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Ultrafast wave-particle energy transfer in the collapse of standing whistler waves
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Efficient energy transfer from electromagnetic waves to ions has been demanded to control laboratory plasmas
for various applications and could be useful to understand the nature of space and astrophysical plasmas.
However, there exists the severe unsolved problem that most of the wave energy is converted quickly to electrons
but not to ions. Here, an energy-to-ion conversion process in overdense plasmas associated with whistler
waves is investigated by numerical simulations and a theoretical model. Whistler waves propagating along
a magnetic field in space and laboratories often form standing waves by the collision of counter-propagating
waves or through the reflection. We find that ions in standing whistler waves acquire a large amount of energy
directly from the waves over a short time scale comparable to the wave oscillation period. The thermalized ion
temperature increases in proportion to the square of the wave amplitude and becomes much higher than the
electron temperature in a wide range of wave-plasma conditions. This efficient ion-heating mechanism applies
to various plasma phenomena in space physics and fusion energy sciences.
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I. INTRODUCTION

Plasma acceleration and heating by electromagnetic waves
are of great importance in many research topics such as para-
metric instabilities [1], collisionless shocks and turbulence
[2], planetary magnetospheres [3,4], and inertial confinement
fusion (ICF) and magnetic confinement fusion [5–7]. Among
different types of waves, the whistler wave, which is a low-
frequency electromagnetic wave traveling along an external
magnetic field Bext, often plays a major role in the generation
of energetic particles [3,4]. Whistler-mode chorus waves are
one of the most intense plasma waves observed in planetary
magnetospheres [8–12] and expected to be a promising mech-
anism for producing relativistic electrons [13–16]. Whistler
waves are considered useful for inducing plasma currents and
heating electrons in tokamak devices for magnetic confine-
ment fusion [7,17] and also are generated in laser plasmas in
ICF experiments [18,19].

The whistler wave is a right-hand circularly polarized (CP)
light permitted to exist when the electron cyclotron frequency
ωce = eBext/me exceeds that of the electromagnetic wave ω0,
where e is the elementary charge and me is the electron
mass. The critical field strength Bc is defined by Bc ≡ meω0/e
assuming ω0 = ωce. Note that the required magnetic field
becomes weaker if the whistler frequency is lower or the
wavelength is longer.

The whistler wave has interesting characteristics that con-
fer an advantage to plasma-heating processes. The most im-
portant feature is that there is no cutoff density for whistler
waves. Whistler waves can propagate inside plasmas of any
density unless they encounter a strong density gradient so that
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they interact directly even with overdense plasmas [20–22].
Another critical fact is that a large electromotive potential, or
an electrostatic potential, in the longitudinal direction appears
in the standing wave of the whistler mode. The standing
waves are naturally excited by the overlapping of two counter-
propagating waves or by the reflection at the discontinuity
of the plasma density. The rapid buildup of the electrostatic
potential accelerates ions. The amplitude of the potential
energy is roughly given by ψ ∼ evwBwλw/(2π ), where vw,
Bw, and λw are the amplitude of the velocity, magnetic field,
and wavelength of a whistler wave, respectively. The potential
energy could be of the order of MeV for relativistic whistler
cases, and thus it is an attractive source for energy transfer
from waves to plasmas. Nevertheless, the details of plasma
acceleration and heating during the interaction between stand-
ing whistler waves and overdense plasmas have not been
examined yet.

In this paper, we focus on the ion-heating mechanism by
standing whistler waves. The polarization direction of the
electric field in whistler waves is the same as the cyclotron
motion of electrons. When the wave frequency is close to
the cyclotron frequency, Bext ∼ Bc, electrons get the kinetic
energy dramatically through the resonance [23], and almost
all the wave energy is converted to the electrons. The exter-
nal magnetic field considered here is larger than the critical
value, Bext > Bc, to avoid electron cyclotron resonance [23].
In the propagation of whistler waves, stimulated Brillouin
scattering takes place, which reduces the wave energy and
drives ion-acoustic waves [24–26]. However, the growth rate
of the parametric decay instability is usually much lower than
the wave frequency. In order to concentrate only on faster
processes of energy conversion, the duration of whistler waves
in this analysis is limited to a few tens of wave periods.
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We find that a substantial fraction of the wave energy is
transferred to ions as a result of the formation and immediate
collapse of standing whistler waves. This mechanism is differ-
ent from stochastic heating of underdense plasmas by a high-
amplitude standing wave [27–29]. Our mechanism works only
in overdense plasmas, and catalytic behavior of electron fluid
is essential for the ion heating. Hereafter, we demonstrate
the ultrafast ion-heating process by one-dimensional (1D)
particle-in-cell (PIC) simulations. We also construct a the-
oretical model of the heating mechanism and then derive
an analytical prescription of the ion temperature achieved
by the standing whistler wave heating. Finally, prospective
applications of our heating mechanism are discussed.

II. NUMERICAL DEMONSTRATION OF STANDING
WHISTLER WAVE HEATING

A simple way to form a standing electromagnetic wave is
by the use of two counter beams. Consider a thin layer of
cold hydrogen plasma in a vacuum irradiated by CP lights
with the same frequency ω0 and wavelength λ0 from both
sides. In the fiducial run, the thickness of the target layer
is L̃x ≡ Lx/λ0 = 37.5. As for the initial setup, the hydrogen
plasma target is located at |x| � Lx/2 and the outside of
the target is the vacuum region. The electron density in the
target is set to be overdense, ñe0 ≡ ne0/nc = 19.3, where
nc = ε0meω

2
0/e2 is the critical density and ε0 is the vacuum

permittivity. For simplicity, the target temperature is assumed
to be 0 initially, and we ignore the existence of the preplasma.
A uniform external magnetic field is applied in the direction of
the wave propagation axis x and the strength is supercritical,
B̃ext ≡ Bext/Bc = 7.47, which is constant in time throughout
the computation in 1D situations. The light traveling in the x
(−x) direction is right-hand (left-hand) CP to the propagation
direction. In other words, both show right-hand polarization
in terms of the magnetic field direction, and thus they enter
the overdense target as whistler waves [30]. The amplitude of
the incident electromagnetic wave E0 is characterized by the
normalized vector potential a0 = eE0/(mecω0), where c is the
speed of light. The intensity of a CP light is expressed as I0 =
ε0cE2

0 . A relativistic intensity with a0 = 2.65 is considered
and the wave envelope shape is Gaussian with a duration of
ω0τ0 = 70.6.

The wave-plasma interaction is solved by a PIC scheme,
PICLS [31], including Coulomb collisions. The escape
boundary conditions for waves and particles are adopted for
both sides of the boundaries. The CP waves are injected
from both boundaries of the computational domain, which
is sufficiently broader than the target thickness. The waves
propagate in the vacuum for a while and then hit the target.
The transmittance and reflectivity at the target surface de-
pend on the refractive index of the whistler mode N = [1 +
ñe0/(B̃ext − 1)]1/2, which is N = 2.00 for the fiducial param-
eters. Because the collision term is scale dependent, the phys-
ical parameters of this run correspond to Lx = 30 μm, ne0 =
3.37 × 1028 m−3, Bext = 100 kT, I0 = 3 × 1019 W/cm2, and
τ0 = 30 fs upon choosing the wavelength λ0 = 0.8 μm. Here
the electromagnetic wave conditions are determined based on
the typical quantities for a TW-class femtosecond laser and
the target density is equivalent to that of solid hydrogen.

The spatial and temporal resolution is �x = c�t = λ0/103

and the particle number is 200 per each grid cell at the begin-
ning. In strongly magnetized plasmas, the time resolution �t
should be shorter than the electron gyration time as well as the
plasma oscillation time. Otherwise, the unphysical numerical
heating breaks the energy conservation. In order to capture
the propagation of the whistler waves and the evolution of the
standing waves correctly, it would be better for the whistler
wavelength to be resolved by a few hundreds of grid cells.
These conditions are satisfied in all simulations shown in this
paper. We have confirmed by the convergence check that the
conclusions discussed in our analysis are unaffected by the
numerical resolution.

The PIC simulation clearly shows that ions in the over-
dense target are heated efficiently by the counter irradiation of
CP lights. Because of the no-cutoff feature, both of the counter
beams propagate inside of the target as whistler waves. When
the two whistler waves pass each other, a standing whistler
wave is formed in the middle of the target (Fig. 1). Right after
the appearance of the standing wave, the longitudinal electric
field Ex is generated to the similar order of the transverse
wave field E0. At the same time, ions start to be accelerated
by the electric field Ex. The ion velocity increases quickly up
to 2% of the light speed within several wave periods. The
rapid increase in ion energy is shown in Fig. 2(a), where
temporal histories of the total amount of energy for ions and
electrons are depicted. When the injected wave fields enter
the target layer, only electrons start to move due to the quiver
motions of the whistler waves, whereas ion motion exhibits
little change. However, the ion energy is jumped up at the time
when two whistler waves overlap at the center of the target,
and ultimately the ion energy exceeds the electron energy.
One-third of the wave energy is absorbed by plasmas through
this interaction, where the ions gain more than 60% of the
absorbed energy, i.e., the efficiency of the conversion from
waves to ions is ∼20%. The acquired ion energy is drastically
enhanced, by an order of magnitude, compared with the case
without an external magnetic field or the no-whistler-mode
case.

The energy spectrum of ions is nearly thermalized at the
later stage far beyond the pulse duration, ω0tend = 2.78 ×
103 � ω0τ0 [Fig. 2(b)]. The peak energy of the ion spectrum
corresponds to about Ti ∼ 24 keV, which is higher than the
electron temperature of Te ∼ 9.6 keV. The energy density of
the external magnetic field is still higher than that of the
thermalized plasma. The plasma β is about 0.02 at the end
of the calculation in this case.

This series of events is the scenario of ion heating by stand-
ing whistler waves in the numerical simulation. Surprisingly,
thermal ion plasma with a solid density of tens of keV is
produced by Joule-class lasers in a rather simple geometry
only if a sufficiently strong magnetic field is available.

III. THEORETICAL MODELING

Next, we give a theoretical model of the ion-heating mech-
anism based on fundamental equations. Relativistic effects are
neglected in the following analytical discussion. Eventually, it
turns out that the ion temperature heated by counter whistler
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FIG. 1. Snapshots of the electric fields and ion phase diagram in the 1D PIC simulation of the interaction between counter whistler waves
and plasmas. (a–d) Time evolution of the electric fields during counter irradiation of circularly polarized lights. The longitudinal and tangential
fields (Ex and |E⊥|) are depicted by the black and red curves, respectively. Snapshot data are taken at (a) ω0t = −4.71, (b) ω0t = 73.8, (c)
ω0t = 152, and (d) ω0t = 192, where the origin of time t = 0 is defined by the time at which the injected lights arrive at the target surface.
The gray area represents the inside of the target layer. (e–h) Snapshots of the position-velocity (x-vxi) phase diagram for ions taken at the same
timing as in (a)–(d). The color denotes the particle number.

waves is described by a simple formula of the initial wave-
plasma conditions.

The eigenfunctions of the tangential electric field Ew, mag-
netic field Bw, and electron velocity vw for counter whistler
waves traveling in the ±x direction with the wave number
kw ≡ 2π/λw are given by

E±
w = E±

w exp[i(±kwx − ω0t )](̂y + i ẑ), (1)

B±
w = ∓B±

w exp[i(±kwx − ω0t )](i ŷ − ẑ) , (2)

v±
w = v±

w exp[i(±kwx − ω0t )](i ŷ − ẑ) , (3)

where B±
w = (kw/ω0)E±

w and

v±
w = 1

B̃ext − 1

e

meω0
E±

w . (4)

Suppose both of the injected CP lights have the same wave
number k0 and amplitude a0 in the vacuum; the transmitted
whistler waves will have kw = Nk0 and aw = 2a0/(N + 1)
[30]. Since N is larger than unity when Bext is supercritical,
the wavelength and amplitude of the electromagnetic waves
become shorter and lower in the target. The nonrelativistic
condition is then given by aw < B̃ext − 1 from Eq. (4).

Let us consider the force balance for the electron fluid
in the longitudinal direction. The electromotive force,

FIG. 2. Energy conversion rate and energy spectra for ions and electrons in the fiducial run. (a) Time histories of the ion and electron
energies normalized by the injected energy of the electromagnetic wave E0. The gray bar represents the pulse duration of the target irradiation,
0 � ω0t � 70.6. Arrows indicate the snapshot timing shown in Fig. 1. (b) Energy spectra for ions and electrons at the end of the calculation.
The vertical axis is ε fε (ε), where fε (ε) is the probability density function for the energy ε, so that the peak value is related to the temperature
as εpeak = (3/2)kBT in the Maxwell-Boltzmann distribution. The ion spectrum is fitted well by a two-temperature model with Ti = 24 and
2.9 keV, and the electron spectrum is almost identical to the thermal distribution of Te = 9.6 keV. Dotted curves show the fitted functions.
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FIG. 3. Detailed structures of a standing whistler wave and linearly growing velocity fluctuations of ions in the fiducial run. (a) Magnified
view of the electric fields at the center of the target, Ex (black curve) and |E⊥| (red curve), taken at ω0t = 152, which is right after the formation
of the standing whistler wave. The electromotive field (ve × B)x working on the electrons is also plotted by green dots. The blue curve
denotes the electron density fluctuation δne ≡ ne − ne0. The length indicated corresponds to the wavelength of the whistler wave λw = λ0/N .
(b) Amplitude growth of the ion velocity in a standing wave identified from four successive snapshots, at ω0t = 113 (black curve), 152 (red
curve), 192 (green curve), and 231 (blue curve). The indicated length scale is λw/8.

−e(ve × B)x, applied to the electrons is always 0, that is,
(v±

w × B±
w )x = 0 for the case of a single whistler wave.

However, this term becomes finite in the standing whistler
wave, [(v+

w + v−
w ) × (B+

w + B−
w )]x �= 0, which has a curious

consequence in the evolution of plasmas located at the
standing wave.

The force-free condition, Ex + (ve × B)x ≈ 0, should be
satisfied for the electron fluid, because the inertial and
pressure-gradient terms in the electron equation of motion
are negligible in the current situation (̃ne0 � 1 and Te ∼ 0).
The force balance for electrons is established distinctly in the
PIC simulation [Fig. 3(a)]. The electromotive force acts as
the negative ponderomotive force in this circumstance. The
electrons gather periodically at the antinodes of the standing
whistler waves to generate the longitudinal electric field Ex.
The amplitude of Ex is then evaluated as

Ex ≈ −
[

8Na2
0

(N + 1)2(B̃ext − 1)

mecω0

e

]
sin(2Nk0x) , (5)

using Eqs. (2) and (3), which has a sinusoidal distribution with
the wavelength of λw/2. Interestingly, the electric field Ex is
constant in time, so that the ions are accelerated effectively by
this tiny-scale steady force.

A. Ion temperature

The equation of motion for ions is approximately written
as ∂vxi/∂t ≈ ZeEx/mi, because of the slow velocity and low
temperature initially (vxi 	 c and Ti ∼ 0). Here mi and Z
are the ion mass and charge number, respectively. Since the
electric force is independent of time, the amplitude of the ion
velocity increases linearly with time,

vxi ≈ ZeEx

mi
(t − ts) , (6)

where the displacement of the ion position is ignored, and ts
is the time when the standing whistler wave appears in the
target. As shown in Fig. 3(b), the constant acceleration of the
ion velocity is consistent with the PIC results from ω0t ∼ 110
to ω0t ∼ 190. The ion density increases at the antinodes of

the standing wave in the same manner as the electron density.
Then the amplitude of the periodic density fluctuation of the
electrons increases even further instantaneously to sustain
the constant electric field Ex as long as the standing waves
survive. This positive feedback cycle continues to accelerate
ions.

The ion acceleration will be terminated by the steepening
of the waveform in the position-velocity phase diagram. Due
to the huge density fluctuation caused by the localization of
electrons and ions, the standing wave is no longer sustained
and breaks down at the saturation time τsat, which is approxi-
mately estimated by∫ ts+τsat

ts

|vxi|dt ∼ λw

8
, (7)

where λw/8 corresponds to the acceleration length for the
fastest ions, that is, a quarter of the ion wavelength [see
Fig. 3(b)]. Solving this relation, the maximum amplitude is
obtained as

vxi,max

c
∼

[
4πa2

0

(N + 1)2(B̃ext − 1)

Zme

mi

]1/2

(8)

at the time

ω0τsat ∼
[

π

16

(N + 1)2(B̃ext − 1)

N2a2
0

mi

Zme

]1/2

. (9)

The solution suggests that the wave duration τ0 must be longer
than τsat in order for ions to gain the maximum energy from
the standing whistler wave. The saturation time could be a
few tens of the wave period or even shorter for the relativistic
intensity cases a0 � 1.

After the steepening, counter ion flows coexist at the same
location, and the ions begin to thermalize through wave break-
ing and kinetic instabilities like two-stream ion instability
[32]. If the accelerated ions are totally thermalized, it will give
a reasonable evaluation of the maximum ion temperature, i.e.,

kBTi

mec2
∼ 2π

3

a2
0Z

(N + 1)2(B̃ext − 1)
, (10)
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FIG. 4. Dependence of the model prediction for the ion temperature on the initial parameters a0, Bext/Bc, and ne/nc. (a) Predicted ion
temperature given by Eq. (10) for cases of ne0/nc = 19.3. The wavelength is assumed to be λ0 = 0.8 μm. Overplotted colored circles indicate
Ti values obtained by 1D PIC simulations with given parameters a0 and Bext/Bc. In these runs, a flat-top pulse shape is used with a sufficiently
long duration, τ0 � τsat . The valid range of the temperature prediction is within the area surrounded by three critical curves, which are obtained
from the pressure-gradient condition [Eq. (14); solid curve] and the cyclotron resonance conditions [Eqs. (15) and (16); dashed and dot-dashed
curves, respectively]. (b) The same diagram for cases of ne0/nc = 10 and λ0 = 1 cm.

where the relation 〈v2
i 〉 = 3kBTi/mi ∼ v2

xi,max/2 is adopted.
The PIC simulations confirm that the modeled temperature
calculated from Eq. (10) is genuinely reliable for interpreting
the outcome of the counter CP light irradiation [see Fig. 4(a)].
According to the theoretical model, the final ion temperature
is independent of the ion mass but proportional to the charge
Z . In the overdense limit, ñe0 � B̃ext > 1, the dependence of
Ti is proportional to a2

0Z/̃ne0. During the collapsing regime,
only ions are accelerated and heated selectively. This is why it
can be regarded as a mechanism of direct ion heating by elec-
tromagnetic waves. Note that the same phenomenon occurs
with left-hand CP lights if the plasma density is overdense
and less than the L cutoff, 1 � ñe0 � ñL ≡ B̃ext + 1. Standing
waves could be generated even with a single whistler wave by
the reflection at the rear edge of a thin target.

B. Electron heating

Electron heating, on the other hand, would be dominated
by resistive heating, at least in the 1D situation. The energy
equation is given by

3

2

∂

∂t
(kBTe) ≈ meνei|ve − vi|2 , (11)

where the relative velocity between electrons and ions is
mainly caused by the quiver motion of whistler waves
[Eq. (4)]. Assuming the Maxwellian-averaged collision fre-
quency [1,33],

νei = ln 


3(2π )3/2

Ze4

ε2
0m1/2

e

ne

(kBTe)3/2
, (12)

the electron temperature is derived as

kBTe

mec2
∼

[
40

√
2π ln 


9

a2
0ñe0

(N + 1)2(B̃ext − 1)2

Zre

λ0
ω0t

]2/5

,

(13)

where re = e2/(4πε0mec2) is the classical electron radius.
There is a wide parameter range in which the ion temperature
Ti becomes higher than Te.

In the PIC simulations, we neglect the initial temperature
of the target. Even when the finite temperature is considered
initially, the ion-heating process is found to be unchanged if
the initial electron temperature is lower than the temperature
given by Eq. (13).

C. Valid range of the model prediction

The ion temperature is now easily estimated from three
initial parameters (a0, B̃ext, and ñe0) with the help of Eq. (10).
Figure 4(a) shows the predicted ion temperature for cases with
ñe0 = 19.3 assuming a typical wavelength of high-intensity
lasers, λ0 = 0.8 μm. Numerically obtained ion temperatures
in the PIC simulations are overplotted by the colored circles,
which show a good agreement with the model predictions in
the wide range of Ti ∼ 100 eV to 1 MeV. The deviation from
the model prediction is within a factor of 2 for cases with
a0 � 1.

It should be noted that there is a valid range of the theo-
retical model. One of the essential quantities of this heating
mechanism is the longitudinal field Ex given by Eq. (5). If
the pressure-gradient term in the electron equation of motion
is not negligible, the electromotive force could balance with
∇Pe, and then the static electric field would not appear.
Therefore, our model requires ∇Pe ∼ 2kwPe � ene(ve × B)x,
which is rewritten with the initial parameters as

a0 �
[

5
√

2π ln 


36
(N + 1)3(B̃ext − 1)1/2ñe0

Zre

λ0
ω0t

]1/3

,

(14)
where ln 
 is the Coulomb logarithm. This validity condition
is shown by the solid curve in Fig. 4 assuming ln 
 = 10, Z =
1, and ω0t = 300. The pressure-gradient term is dominant
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in the lower-intensity cases, because the dependence ∇Pe ∝
Te ∝ a4/5

0 is weaker than (ve × B)x ∝ a2
0.

Another requirement is to avoid electron cyclotron res-
onance, which prevents whistler wave propagation by dis-
turbing the electron quiver motion. Relativistic and Doppler
effects must be considered to derive the resonance condi-
tion, ω0 − kwv‖ = ωce/γ [23]. Assuming that v‖ is of the
order of the thermal velocity vth, the resonance condition is
summarized as B̃ext � γ and B̃ext � 1 + ñ1/3

e0 (vth/c)2/3 in the
relativistic and nonrelativistic limits, respectively. Here γ ∼
(1 + a2

w )1/2 and vth = (kBTe/me)1/2 are the Lorentz factor and
thermal velocity of electrons, respectively. Using the initial
parameters, these conditions are settled in

a0 �
(N + 1)

(
B̃2

ext − 1
)1/2

2
(15)

and

B̃ext � 1 +
[

40
√

2π ln 


9

a2
0ñ7/2

e0

(N + 1)2

Zre

λ0
ω0t

]2/19

, (16)

which are also plotted by the dashed and dot-dashed curves
in Fig. 4. In the end, the ion temperature given by Eq. (10)
is applicable only within the area surrounded by these three
curves.

IV. PARAMETER DEPENDENCE OF THE ION
ENERGY INCREASE

When the standing whistler wave heating sets in, the total
ion energy is usually higher than the electron energy. Then
the energy conversion rate will be a good indicator of the
ion heating by standing whistler waves. Figure 5 shows the
parameter dependence of the energy conversion rate for ions
and electrons obtained from 1D PIC simulations similar to the
fiducial run.

First, we investigate the effects of the incident wave am-
plitude. As shown in Fig. 5(a), where the initial parameters
of these runs are identical to those in the fiducial run except
for a0, the ion energy is dominant when the wave amplitude
is about a0 ∼ 1–5. In other cases, the formation of standing
waves is inhibited by higher electron temperatures caused
by resistive heating or cyclotron resonance. This is actually
consistent with the validity conditions given by Eqs. (14)
and (15).

The next parameter is the strength of the external magnetic
field. As expected, the ion energy is dominant only when the
magnetic field Bext is sufficiently larger than the critical value
Bc [Fig. 5(b)]. The conversion efficiency decreases as the field
strength increases so that the best condition for ion heating is
around B̃ext ∼ 5–10.

As for the target density, obviously it must be overdense,
ñe0 � 2, for efficient ion heating [Fig. 5(c)]. In the overdense
limit, the electron temperature given by Eq. (13) is inde-
pendent of the initial density ne0, while the ion temperature
has the dependence Ti ∝ n−1

e0 . Then the energy fraction of
electrons becomes predominant in this limit.

The wavelength of the incident CP lights is assumed to be
λ0 = 0.8 μm in our PIC simulations. The Coulomb collision
term in the equation of motion for the charged particles

FIG. 5. Parameter dependence of the energy conversion rate for
ions and electrons obtained by 1D PIC simulations. (a) Conversion
rate for ions (black symbols) and electrons (red symbols) as a
function of the wave amplitude a0. The conversion rate is evaluated
at ω0tend = 2.78 × 103. Filled and open circles denote the results
with and without the Coulomb collision effects, respectively. The
dotted vertical line indicates the fiducial parameter a0 = 2.65. (b,
c) Dependence on (b) the external field strength Bext/Bc and (c) the
plasma density of the target ne0/nc. The meanings of the symbols
are the same as in (a). The initial parameters are the same as in the
fiducial run except for Bext (b) and ne0 (c). The fiducial parameters
are Bext/Bc = 7.47 and ne0/nc = 19.3.

shows a dependence on the critical density. If the longer
wavelength is selected, the relative importance of the collision
effects becomes weaker. In Fig. 5, the results of collisionless
simulations are also shown as a reference. When the collision
effect is negligible or the wave frequency is sufficiently high,
the energy conversion to electrons is reduced significantly.
Figure 4(b) indicates the ion temperature heated with the
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TABLE I. Characteristic physical quantities for thermal ion-plasma generation over 10 keV. The appropriate values of the wave amplitude,
external magnetic field strength, and plasma density are listed for various values of the frequency (wavelength) of electromagnetic waves. The
range of each quantity in the nondimensional parameter is also listed.

Frequency (wavelength)

300 THz 30 THz 30 GHz 3 kHz
(1 μm) (10 μm) (1 cm) (100 km) Parameter Range

Wave amplitude
(W/cm2) 3 × 1018–1020 3 × 1016–1018 3 × 1010–1012 3 × 10−4–10−2 a0 1–5

Magnetic field
strength (T) 5 × 104–105 5 × 103–104 5–10 5 × 10−7–10−6 Bext/Bc 5–10

Density (cm−3) 2 × 1021–1023 2 × 1019–1021 2 × 1013–1015 0.2–10 ne0/nc 2–100
Application Glass & TiSap laser CO2 laser Tokamak Planetary

magnetosphere

whistler wavelength of λ0 = 1 cm assuming the target density
ñe0 = 10. The validity curves are largely different from those
in the λ0 = 0.8 μm cases. The pressure-gradient condition
given by Eq. (14) is out of range in this figure (a0 < 0.01).
Therefore the standing whistler wave heating is realized over
a broader range of plasma parameters.

V. DISCUSSION AND CONCLUSIONS

Standing whistler wave heating is expected to develop
various applications. For ICF, ions should be heated up to a
higher temperature, exceeding keV, in imploded dense plas-
mas. Our method might provide an advanced technique for an
alternative ICF ignition scheme by a use of magnetic fields
that is completely different from previous ideas [34–38]. The
keV ion plasma generated by this method could be an efficient
thermal neutron source [39]. Since it requires the existence
of a strong magnetic field, larger than Bc ≈ 10 kT for λ0 =
1 μm, practically the generation of such an extreme magnetic
field would be the first serious barrier to be resolved. Recently,
the achievement of strong magnetic fields, of kilotesla order,
in laser experiments has been reported by several groups
[40–43]. Thus it should be plausible in the near-future to
excite relativistic whistler waves from high-intensity lasers
under a supercritical field condition, Bext > Bc [44].

The critical value Bc can be reduced significantly by the
choice of a longer wavelength. The typical quantities suitable
for standing whistler wave heating are summarized in Table I.
A carbon dioxide laser of wavelength λ0 = 10 μm might be
a better choice for the proof-of-principle experiment of this
mechanism, because the critical field strength decreases by
an order of magnitude. If the wavelength is of the order of a
centimeter, the critical field strength decreases to Bc ∼ 1 T.
The situation shown in Fig. 4(b) corresponds to a tokamak
plasma of density ne0 = 1.11 × 1014 cm−3 (̃ne0 = 10) when
the wavelength λ0 = 1 cm is used. Based on the model
prediction, the intensity a0 ∼ 0.5 is needed to produce 10-keV
ion plasma under an ITER-relevant magnetic field (Bext ∼ 5
T) [7]. The other extreme case is λ0 ∼ 100 km, or ω0/(2π ) ∼
3 kHz, which gives Bc ∼ 100 nT. These quantities are appro-
priate for the ion acceleration in planetary magnetospheres
[45]. It would be meaningful to pursue various applications
of this mechanism by a series of PIC simulations.

Ions and electrons are heated by the decay of whistler
turbulence observed in the solar wind [46–48]. Interactions
of counter-propagating waves should frequently occur in the
turbulence so that it is interesting to examine the collisions
of two waves with different frequencies. In this study, after
the collapse of the standing whistler wave, the turbulent
state of low-β plasma was excited by ion kinetic instabilities

FIG. 6. The time evolution of the energy conversion rate for (a) ions and (b) electrons is depicted for various cases—Ly/λ0 = 3 (red curve),
Ly/λ0 = 1 (green curve), and Ly/λ0 = 0.1 (blue curve)—of the 2D runs. The initial parameters are the same as in the 1D fiducial run except
for the target thickness, Lx/λ0 = 18.75, and the pulse duration, ω0τ0 = 35.3. The dashed curve is the result of the 1D run, that is, Ly = 0.

053205-7



SANO, HATA, KAWAHITO, MIMA, AND SENTOKU PHYSICAL REVIEW E 100, 053205 (2019)

FIG. 7. Energy spectrum ε fε (ε) of ions (black curves) and elec-
trons (red curves) at the end of the calculation, ω0tend = 1.84 × 103,
are plotted for the cases of Ly/λ0 = 3 (solid curves) and Ly/λ0 = 0
(dashed curves). These spectra are calculated from particles located
in the standing wave region |x/λ0| � 5.

and residual whistler waves. The gradual increase in the ion
energy after the wave breaking [see Fig. 2(a)] might be caused
by decaying whistler turbulence. Thus multidimensional study
of the turbulent stage would be applicable to the solar wind
problem.

In summary, an ion-heating mechanism by the counter
configuration of whistler waves has been investigated numer-
ically and theoretically. The critical process is the collapse of
standing whistler waves, which enables direct energy transfer
from electromagnetic waves to ions. The ion temperature is
found to be estimated very accurately from three initial pa-
rameters: the wave amplitude a0, magnetic field strength B̃ext,
and plasma density ñe0. Typical parameter ranges for thermal
plasma generation over 10 keV are a0 ∼ 1–5, B̃ext ∼ 5–10,
and ñe0 ∼ 2–100. If a pair of linearly polarized lights is used
instead of the counter CP lights, a part of the incident light is
converted to the whistler mode and enters the overdense target
[23]. Thus the same mechanism of ion heating takes place
by the transmitted whistler waves, but the energy conversion
efficiency is much lower than in the CP cases.

Although we focus on 1D results in this paper, 2D PIC
simulations, where the periodic boundary condition is im-
posed in another spatial direction, y, reveal successfully that
the same ion heating occurs in two dimensions as well (see
the Appendix). The only difference observed is the higher
electron temperature than the 1D counterpart when the width
of the computational domain in the y direction becomes
comparable to the whistler wavelength. The detailed analysis
of multidimensional cases will be an essential subject of our
future work.
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FIG. 8. Spatial distributions of the energy density u for (a) ions
and (b) electrons in a 2D simulation. The energy density is measured
in units of pascals. The initial parameters are the same as in the
1D fiducial run except for the target thickness, Lx/λ0 = 18.75, and
the pulse duration, ω0τ0 = 35.3. The box size in the y direction is
Ly/λ0 = 3. These images are taken at ω0t = 329.

APPENDIX: TWO-DIMENSIONAL EFFECTS

The mechanism of ion heating by standing whistler waves
is observed in 2D PIC simulations, which are performed to
compare with the 1D behavior. The initial parameters are the
same as in the 1D fiducial run except for the target thickness,
Lx/λ0 = 18.75, and the pulse duration, ω0τ0 = 35.3. The
resolution in 2D runs is �x = c�t = λ0/300 and the particle
number per cell is 60. The computational box size of the
additional spatial direction y is considered from Ly/λ0 = 0.1

FIG. 9. Spatial distribution of the density n for (a) ions and
(b) electrons in the 2D run. The initial parameters and snapshot
timing are the same as those in the 2D run shown in Fig. 9.
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to Ly/λ0 = 3. In the y direction, the wave injection from the
boundaries is uniform, and the periodic boundary condition is
adopted.

The dependence of the energy conversion rate on the
domain size in the y direction is shown in Fig. 6. Obviously
the ion evolution is independent of Ly/λ0. The electron energy
increases when Ly/λ0 becomes comparable to the whistler
wavelength, which is λw/λ0 ∼ 0.5 for the fiducial parameters.
However, it seems to be saturated if Ly � λw. The same
trend is recognized in the comparison of the energy spectra
between 1D and 2D simulations (Fig. 7). All the spectra are
well fitted by the thermal distribution of a single temperature.
The ion temperature estimated by the Maxwellian fitting is
22 keV for the 1D run and 18 keV for the 2D run so the ion
spectra are unaffected by 2D effects. The electron spectrum
in two dimensions exhibits a higher energy than that in one
dimension. The electron temperature is 7.2 and 23 keV for 1D
and 2D runs, respectively.

The ion energy is enhanced only in the central part of
the target, |x/λ0| � 5, where a standing whistler wave is
formed. Figure 8 shows the spatial distributions of the energy
density u for ions and electrons in a 2D simulation with
Ly/λ0 = 3. It looks like an almost 1D-like distribution, and
thus the ion evolution is quite similar to that in the 1D case.
On the other hand, the electron energy is nearly uniform
after the passage of the injected whistler waves. Because of
the transverse propagation of the electron plasma waves, the
electrons absorb a larger amount of energy from the waves
compared with the corresponding 1D result. Evidence of
transverse plasma waves is observed in the spatial distribution
of density fluctuations during the standing whistler wave heat-
ing (Fig. 9). The initial parameters and the snapshot timing
are the same as in Fig. 8. The standing whistler wave causes
vertical stripes in the middle part. Small-scale fluctuations of
the order of the whistler wavelength are seen in the transverse
direction.
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