¢) which is
the Brilloin function due to magnetization of spin-1/2 electron
distribution at thermodynamic equilibrium, i.e., ey — 1, =
tanh (¢) &~ ¢ with 8(=“T’—;f) the Zeeman energy normalized by
temperature [11,30-33].

In the above set of equations, d /dt = /9t + (v; - V)isthe
hydrodynamic derivative, v;e)[=vi«)(x, #)%] is the ion (elec-
tron) velocity along the x direction, and the resistive term in
our model represented by R, = Rey + R, = —R; = en;nJ,
[34], where J, = ) _qsnsVs (s =i, e4, e,) is the plasma cur-
rent density and n = m,v,; /nge€* is the plasma resistivity
with electron-ion collisional frequency v,;, ng. and m, be-
ing the electron unperturbed density and mass, respectively.
Considering the spin-1/2 plasma, one may include the spin
polarization effect of the degenerate electron gas to the
pressure [35,36] as P, = {#3p(372)**W*n/3}/(5m,), where
¥3p = [(1 + k)3 + (1 —k)>3]/2 is the coefficient of spin
polarization of the electron gas and 7 is the Planck constant.
However, for unpolarized electrons the equation of pressure
can be written as P, = {(372)*3i*n/3}/(5m,). The partial
pressures caused by the evolution of each spin-up and spin-
down electron are P,y = {(6n2)2/3h2nz43}/(5m6) and P, =

{(67%)*/3 hznzf} /(5m,), respectively. The relation of the elec-
tron concentration with the coefficient of spin polarization
is presented as n, = n,y + n,, where n,y = (1 4+ «)n,/2 and
ne, = (1 — «k)n,/2. The quantum force Fp4 on electron [18]
is given by

e

¥ :”emhzv V2 fiiery
o = - e

where the first term represents the quantum Bohm poten-
tial, whereas the second term represents the magnetiza-
tion energy due to the spin-1/2 effect. Furthermore, Tr, =
(312nge)*** /(2m.kg) is the electron Fermi temperature
measured in units of energy with Boltzmann constant kp.

The Maxwell equations, i.e., Ampere’s law in a magnetized
medium, can take the form

) + uBneNVB, (8)

\Y% XB:MO(Jp+Jm)v (9)

Jp = €NV — €Ne4Vep — €N Ve, (10)

053206-2



MAGNETOSONIC SHOCK WAVES IN MAGNETIZED ...

PHYSICAL REVIEW E 100, 053206 (2019)

where J,, = V x M is the magnetization current density of
electrons. The displacement current in Eq. (8) is neglected
because of the low value compared to J =J,+J, in a
conducting medium (plasma). Faraday’s law takes the form

B
VxE=——, (11)
ot
and
V.B=0,
V -E =47 (en; — enpy — en,)). (12)

The quasineutrality condition is assumed: n; X ngy + n,y . Itis
important to mention here that we have neglected the ion cy-
clotron frequency, i.e., the ion gyrofrequency €2; under €2; >
. The above set of one fluid QMHD momentum equations for
ion, spin-up, and spin-down electrons with the help of Egs. (9)
may be written in normalized form as [21,37,38]

8V,‘
i| = i V)i
n|:8t+(v )v:|

2*3(8,Y°PB 53

=(VxB)xB-— 3 gy Vs
22/3(8,)5 HZs V2 iy
_2Te)TA ﬁnzi'%Vnd + =<1,V al
3 ¢ 2 [Met
H2S V2. /n,
b, v L ) —(VxM) x B + e2BVB.
2 [Te|

13)

The resistive term contributions in the above equation
cancel to conserve the momentum of ions with elec-
trons of spin-up and spin-down states separately, i.e.,
—R; =R, =R, + R, = e(net +n.)nt,. The normalized
equation of continuity for the spin-up state electron by using
Egs. (1), (4), and (10) may be written as

3”e¢+v B x (v; x B)
a2 A, (L2
o o B?

4V Bx(VxB)xB+Bx(VxM)xB
. ne J—
¢ l’l,‘B2 n,'B2
=0. (14)

With the help of the ion momentum equation along with
Eq. (10) the normalized magnetic induction equation can be
obtained from Faraday’s law [Eq. (11)] as

B

o =V x (v;xB) — Y[V x (V x B)], (15)
where we have neglected the anisotropic part of the pressure,
which means that the ion gyrofrequency is much larger than
the wave frequency (£2; > w) and we also omitted the terms
of order of m,/m; compared with unity. Moreover, the Hall
term and electron inertia are negligible in the standard QMHD
model when the electron velocity is much higher than the ion
velocity, whereas in the Hall-QMHD model the ion gyrofre-
quency may be comparable to the wave frequency (2; & w).
The quantum force during these conditions is neglected in

Ohm’s law to obtain Eq. (15) [18,30,39]. Also Eq. (12) for
spin magnetosonic waves may be written in normalized form
as

n; = STngT + 5¢nel. (16)

The number densities n, (s = i, e4, e} ) are normalized by their
respective equilibrium densities ng,; other parameters are
r<2; Vi B ng
i) = L =, n=-—,

’
F="0 =t B=— '
Va Va By g

where 2; = eBy/m; is the ion gyrofrequency, the Alfvén
2
speed is V4 = By/./ionoim;, and plasma beta B = % =

2ponoiEFe
B

measures the quantum statistical effects with ¢, =
0

2% the quantum ion sound speed, ng; the unperturbed

density of ions, p the permeability of free space with
Fermi energy of a degenerate electron gas given as
gre = (3%n,)% 32 /(2m,), and the dimensionless parameter
H, = hQ; /(\/WVAZ) appears due to collective electron tun-
neling through the Bohm potential. The normalized magne-
tization energy M = uoM/By = s(z),BB’i with g = upBo/Ts,
and y = nQ;/(uoV?) is a dimensionless plasma dissipa-
tive parameter which shows that the diffusion term is in-
versely proportional to the background magnetic field By. Fur-
thermore, ST = nOeT/”Oi = (1 ~|—K)/2, 8¢ = I/l()ei/l’l(]i = (1 -
k)/2, where the density polarization ratio « is given by

o= et el e 0, 1) (17)

Noet 1 Moel

The unperturbed nonzero total concentration of the spin-up
and spin-down electrons is n. = ngey + noey, Whereas the
difference of the concentration of the spin-up and spin-down
electrons Vn,y = ng.4 — ng,, is caused by the external mag-
netic field By.

III. DISPERSION RELATION OF MAGNETOSONIC WAVES

We exclusively derived a linear dispersion relation for mag-
netosonic waves with nonrelativistic degenerate spin-up and
spin-down electrons as two independent species and classical
ions, where we assumed small monochromatic perturbations
of physical variables from the unperturbed state such as n;,
Nelt, Me1y, By, and v;; present as f = fy + 8 f, whereas the
linear excitations § f are proportional to

8f — FAeL(kX_wt), (18)

where Fj is the amplitude of the corresponding perturbation,
k is the perpendicular component of the wave vector, and w
is the wave frequency propagating along the x direction. After
linearizing Eqs. (13)—(16) and making use of formula (18) we
obtained the dispersion relation as

o'+ Clo* + G+ C3 =0, (19)
where Cj, C,, and C; are respectively given by

C, = iyk?,

(1+x)PB (1—«yPp  HK*
C, = k*| 265p— - -——-—1),
2 ( f0P 6 6 4
14 x)/? 1 — )3 H2k>
C3=—iyk4<( ';) p ol ';) by < ) (20)
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FIG. 1. (a) Real part of the dispersion relation w, against k for different values of spin polarization ratio «. (b) Imaginary part of the
dispersion relation w; against k for different values of «, where H, = 0.1, 8 = 0.5, ¢y = 0.2, and y = 0.4.

The dispersion relation given in Eq. (19) is a third order
equation describing low frequency w for a spin magnetosonic
wave having spin-up and spin-down electrons as two inde-
pendent species. The spin polarization effects appear through
k given by Eq. (17) such that x = 0 means that half of the
electrons are spin-up while half are spin-down. Furthermore,
k = 1 represents that the total electrons are either spin-up or
spin-down, which is the usual electron ion quantum plasma
situation.

Here we have plotted the real (w,) and imaginary (w;) part
of the dispersion relation [Eq. (19)] against k (the wave vector)
for the spin polarization effect via k as shown in Fig. 1. One
can see that the phase velocity of the magnetosonic waves
is smaller in spin polarized plasma (x = 0) compared to the
usual electron-ion case configured via x = 1. On the other
hand, the induction of a spin polarized situation dampens the
wave mode more slowly as shown in Fig. 1(b), and a high
value can be noted at k = 4 and then the wave is damped more
strongly for higher values of wave number.

Here we have reduced our dispersion relation based on
Eq. (19) for previously derived results in the literature, for in-
stance, k = 1 in the above dispersion relation can be reduced
to the dispersion relation in Ref. [21] in the presence of a
diffusion term; similarly in the absence of a diffusion term one
may obtain the usual dispersion relation of the magnetosonic
waves as given in Ref. [38].

The numerical solution of the real and imaginary parts of
the magnetosonic waves are plotted against k for different
values of plasma parameters such as diffusion (y), quantum
diffraction (H,), Zeeman energy (&g), and plasma beta (8) as
presented in Fig. 2. Increasing the dimensionless diffusion
coefficient (y) makes the real and imaginary parts of the
dispersion relation decrease as shown in Figs. 2(a) and 2(b),
respectively. It is important to mention that the effect of
diffusion is greater in the longer k regime on the real root of
Eq. (19), whereas the imaginary root (w;) is more sensitive
to y against k for the entire range. In Figs. 2(c) and 2(d), we
have checked the effect of density correlation via H, on the
real (w,) and imaginary (w;) frequency of the magnetosonic
waves in spin polarized plasma. It is obvious that increasing
the value of H, gives more dispersion in the medium. The
upshot of wave frequency with H, is negligible in the longer
wavelength regime (shorter k) on both the roots. It should be
mentioned that for small values of H, the w; is damping while
for higher values of H, it is growing more positive, as is clear

from Fig. 2(d). In Figs. 2(e) and 2(f), we have shown the effect
of changing the Zeeman energy via &; on the wave modes
based on Eq. (19) while the plasma beta (8) effect is depicted
in Figs. 2(g) and 2(h) on the respective wave modes. One can
see that the real frequency of the magnetosonic waves does not
change significantly with both & and 8; however, the damping
rate is sensitive to both changing the Zeeman energy and also
on plasma beta, as shown in Figs. 2(f) and 2(h).

IV. SMALL AMPLITUDE SHOCKS

We consider the nonlinear wave propagation of magne-
tosonic shock structures in a planar geometry with separated
spin-up and spin-down electrons and nondegenerate ions.
Employing the standard reductive perturbation technique, the
space and time variables can be stretched as [40]

E=¢P(x=Vor), T=e", (1)

where the small parameter ¢ measures the strength of non-
linearity. The wave phase velocity V is normalized by the
Alfvén speed V4 which will be determined from the first order
expansion. We expand the dynamical variables in terms of €
as

ny=1+eng +eng+--,
B=1+¢eB +e’By+---,
v; = €vy + €2v + v+ - . (22)

It should be mentioned here that along with the above ex-
pansion the resistive term y = €'/?y; [41] will make the
perturbation evolution equation consistent, where yy >~ 1. The
resistive term in the momentum equation is almost linearly
proportional to the number density; therefore, we expanded y
in the lower order of € to see the dissipation of magnetosonic
shock waves numerically. Such a small consideration of the
damping term can be found in the literature and in many
experimental situations [42,43]. If the yy is a large value one
can use the same consideration as used in Ref. [42], where
the only difference is that for large values, i.e., y = €,
a sharp rising shock front has been observed as compared
to oscillatory and monotonic shock waves (for y = €'/2y).
Using the stretching [Eq. (21)] and expansions [Eq. (22)] in
Egs. (2) and (13)—(15) and collecting the lowest order terms
in €, we get the wave phase velocity mentioned in Eq. (21) in
the presence of spin-up and spin-down degenerate electrons,
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FIG. 2. Real and imaginary parts of the plasma normalized angular frequency of dispersion relation (19) against k for different values of
dimensionless plasma variables such as diffusion (y), quantum diffraction (H,), plasma beta (8), and Zeeman energy (¢y). (a), (b) Plots for
different values of y for H, = 0.1, 8 = 0.1, and ¢y = 0.5; (¢), (d) plots for different values of H, where 8 = 0.1, g = 0.2, and y = 0.03;
(e), (f) plots for different values of &y where H, = 0.1, 8 = 0.1, and y = 0.07; and (g), (h) plots for different values of 8 where H, = 0.1,

& =0.1,and y = 0.07.

given as

1 5/3 1 — )33
VO:[1+(+:;> b, 4=

Zeeman energy & and is independent of quantum diffraction
H, and resistivity y. The effects of spin state of the electron
gas on phase velocity are shown in Fig. 3, which shows that

1/2
2
- 280:3] - (23) for low values of spin polarization (meaning spin-up and

spin-down electrons remain independent species) the phase

Equation (23) exclusively shows that phase velocity depends ~ velocity has smaller values and then approaches a maximum
on the spin polarization index «, the plasma beta B8, and  value for « — 1 (usual electron ion quantum plasma).
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FIG. 3. Phase velocity (V;) defined by Eq. (23) against spin
polarization density ratio x for § = 0.3, ¢; = 0.5.

For the next higher order terms in € with the help of first

order quantities we obtain the following KdVB equation:

9B, 4 0B 9B, +R83Bl 3%B,

ot a¢ 33 a2
The coefficients of the KdVB equation (24) are the nonlinear
Q, dispersion R, and dissipation D. Based on our plasma con-
figuration, the coefficients acquire the following mathematical
forms:

0. (24

1 5 (A +x)Y3  (1—k)B 5
Q_Z_VO[ZVO +1+ 5 + 5 —4eoﬁ],
(25)
H;
R= A (26)
and
W [, U+ A-k)PB
D= v [vo < : . Q@D

In the absence of dissipation in the medium, i.e., setting
D — 0, one can obtain the well-known Korteweg—de Vries
(KdV) equation from our Eq. (24) and a stationary soliton
solution can be obtained for solitary pulses. On the other hand,
modeling situations of negligible dispersion as compared to
dissipation in the medium, i.e., R — 0, reduces to the Burgers
equation bearing a stationary shock profile. Here we proceed
with an oscillatory shock wave solution based on Eq. (24).
The magnetic diffusivity parameter y; in the present model
yields the formation of shock structures. For our reader it is
important to mention that our results agree with Ref. [21]
in the limit ¥ = 1 (usual electron ion quantum plasma). The
coefficients of KdVB equation (24) can be cast to the one
given in Ref. [21].

The stability of the shock waves is carried out here follow-
ing the procedure of Refs. [44,45]. The stationary wave frame
x = ¢ — Upt is used to transform Eq. (24), where U is the
constant velocity of the frame. The transformed equation is
given below:

d*B; dB, dB,

R— =Uy— —Q0OB;,— +D
Ao Od)( QldX-l-

d*B,
) 28
e (28)

Integrating the above equation with respect to x once and
applying the boundary conditions By — 1 and dB;/dx — 0
as y — oo we get
d’B; 1[Q 0, dB;

= —-Uy+UyBy — —=B{+D—|. 29
|: > o+ UoBy > Bi + ix (29)

The above second order differential equation can be ex-

pressed in terms of two separate first order equations:

dB,

dx® R

— =7

dx

az 1[0 Q.

— ===, UyB, — =B DZ |. 30
dx R|:2 o+ UoB > |+ (30)

The above pair of equations has two fixed points, i.e.,
(B =1,Z=0)and (B; =2Uy/0Q — 1,Z = 0), showing the
equilibrium downstream and upstream states, respectively.
The upstream singular point is a stable focus or stable node
and the downstream (1, 0) is always a saddle point. The stable
focus point gives the oscillatory nature of shocks, whereas the
stable node results in the monotonic nature of the solution.
For numerical simulation of shock wave characteristics, one
may solve Eq. (30) numerically with the help of MATHE-
MATICA software by taking the initial values Bj(x = 0) =
1, Z(x = 0) = —107>. The initial values can vary between
the stable focus and saddle point, i.e., Bj(xy =0)=1—
QUyp/Q — 1), whereas Z(x = 0) =~ 0.

To investigate the oscillatory or shock wave behavior we
study numerically the dynamics of magnetosonic shock waves
bearing a spin polarization effect via system (30) for different
plasma configurations. Our results show that for certain values
of plasma parameters the dispersion effect dominates over the
dissipative term so that oscillatory shock profiles are formed;
otherwise, the behavior is monotonic. Figure 4 shows how the
plasma beta (B) affects the shock structure: as the value of
B gets larger, the oscillatory shock amplitude decreases and
some oscillations still exist for k = 1 (spin quantum plasma
having electrons of either up or down polarity relative to
the external field), while the monotonic behavior is obtained
for larger values of S for the case of a spin polarized sit-
uation configured via ¥ = 0 (meaning half of the electrons
are spin-up and half are spin-down). It means that the waves
dissipate more quickly in degenerate spin polarized quantum
plasma than in usual ion electron plasma. Figure 5 depicts the
behavior of normalized Zeeman energy on the magnetosonic
shock waves. One can see that for higher values of g; the
oscillatory shocks convert to a monotonic nature. Interestingly
more oscillations with large amplitude can be seen for usual
electron ion quantum degenerate plasma (« = 1) than for the
spin polarized situation, i.e., k = 0. The quantum diffraction
appears due to the density correlation strongly affecting the
shock structure as shown in Fig. 6. For small values of H,
the waves remain monotonic in both spin configurations, i.e.,
k = 0 and 1, while for higher values of H, the shock converts
to oscillatory behavior. Small values of H, correspond to
small dispersion of shocks which results in a monotonic
nature as the medium yields more dissipative effects than the
dispersion.

Furthermore, the wave amplitude is larger for the k =
1 case and shows more oscillation than the ¥ = 0 layout.
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FIG. 4. Shock wave represented by Eq. (30) for different values
of B where H, = 0.1, &g = 0.6, yp = 0.01, Uy = 0.95.

Figure 7 shows the effects of the diffusion term on shock
structures; one can see that as the resistivity increases the
dissipation dominates over the dispersion and the shock wave
emits a monotonic profile with increasing amplitude once
yo crosses the critical value. Again the damping is found
less prominent in the usual electron ion plasma (x = 1)
compared to the spin polarized plasma for which half of
the electrons are spin-up and half are spin-down, modeled
via k = 0. Phase portraits of system (30) corresponding to
Figs. 4-7 are presented in Figs. 8-11. For low values of

Lo _ (a)

0.9

B, 08" o 1
07+ P S IS
0.6+ _

0 I 2 3 4 5
X
1.00

0.95

Bl 0.90

0.85

0.80

FIG. 5. Shock profile represented by Eq. (30) for different values
of spin magnetic energy &y, where H, = 0.1, g = 0.15, y, = 0.01,
Uy = 0.95.

plasma parameters such as plasma beta (8), Zeeman energy
(¢0), and magnetic resistivity (yp) for both situations (i.e.,
k =0,1), we observed a series of oscillations where few
of them correspond to solitary waves. As the values of the
above mentioned plasma parameters increase, the phase-space
trajectories show a closed orbit and tend to dissipate strongly;
thereby the oscillatory nature reduces to a monotonic one.
For low values of magnetic energy the number of aperiodic
oscillations seems to be more as compared to those observed
for higher values of g as evident from Fig. 9.
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FIG. 6. Shock profile represented by Eq. (30) for different values
of quantum diffraction (H,) where gy = 0.88, 8 = 0.25, y, = 0.01,
Uy = 0.95.

Moreover, for « = 1 the amplitudes of shock oscillations
are larger and approach to a saddle point more slowly. It
means that damping is more prominent in the spin polarized
plasma medium than in the usual ion electron degenerate
plasma. The phase portrait is influenced by the quantum Bohm
potential as expressed in Fig. 10. It is observed that for low
values of H, the shock waves are strongly damped and favor
monotonic structures, whereas for higher H, the waves show
an oscillatory behavior with larger amplitude. Furthermore,
less dissipation and more oscillations are observed for k = 1
than for the ¥ = 0 layout.

X
100] N (c)
: ‘|\ 70 = 0.05 :
0.95 \
i
\
By N ]
k=0
0.85 \ |
K=
0 5 10 5 2
X

FIG. 7. Shock profile represented by Eq. (30) for different values
of plasma diffusivity (yy) where gy = 0.88, H, = 0.1, g =0.25,
Uy = 0.95.

V. CONCLUSIONS

We have investigated exclusively the linear and nonlinear
magnetosonic shock waves bearing spin-up and spin-down
electrons as two separate species. The effects of quantum
dissipation, quantum diffraction H,, plasma beta g, energy of
the spin-up and spin-down electrons characterized by the spin
pressure parameters via g9, magnetic diffusivity yp, and spin
polarization « are traced out. The numerical data are chosen
for dense astrophysical objects such as pulsar magnetospheres
[46], where plasma densities are ny = 10°°-10% m=3. For
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FIG. 8. The phase portraits corresponding to Fig. 4.

such types of system, H, < 1, B has some finite value <1,
g0 = 1, ¥ < 1, and spin polarization « has values of zero
and 1. We noticed that the shock waves were produced due
to the balance of the nonlinear and dissipation coefficients.
When the nonlinearity is balanced by the combined effects of

@
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FIG. 9. The phase portraits corresponding to Fig. 5.

dispersion, which depends on H, and dissipation, an oscilla-
tory or monotonic shock structures are produced in plasma.
On the other hand, when the dissipation is small a few
oscillations are very close to a soliton, while large dissipation
is responsible for the formation of an aperiodic and monotonic
profile. At the first step, we numerically solve the linear
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FIG. 10. The phase portraits corresponding to Fig. 6.

dispersion relation [Eq. (19)] of magnetosonic waves and
study the effects of different plasma parameters. The presence
of the magnetic diffusive term is responsible for the complex
plasma wave frequency w = w, + tw;, so diffusion is the
cause of wave damping in plasma. The magnitude of w, in-
creases and dissipation w; is large for k = 0 and vice versa for
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/N ()
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dB; 70'12
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dB,
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FIG. 11. The phase portraits corresponding to Fig. 7.

k = 1. Similarly w, decreases and damping increases with the
increase of &g and )y, whereas the amplitude of w, increases
and damping decreases with higher values of 8 and H,. At
the second stage, the small amplitude analysis results in the
KdVB equation [Eq. (24)] in the framework of the reductive
perturbation technique. The result shows the influence of spin

053206-10



MAGNETOSONIC SHOCK WAVES IN MAGNETIZED ...

PHYSICAL REVIEW E 100, 053206 (2019)

polarization («x) on phase velocity, i.e., the phase velocity of
the waves is a minimum with spin-up and spin-down electrons
and a large value for usual electron ion plasma. The numerical
solution of the KAVB equation [Eq. (30)] leads to oscillatory
and monotonic shock waves depending upon the plasma vari-
able. For low values of B, g9, and yy, system (30) results in
an oscillatory shock profile while for higher values one can
get the monotonic structures. On the other hand, for smaller
values of quantum diffraction parameter (H,) the dissipation
is large and produces monotonic shocks and oscillatory shock
structures with small damping for higher values of H,.
Finally the phase portrait of the corresponding monotonic
and oscillatory magnetosonic shock waves is presented. The
results should be useful for understanding the linear and

small amplitude nonlinear propagation of oscillatory and
monotonic shock waves that can be produced in some dense
astrophysical plasma systems such as magnetic pulsars, mag-
netic white dwarfs, and neutron stars, where degenerate spin-
up and spin-down electrons with dissipative effects can be
found.
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