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Evolution of Gaussian wave packets in capillary jets
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A temporal analysis of the evolution of Gaussian wave packets in cylindrical capillary jets is presented
through both a linear two-mode formulation and a one-dimensional nonlinear numerical scheme. These analyses
are normally applicable to arbitrary initial conditions but our study focuses on pure-impulsive ones. Linear
and nonlinear findings give consistent results in the stages for which the linear theory is valid. The inverse
Fourier transforms representing the formal linear solution for the jet shape is both numerically evaluated
and approximated by closed formulas. After a transient, these formulas predict an almost Gaussian-shape
deformation with (i) a progressive drift of the carrier wave number to that given by the maximum of the
Rayleigh dispersion relation, (ii) a progressive increase of its bell width, and (iii) a quasiexponential growth
of its amplitude. These parameters agree with those extracted from the fittings of Gaussian wave packets to
the numerical simulations. Experimental results are also reported on near-Gaussian pulses perturbing the exit
velocity of a 2-mm diameter water jet. The possibility of controlling the breakup location along the jet and other

features, such as pinch-off simultaneity, are demonstrated.
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I. INTRODUCTION

A liquid, when sufficiently pressurized, is allowed to
escape, in the form of a jet, through an orifice to break
up into a string of droplets [1]. Savart [2] in 1833 exper-
imentally demonstrated that the liquid jets are destabilized
by any disturbance in the nozzle, which, however small,
grows up downstream and causes its rupture. Plateau [3]
in 1873 showed that surface tension is responsible for the
destabilization of any cylindrical liquid columns under the
axisymmetric perturbations of a sufficiently long wavelength.
Rayleigh [4,5] in 1879, in his analysis, included the balance
between surface tension and inertia, and determined how these
perturbations grow and the typical size of the droplets that are
thus formed. Since then, there have been numerous extensions
of Lord Rayleigh’s perturbative analysis that have included
other effects, as viscosity, gravity, surrounding atmosphere,
electric and magnetic fields, thermal gradients, viscoelasticity,
and compound jets [6,7].

Technologically, capillary jetting is an advantageous
method of droplet production. It allows the generation of
drops of well-determined size (monodisperse) with a meticu-
lous control over their position and speed. Since the invention
of the first continuous ink-jet printers [8,9], the industrial
applications of capillary jets have grown to include a large va-
riety of materials, to the point where these methods are used in
other fields, such as pellet manufacturing (metals, fertilizers,
detergents), drug dosing, live tissue engineering, cell sorting
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or cell encapsulation, and encapsulation of pharmaceutical
products or food, among others [9,10].

From a theoretical point of view, there are two possible
approaches that can be used to study the evolution of liquid
jets: the temporal analysis and the spatiotemporal analysis (or
simply spatial analysis). In the temporal analysis, Rayleigh
[4] modelled a liquid jet as an infinite liquid column seen
from a reference system that moves with the speed of the jet.
The perturbations of such an infinite jet can be described as a
superposition of Fourier modes in the axial coordinate, whose
amplitudes change in time (initial value problem). Keller et al.
[11] in 1973, noting that Rayleigh’s temporal analysis is an
approximation, proposed a more rigorous approach. In the
so-called spatial analysis, the temporal dependency of the
perturbations is described in terms of a Fourier superposition,
while the perturbations grow spatially downstream subject to
the exit boundary conditions in the orifice (boundary value
problem). Keller himself showed that the temporal analysis
coincides with the spatial one in the limit in which the Weber
number We (square of the ratio between the velocity of the
jet and the capillary speed) goes to infinity. In practice, the
temporal analysis is simple and works very well for We > 20
[12-15], a condition that is fulfilled in most applications based
on liquid jets. Here we have adopted a temporal approach, but
a spatial analysis would be necessary for slower jets [16].

Regardless of the analysis adopted, and even for axisym-
metric jets, the mathematical problem to be solved remains
difficult: It is a three-dimensional free boundary problem (the
moving surface of the jet) with cylindrical geometry, which
evolves over time and is, in general, highly nonlinear [6].
Even the linear analysis for small harmonic perturbations is
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difficult, especially in the viscous case [17], whose solution
requires numerical methods [18]. The system is dispersive
and unstable, and the nature of the instability changes from
convective to absolute depending on the liquid and jetting
properties [6]. In this context, the so-called one-dimensional
(1D) models offer a very useful simplification [19-22]. The
spatial dependence of the 3D equations can be reduced to the
axial variable by assuming a very simplified polynomial radial
dependence, which is justified by the slenderness of the liquid
column [21,23].

The resulting equations remain nonlinear, but the spatial
dimensionality is reduced by eliminating the radial depen-
dence. In this way, our spatial domain is fixed, in contrast
to the 3D domain, which has a free boundary. The rigorous
deduction of these models from the Navier-Stokes equations
can determine the accuracy of each 1D model [21,23-25].
For low viscosities, the analysis of small perturbations has
shown that in the range of wave numbers of 0 < k < 1, where
the liquid jet is unstable, the viscous slice model [21,22],
which is a generalization of the nonviscous slice model of
Lee [19], results in errors of up to 6% in the description
of the jet’s temporal evolution. The Cosserat model [20] is
accurate for zero or very low viscosities but carries an error
of up to 3% for moderate or large viscosities. In the present
work, we use the so-called averaged model [21] with a minor
correction [14,24]. The averaged model is the most accurate
1D method with a 0.6% error in the entire parametric range of
interest. Moreover, its difficulty is similar, both for numerical
simulations and for perturbative analysis. Its accuracy in the
nonlinear regime is as good as in the linear regime, and it well
describes the jet close to the breakup point [24].

In the classical analyses of harmonic perturbations [4,17]
only a single mode of evolution (the one responsible for in-
stability) was selected, disregarding the contribution of other
modes that can be found in the corresponding dispersion
relation. These classical monomodal analyses predict that the
amplitude of harmonic disturbances should grow exponen-
tially. On the other hand, there are numerous numerical and
experimental examples of initial nonexponential transients
that show that a single mode is unable to couple the bound-
ary conditions at the orifice with the subsequent evolution
of the liquid jet. Recently, a rigorous modal analysis has
revealed that, among the infinite modes that arise from the
3D dispersion relation, only two (but not less) are required
to adequately describe the initial conditions in the temporal
analysis [14] or the boundary conditions at the orifice in the
spatial analysis [16,26]. In brief, the two retained modes are
those having non-negligible shape deformation and net axial
flow or, in mathematical terms, those surviving to a radial
integration over any jet section. None of the neglected modes
is unstable. The relevant quantity associated to the velocity
field is its axial component averaged on a slice, which is
related to the shape deformation by means of a mass balance,
in a similar way as in 1D models [see Eq. (21) in Sec. IV].
Together with the well-known dominant (unstable) capillary
mode, the subdominant (stable) capillary mode is also essen-
tial. The same conclusion is applicable to 1D models [27].
This bimodal analysis simplifies the calculations and makes
them more comprehensible and, at the same time, accurately
describes the early evolution of the capillary jet subjected to

FIG. 1. Sequence of frames, for equally elapsed times, corre-
sponding to the evolution of a capillary jet perturbed by a pressure
pulse at the nozzle. The marks indicate the first and second detach-
ment events, clearly separated in space.

arbitrary conditions in the nozzle [28]. In this work, we apply
realistic initial conditions of pure impulse (without initial
deformation), therefore adopting a bimodal analysis.

In the context of inkjet printing, two different technolo-
gies stand out: continuous inkjet (CIJ) and drop on demand
(DOD). In CIJ, droplets are continuously generated from a
truly formed jet by a periodic stimulation. During operation,
only some of the droplets are electrostatically deflected for
printing, while the others are recycled [8]. In contrast, in
DOD, droplets are only produced when needed [10]. While
CIJ printing can handle a large variety of liquids, and yields
a high droplet production per unit of time and a high printing
speed, DOD printing normally generates small droplets and
its design facilitates scaling up so that a single printhead
can hold hundreds of nozzles [9]. In this work, we study a
lesser known hybrid technology, which we name the pulsed
stimulation of continuous jets. In 1989, Hrdina and Crowley
[29] experimentally demonstrated the possibility of producing
isolated drops in a continuous stream, without appreciably
disturbing the rest of the jet. In this approach, drops are
generated by intermittently stimulating a small jet length by
electric fields. Single drops can be produced on demand, but
with the advantages of a CIJ system. Other authors have
numerically studied this problem to predict the breakup length
of the jet and the shape of the rupture into drops [30-33].
However, the presence of an electric field complicates the
study of the evolution of pulsed perturbations in capillary
jets. In particular, nozzle stimulation by pressure pulses is an
approach that has not been studied in the past. We can see an
example from our experiments in Fig. 1.

Concerning the shape of the stimulation pulse, there are
good reasons for choosing a Gaussian wave packet. Al-
though any pulsed stimulation can be described by a Fourier
analysis, a large number of Fourier components may be

053111-2



EVOLUTION OF GAUSSIAN WAVE PACKETS IN ...

PHYSICAL REVIEW E 100, 053111 (2019)

necessary to describe it adequately. In contrast, the same
pulsed stimulation is more efficiently described in terms of
wave packets, defined over a restricted domain. Among all
the possible forms of wave packets, the Gaussian envelope has
interesting properties. It is a smooth analytical function with a
simple Fourier transform (a Gaussian function). In addition, it
fulfills the principle of indetermination with an equal sign, so
it is the least-dispersed function in a linear system [34]. The
Gaussian wave packet roughly retains its functional form as
it evolves and only by widening and changing its amplitude
[35,36]. In unstable flows with pulsed stimulation, Gaussian
wave packets have been used in systems such as inclined
plane films [37], boundary layers [38,39], wakes [40], and
parallel flows in general [40,41]. Remarkably, in the context
of the Orr-Somerfield equation, Gaster [40] showed that any
pulse located in space and time tends to asymptotically be-
come a Gaussian wave packet. In liquid capillary jets, wave
packets are often mentioned in the context of the transition
between absolute and convective instability [42]. However,
the evolution of Gaussian packets has not been studied or been
considered as a stimulation mechanism to produce drops.

In this paper, we study in detail the temporal evolution of
an impulsive Gaussian wave packet in an infinite liquid jet.
Through a rigorous small-disturbance analysis, we demon-
strate that the packet, very approximately, retains its func-
tional form with predictable width, amplitude, and wave num-
ber. To this end, we carry out three different approximations.
In the first one, described in Sec. II, we formally solve the
linear problem by means of a rigorous Fourier analysis, which
is numerically implemented through a fast Fourier transform.
Next, in Sec. III, we propose a simple analytical approach,
in which the carrier wave number, width, and amplitude of a
Gaussian wave packet are explicitly obtained. Finally, in the
same section, a more elaborate implicit approximation is also
presented. The results of Secs. Il and III allow us to physically
interpret the results intuitively. We validate all these linear
models with nonlinear 1D numerical simulations, as described
in Sec. IV. Results from linear and nonlinear models are
shown and compared in Sec. V, and their significance and
scope are discussed in Sec. VI. Finally, Sec. VII presents
experiments where isolated drops are obtained and controlled
by the stimulation of appropriate wave packets.

II. TWO-MODE LINEAR TEMPORAL FORMULATION
OF THE JET EVOLUTION

The temporal analysis assumes a capillary jet as an infinite
liquid column at rest. The physical parameters are the liquid
density p, its dynamic viscosity w, and its surface tension
y. The effects of the outer gas dynamics and that of the
gravity forces are disregarded. As usual, we adopt scales
based on capillary forces balanced by inertia, i.e., jet radius
R for lengths, the capillary time 7. = (oR’/y)!/? for time,
and the capillary velocity v. = R/t for velocities. The sole
dimensionless number in this formulation is the Ohnesorge
number Oh = /(pRy)"/?. In what follows, we only deal
with dimensionless quantities.

The relevant quantities to formulate the axisymmetric hy-
drodynamical problem are the jet deformation, F'(z, t), and the
instantaneous mean axial velocity on a slice W (z, t), which

are functions of the axial position z and time ¢ [14,16]. A
sketch is provided in Fig. 2. This is valid both for a two-
mode linear analysis, presented in this section, and for the
one-dimensional nonlinear formulation that will serve to build
a numerical scheme in Sec. IV.

A perturbed jet can be represented by

F(z,t) =14 f(z,1); W(z,1) = w(z, t), (D

where f(z, t) and w(z, t) are the small-amplitude deformation
and velocity perturbations, respectively. Note that for the tem-
poral analysis framework, the jet velocity of the unperturbed
state is null. In this work, f(z,7) and w(z, ) have wave-
packet forms for which we define their respective Fourier
decompositions,

mm=i/dMWM) )
27 J_ o
and
w(z, 1) = L/OO dk ik, 1), 3)
27 J_o

Each Fourier component can be considered a harmonic per-
turbation, whose behavior has been analyzed in Garcia and
Gonzélez [14] in terms of their initial values f (k,0) and
w(k, 0). In brief, these spectral components are the sum of
two contributions, which are the evolutions of the capillary
dominant, and capillary subdominant modes,

fk,t) = falk, ) + fi(k, 1), 4
with
—e% (k)t

aq (k) — o5 (k)

Here o (k) and o (k) are the growth rates of the dominant and
subdominant modes, respectively. Although o, (k) and o (k)
can be obtained by numerically solving the dispersion relation
corresponding to the 3D linear equations, in this work we
use the simpler formulas given by the average model, which
are accurate enough [14]. Equation (5) also defines ﬁ(k, 1)
by merely interchanging the subindices “d” and “s.” This
interchange rule holds throughout the text. Similar formulas
for the velocity perturbation can be consulted in Garcia and
Gonziélez [14], but they will not be necessary in this work.

Although Eq. (5) is valid for arbitrary initial conditions, we
are mainly interested in pure-impulse conditions, which are
suitable for rigid exit orifices, and hence we set f (k,0)=0.
By combining all the spectral components in each mode we
obtain

Falk, 1) = |:asf(k, 0) + %ﬁ)(k, 0)}. (5)

Sz 1) = fa(z, 1) + fi(z, 1), (6)
with
fa(z, 1) = 2;7;/ dk explikz + ay(k)t]gk)w (k, 0), (7)
where we define
k/2
aq(k) — as(k)’

intended as a transfer function connecting any initial velocity
perturbation to the initial amplitude of the capillary dominant

glk) = (®)
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FIG. 2. Sketch of the physical system (on top) showing the quantities defined in Sec. II. The jet is considered as an infinite column at rest,
with a shape deformation F (z, ) and an average axial velocity (on a slice) W (z, t). The relations with their perturbations, f(z, ¢) and w(z, t),
are also provided. Below the system sketch, on the left, typical pure-impulse initial conditions, defined by a pulse perturbation in the averaged
axial velocity, wy(z), and a null shape perturbation, f;(z) = 0. On the right, the same quantities at a later time ¢ > 0.

mode (changing the sign for the subdominant mode). Here-
inafter, we use f;(z,t) as the dominant wave packet and
fs(z, t) as the subdominant wave packet.

Let us consider an initial velocity perturbation given by a
Gaussian wave-packet pulse:

2
Z .
W(z,0) = w(z,0) = —wy exp(—P) sin(koz 4+ ¢o), (9)
0
where wy is its amplitude, oy its width, ky its carrier wave
number, and ¢ the initial phase shift relative to the center of
the Gaussian bell. Its Fourier transform is

oo 2
w(k, 0) = —wy / dze *®exp (—%) sin(koz + ¢o)
%ﬁﬁo{exp[—%%z(k — ko) + icbo]

1 2 2 .
—exp[—iao(k—l—ko) —1¢0“. (10)

The formal solution to the evolution of a initial velocity
Gaussian wave packet is obtained by substituting Eq. (10) into
(7), yielding

fut) = =28 [ dk g(k) explikz + g (k)]
227 J-oo

X {exp[—%doz(k —ko)® + i¢01|

—exp[—%aoz(k—f-ko)z — i¢0“; (11)

fs(z, t) is given by a similar formula through the mentioned
interchange of indices.

The inverse Fourier transform in Eq. (11) can be effi-
ciently evaluated with the help of a FFT algorithm [43] to
provide the spatial distribution of the wave packet at any time.

However, considerable insight can be obtained from the ana-
lytical approximations presented in the next section.

III. ANALYTICAL APPROXIMATIONS

First, we focus our attention on the evolution of the dom-
inant wave packet. The integrand in Eq. (11) can be split
into two terms, each of them having the contribution of one
Gaussian bell, centered in ky and —ko, respectively. Let us
consider the first one. When ¢ is large enough, the integrand
has an asymptotically dominant maximum at k = k,,, de-
fined by the conditions «,(k,,) = 0, where the prime denotes
derivation with respect to the argument; indeed, a"i’ (k) < 0,
s0 ky, corresponds to a maximum. Therefore, the structure of
this integral is well suited for the application of the Laplace
method [44] to obtain an asymptotic approximation as t —
00. At the leading order of 1/¢, the behavior is

f h dk g(k)exp[ikz + ay (k) — %aoz(k —ko)? + i¢0:|

oo

1
~ g(km)em[ad(km)t - Eag(km — ko) + i¢0:|

o0 1
X / dk exXp |:lkZ + Eag(km)(k - km)zt]

o0

= g(km)exp[ad(km)l - %U()z(km - ko)z}

-2 z2 (ik o). (12
"V ek eXp[mg(km)r}eXp thkn2 + io). (12)

The complementary Gaussian, centered at —ky, admits the
same procedure and gives a similar result. The combina-
tion of both asymptotic approximations yields a Gaussian
wave packet deformation with an amplitude growing accord-
ing to explag(k,)t]//t, a growing bell width of the form
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[—o}(ky)t]'/* and a carrier wave number k,,. Although these
findings are interesting and connect with similar results in
the literature [38], their application can be of limited use
when the jet has a relatively short breakup time. Thus, we
look for a nonasymptotic approximation, which is valid for
finite times, based on the hypothesis of a large Gaussian bell
width. In the following subsections, we propose two analytical
approaches, which are showing the near-Gaussian nature of
the packet throughout the most part of its evolution, with
one of them giving simpler explicit formulas for the defining
parameters, while the other one provides more accurate but
implicit formulas.

A. Explicit approximation

As in the previous asymptotic analysis, we again consider
the first term in Eq. (11) after it has been split into two inte-
grals. First, g(k) is written in exponential form, exp{ln[g(k)])},
in order to express the whole integrand as an exponential
function whose exponent becomes S; (k) + i¢py + ikz, where

Sa(k) = In[g(k)] — 505 (k — ko)* + ag(k)r.  (13)

We now expand the functions o, (k) and In[g(k)] up to second
order around k,,. In this way, S; becomes a quadratic polyno-
mial that we can express as —0%(k — k.)? /2 + b, for some o,
k., and b to be determined. These three parameters are easily
calculated by identifying the coefficients of each power of k in
the polynomials and solving the resulting system of equations.
After some manipulations we arrive at

o =,/o5 — (@1 (kn) — et k)1,

— +(k0_k)0 @)V ()

o’ > 9 2
b= —(ke —kn)” — — (ko — k)" (14
2 2
This new exponential expression allows an approximate eval-
uation of the integral (11) in closed form. The growing behav-
ior of o makes this evaluation more accurate as ¢ increases.
Recalling that oz (k) and (k) are even functions, Egs. (14)
hold when replacing ko < —ko, ky, < —ky,, and k. < —k,
for the same o and b. These symmetry properties allows us to
effortlessly calculate the other integral in (11) having k + kg in
the exponent. By combining the two contributions, we resort
to a Gaussian wave packet with the following structure:

2

Fz 1) —Aexp(—f—)cos(k z+¢0).  (15)
where the amplitude is
A = wo gkn) ? explb + arg (k)1 1. (16)

Note that we have chosen a negative-sine-type carrier for
the initial velocity, Eq. (9), so as to obtain a cosine-type carrier
for the deformation, Eq. (15). In this way, taking ¢y =0
leads to a symmetric breakup with a central main droplet. An
illustration of a general Gaussian wave packet for the surface
deformation is depicted in Fig. 3. The amplitude A depends
on ¢ explicitly but also implicitly through b and o. As time

< ¢O/kc

—1.0E

FIG. 3. A typical Gaussian wave packet as defined in Eq. (15).
The dashed lines show the Gaussian envelope, characterized by its
amplitude A and width o. A wavelength 27 /k, is defined for a carrier
wave. A negative shift —¢o/k. is shown as the result of a phase ¢y.
The specific values in this illustration are A = 0.8, 0 = 10, k. = 0.7,
and ¢g = 7 /4.

elapses, the values of k. and o give the temporal evolution
of the carrier wave number and the bell width, respectively.
The trends are (i) an unlimited increase of the bell width that
is consistent with the asymptotic prediction deduced from the
Laplace method, Eq. (12); (ii) a convergence of the carrier
wave number k. toward k,,, independently of its initial value
ko; and (iii) a quasiexponential growth of the amplitude,
with the growth rate corresponding to the maximum of the
Rayleigh dispersion relation, o, (k,, ), as b tends to the constant
—05 (ko — ki )?/2 whent — oo. As a conclusion, in this limit,
Eq. (12) is recovered.

Besides these asymptotic behaviors, the proposed analytic
approximation aims at reproducing, as best as possible, the
whole temporal evolution of the packet. Equation (14) pre-
dicts an initial bell width and a carrier wave number that are
different from oy and ko, respectively, because of the extra
terms dependent on g. This surprising result will be contrasted
against our numerical simulations in Sec. V and discussed
in Sec. VI. Also concerning the effects of this function, it is
important to note that the negative term —[In(g)]”(k,,) in the
expression for o can make the proposed explicit approxima-
tion impossible for the early stages of the temporal evolution
if oy is too small.

As a final remark, the explicit approximation can give a
simple estimate of the breakup time, #,, defined as the time
required by the shape perturbation to reach an amplitude
equal to the jet radius, i.e., A(f,) = 1. From this condition and
Egs. (14) and (16), we can implement the iterative procedure

0; = \,/Uo2 — [In(g)]" (k) — aj (ki )i,
[ln(g)] (km)

l i

kei = km + (ko — m)

2

2
O: O
bi = == (ke — km)* — =L (ko — ki)*.
5 ke, )= (ko )

1 ;
fiyy = [m % b,}, 17
k) | 00 wo g(kn)
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FIG. 4. The function S,(k), whose maximum (if existing) de-
termines the behavior of the inverse Fourier transform in Eq. (11),
is evaluated at t = 0, 5, 10, 15, and 20 for (a) ky = 0.4, o9 = 10;
(b) ko = 08, oy = 10, (C) k() = 04, oy = 2; and (d) k() = 08, oy = 2.
In all cases, the Ohnesorge number is set to Oh = 0.01. Increasing
the time makes the function increase too. The maximum of each
curve is marked by a dot.

starting with #; = — In[wq g(k,n)]/ (k). The wanted esti-
mate of the breakup time is #, = lim;_, » #;. Convergence
within three decimal figures is typically achieved in five
iterations.

B. Implicit approximation

Alternatively, a more accurate, although implicit, approx-
imation can be envisaged by revisiting the exponent S;(k),
Eq. (13). The first term, In[g(k)], increases monotonically in
the range of interest 0 < k < 1. The second term has a maxi-
mum at k = ko and its relative importance depends on 002. The
third term has a maximum at k = &, and is proportional to 7.
An analysis of S;(k) for different times reveals a progressive
displacement of the relative maximum toward k = k,, (see
Fig. 4). The idea is to search for a better approximation of
S4(k) by determining the position of this moving maximum
and performing a Taylor expansion around it. Note that the
explicit method works with the best approximation around the
Rayleigh maximum, which is a region not containing the main
contribution to the integral. Let us redefine k., dependent on ¢,
as the position of this maximum (if existing), thus satisfying
S'(k.) =0, 1ie.,

o (ke — ko) — et (ke)t — [In(g)]' (k) = 0. (18)

Once k. is found, we approximate S, (k) by a Taylor expansion
around this value up to the second order, S;(k) >~ Sy(k.) +
S/ (k) (k — ke)? /2. We also redefine

0 = \/=8jk) = \Jo7 — @V (ko) — ko, (19)

0 02 04 k 06 08 1.0 0 02 04 k 06 0.8 1.0
S, S,
-10
-10
-20
-20
-30
(a) (b)
-30

FIG. 5. (a) The function S,(k) for k) = 0.4 and oy = 10, evalu-
ated in the interval + = 0, ..., 60 with increments of 5 in dimension-
less units; (b) same evaluations for ky = 0.8, o0y = 10 and the interval
t =0,...,30. In both cases, Oh = 0.01. Increasing the time makes
the function decrease.

again dependent on ¢. The adoption of this nomenclature is
fully justified below.

The new form of the exponent again allows an approximate
evaluation of the integral (11) in closed form. As in the
explicit approximation, and because « (k) and (k) are even
functions, Eqs. (18) and (8) predict that —k, is the solution
when replacing ky <— —ko, while o is unchanged according
to Eq. (19). These symmetry properties allow us to calculate
the second integral in (11). By combining the two contribu-
tions, the dominant packet is again of Gaussian type and is
analogous to that expressed in Eq. (15), with redefined k., o
and A, in which the latter is expressed as

1
A = wyglk,) ? exp [—Eag(kc — ko) + ad(kc)t]. (20)

Ast — 00, the asymptotic trends of the three redefined pa-
rameters hold: from Eq. (18) it is clear that in the limit# — oo,
the only possible finite solution is o/, (k.) = 0, i.e., ko = ki, re-
gardless of what the starting carrier wave number k or the bell
width oy are. This fact also makes the asymptotic behavior
of o consistent with the prediction from the Laplace method,
[—a)(ky)t]'/%. Beyond these correct trends, a better accuracy
of the implicit approximation is expected because the Taylor
expansion of S;(k) has been carried out in the neighborhood
of its true maximum, i.e., the marked points in Fig. 4. This
figure also shows that, as the bell width increases, the range of
wave numbers providing a non-negligible contribution to the
Fourier integral gets narrower and the approximation is more
justified.

To complete the analysis, we consider the evolution of the
subdominant wave packet, given by Eq. (11), with subindexes
“d” and “s” interchanged. If we substitute ¢y by o in (13),
then we obtain the analogous function S, which is describing
the exponent in the integral corresponding to the subdominant
packet. As a (k) is now negative in the range of interest
0 < k < 1, S; diminishes with time at each wave number but
near k = 0 (and also near k = 1 in the inviscid case). Figure 5
illustrates the typical behavior of Ss(k) for one initial wave
number below k,, and another beyond it. We observe that (i)
for the case with kg > k,,, k. does not exist after a short time,
and (ii) for the case with ky < k,,, the associated bell width
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diminishes and k. reaches the value zero at a finite time. This
invalidates the application of the procedure described in this
subsection and in the previous subsection to the subdominant
wave packet for most of the jet evolution. Instead, in Sec. V,
we show the evolution of the subdominant packet based on
the numerical calculation of the inverse Fourier transform. In
any case, the asymptotic trend of this packet is to decrease
in amplitude, so there is a relatively extended initial transient
after which the only observable packet is the dominant one.

IV. ONE-DIMENSIONAL MODEL AND NUMERICAL
METHOD

For our numerical simulations of the temporal evolu-
tion of a liquid jet (infinite jet problem), we implement
the averaged one-dimensional model [21] with the mi-
nor correction introduced in Garcia and Gonzalez [14]
to guarantee that its corresponding dissipation function
is strictly positive. It can be written as a system of
two coupled equations in terms of the already introduced
surface radius F(z, t) and the mean axial velocity on a slice
Wiz, t):

(F?), + (F*W), =0, (21)
) F* w?
FXW AW W) = | Woe = = + W W
Z
2 2 FEZ—SF,2 ’ Fz4

= —F?P.,+30h{ F 1+T~ +— W,
Z
(22)

where the subscripts # and z denote partial derivatives with
respect to time and axial position, respectively, and P, is the
capillary pressure jump across the surface,

1 1 F.
P=—— = —=_). (23)
VI+F2\F 1+F?

Periodic boundary conditions are applied, with a domain
width large enough (typically 100 times the radius of the jet)
so that the evolution of the pulsed jet is the same as if the
domain was infinite. Homogeneous Dirichlet boundary condi-
tions would give identical results. Realistic initial conditions
are impulsive: The liquid column is initially undeformed and
the initial perturbation of the mean velocity is a Gaussian
wave packet, i.e., F(z,0) =1, while W(z,0) is given by
Eq. (9).

The numerical method to solve the above equations
is described in detail in Garcia and Gonzilez [14]. In
brief, the space domain is discretized through a Galerkin
finite-element method with cubic Hermite interpolation. A
predictor-corrector method with variable time step is chosen
to solve the resulting system of ordinary differential equations
with a fixed per-step relative temporal error of 107, The
spatial grid is refined when needed in order to guarantee a
fixed per-step relative spatial error of 10~ (up to 32000
elements typically). The results (breakup length and surface
shape at breakup) do not change appreciably when reduc-
ing these error levels. The accuracy of our 1D numerical
simulations is evident from the results presented in Fig. 6,

10° , , , , ,
= 4030000 101
o 510110710710 10° 10
| 10 Ty
— 10" F 1
107 F A7
03 0074 ]
L /023 ]
Oh=0.07 ~~~0Oh=0.23 7
107 R
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107! ‘ ‘ ‘ ‘ :
0 2 4 6 8 10 12

FIG. 6. Temporal evolution of the deformation amplitude of an
axisymmetric capillary jet subjected to a sinusoidal perturbation of
wavelength A = 8 and initial neck radius Fp;, = 0.8975 for Oh =
0.07 and 0.23. Solid lines come from our 1D simulations, while
dotted lines correspond to 3D simulations from Ref. [45]. In the
inset, the neck radius is plotted in terms of the time to breakup,
with the dashed line being the Eggers asymptotic solution F;, =
0.0304/[Oh(t — 1,)] [46] near breakup.

where we contrast the ability of the model to predict the jet
thinning against a well-tested 3D numerical code [45]. The
same plethora of transitions described therein are reproduced
here. In particular, the Eggers asymptotic solution [46] is
clearly satisfied at times near breakup.

V. RESULTS

According to Eq. (6), the linear theory predicts a temporal
evolution of the wave packet constructed as the superposition
of a dominant and a subdominant wave packet. Each of them
has its own evolution. The first grows in amplitude while the
second decays, and both of them almost exponentially. As it
happens for an harmonic stimulation [14], it is expected that,
under conditions to be discussed later, the subdominant wave
packet becomes negligible after an initial transient. The dom-
inant packet has a Gaussian-like form, revealed by any of the
two obtained analytical expressions. The Gaussian approxi-
mation is determined by its carrier wave number k., bell width
o, and amplitude A; all of them functions of time. In order
to illustrate typical outputs from the methods implemented in
this work, we present in Fig. 7 the evolution of the jet shape
originated by a Gaussian-wave-packet velocity perturbation
at t = 0. The initially narrow pulse progressively widens and
grows in amplitude, while its typical distance between max-
ima (i.e., its carrier wave number) changes. These behaviors
have been predicted by our Gaussian approximations. In fact,
each graph in this figure compares the implicit approximation
with the 1D numerical findings and the numerical evaluation
of the inverse Fourier transform (11), except for the first graph
(t = 0.2), for which the analytical method cannot be evaluated
(the bell width results to be an imaginary number), as warned
in Sec. III. Both numerical outputs agree until the jet is close
to the breakup time. The analytical output is only evaluable
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FIG. 7. The sequence (a)—(d) describes the evolution of the shape perturbation of an infinite jet, from the initial moments to the imminent
breakup, for Oh = 0.01. Here, the initial jet velocity perturbation is a Gaussian wave packet with wy = 0.001, kp = 0.69, and oy = 2. The
solid lines correspond to the numerical 1D simulations; the dashed line is the numerical evaluation of the inverse Fourier transform (11); and
the dotted line is the implicit approximation [absent in (a) as it is not evaluable]. Graph (d) is redrawn in full width in (e) to show F =1+ f

(instead of f) with equal horizontal and vertical scales.

after + = 5, and the computed inverse Fourier transform gets
closer to the 1D simulation as time progresses.

The temporal evolution predicted by the numerical simu-
lation can be analyzed by adjusting, at each time, a Gaussian
wave packet, defined by the three mentioned parameters. The
numerical evaluation of the inverse Fourier transform (11)
admits the same fitting procedure. Accordingly, we present a
comparison between the two approximate linear predictions,
and the two fittings (nonlinear and exact linear) for these three
parameters, in a series of figures. For instance, Fig. 8 shows
the results for a packet with an initial carrier wave number
k. = 0.69, corresponding to the maximum of the Rayleigh
dispersion relation for Oh = 0.01 and two representative
values of the initial bell width, oy = 10 (wide) and oy = 2
(narrow, the same as in Fig. 7). The initial amplitude is wy =
0.001 in all cases. In addition to the graphs for k., o', and A, we
plot a fourth graph with the parameter 1 — r? (r, the Pearson
correlation coefficient), in logarithmic scale, as a function of
time, which measures how well the nonlinear simulation and
the exact inverse Fourier transform for the linear problem are
represented by a Gaussian wave packet. This information is
important to elucidate whether eventual discrepancies in the
three previous graphs come from linear transients or from
nonlinearities.

The series of graphs is completed with representative val-
ues of the initial parameters: Figure 9 shows the same study
as Fig. 8, this time for a fixed initial bell width (op = 10)
and different wave numbers. The cases of k. = 0.6 and 0.8

represent initial wave numbers lower and larger than k,,
correspondingly.

In order to discuss the role of the subdominant packet in the
transient regime, Fig. 10 shows a measure of its temporal evo-
lution through the maximum of the absolute value of the de-
formation, f; max(f) = Max,|fs(z, t)|. In this semilogarithmic
representation, the straight line marks an exponential decay
with rate a;(Oh, k), with the same selected values of Oh and
ko. The decay of the packet follows this trend up to a certain
saturation, which is of marginal interest. The two insets show
how this saturation corresponds to Fourier components very
close to k = 1, which evolve slowly according to Fig. 5(b).

We complete the study by presenting analogous results for
Oh = 0.25, which is a typical value for jets having moderate
viscous effects, as those found in inkjet technology. In Fig. 11,
the initial carrier wave number is fixed to the wave number of
the fastest-growing perturbation for the selected Ohnesorge
number, i.e., kg = k,, = 0.57, and shows the evolution of each
parameter for a wide (o9 = 10) and a narrow (o = 2) initial
bells. Figure 12 shows the comparison of a fixed initial bell
width with oy = 10 and two other initial carrier wave num-
bers, which are lower and greater than k,,, correspondingly.

VI. DISCUSSION

Before analyzing the results presented in the previous sec-
tion, we want to emphasize how the adoption of the minimal
formulation of the linear problem, consisting in a combination
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FIG. 8. For each column, the first three graphs give the bell
width o, the amplitude A, and the carrier wave number k., de-
scribing the time evolution of a wave packet generated at r =0
by a Gaussian wave packet perturbation of the axial jet velocity
with amplitude wy = 0.001, carrier wave number ky = 0.69, and
bell widths (a) op = 10 and (b) oy = 2. The Ohnesorge number
is Oh = 0.01 in both cases. The crosses are the values of these
parameters obtained by fitting a Gaussian to the numerical simulation
of the shape evolution; the circles come from a similar fitting to the
numerical inverse Fourier transform; the solid lines are the values
obtained from the explicit approximation of the formal solution
to the linear problem; and the dashed lines are the result of the
implicit approximation. The fourth graph in each column provides,
in semilogarithmic scale, the quality of the fitting, measured through
1 — r2, with r the Pearson correlation coefficient, for the two fittings
to a Gaussian wave packet.

of the two capillary modes, leads to a simple formal solu-
tion. This procedure avoids the complexity of a full modal
description and captures the essential features of the physical
system. The combination of a Fourier decomposition of any
spatial wave packet, and the modal reduction for each k com-
ponent, gives much more insight than the method described
in Ref. [47], based on a Laplace transform formulation of
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FIG. 9. Same as in Fig. 8 but for oy = 10 and (a) ky = 0.60 and
(b) ko = 0.80.
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FIG. 10. Evolution of the maximum absolute value of the sub-
dominant wave packet, f max(t), for Oh = 0.01, ky = 0.8, and 0y =
10. The line serves as a reference of an exponential decay with rate
given by «, for the selected values of the Ohnesorge number and
the initial wave number. The insets show the wave-packet shapes
corresponding tor = 0 and r = 15.
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FIG. 11. Same as in Fig. 8 but for Oh = 0.25 and an initial wave
number ko = 0.57 (corresponding to the maximum of the Rayleigh
dispersion relation) with (a) oy = 10 and (b) op = 2.

the general initial-value problem. The accuracy of our linear
formulation is demonstrated in Fig. 7, where we can observe
full agreement with 1D nonlinear simulations, except for the
last graph, close to the breakup.

From this formal solution, the temporal evolution of a
jet shape initially perturbed by a velocity wave packet can
be well understood as the superposed evolution of what we
have called dominant and subdominant packets. At ¢ = 0,
the superposition gives a null deformation (pure impulsive
initial condition), which starts to grow in such a way that the
analytical approximations to the dominant packet mimics it
very well until the final stages of the evolution, as illustrated
also in Fig. 7. The temporal evolution of the amplitudes of
the fitted Gaussian wave packets, compared in Figs. 8 and 9,
systematically shows a transient in which the packet cannot
be described by the Gaussian approximations proposed in
Sec. III for the dominant packet. As the findings from the
nonlinear scheme and from the numerical evaluation of the
full linear solution agree during the transients, the conclusion
is that the discrepancies arise from having neglected the
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FIG. 12. Same as in Fig. 9 but for Oh = 0.25 with (a) kp = 0.45
and (b) ky = 0.69. These initial wave numbers are significantly
below and above the one giving the maximum of the Rayleigh
dispersion relation, ky = 0.57 [see Fig. 11(a)].

subdominant-packet contribution. The end of the transient
is marked by the time beyond which there is agreement of
amplitudes with those of the Gaussian approximations of the
dominant packet. The transient duration will be discussed
later in this section.

Concerning the performance of the linear model in de-
scribing the packet evolution, the same figures show a virtual
superposition of points obtained from this linear model and
from the nonlinear simulations in a wide temporal interval. As
expected, discrepancies become significant only near breakup,
when the amplitude cannot be considered small any more.
This is clearly correlated with a worse fitting of the nonlinear
predictions to the Gaussian approximation (observe the final
values of the parameter 1 — r? in these figures). Once again,
and similarly to cases with harmonic stimulations [14,15,28],
the linear model is successful in describing most part of the
temporal evolution of a perturbation in a capillary jet.

The analytical Gaussian approximations, which are pro-
posed to represent the dominant wave packet, are successful,
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as it is apparent in Figs. 8 and 9, especially in predicting the
evolution of the amplitude. In this regard, the estimates of the
breakup time provided by the iterative scheme of Eq. (17)
are in good agreement with the ones from the 1D nonlinear
numerical computation. For instance, the evolution shown in
Fig. 7 indicates a breakup time #, = 26.28 from the numerical
scheme, while the iterative scheme yields ¢, = 26.76, i.e., a
deviation lesser than 2%, despite being based on a linear anal-
ysis. The other parameters are, in general, also well captured,
particularly by the implicit procedure, as defined in Eqgs. (18)
and (19). In contrast, the explicit procedure gives a less
precise agreement with the numerical points, especially for
initially narrow Gaussian wave packets (see, for instance, the
results for oy = 2). The implicit approximation becomes more
accurate for higher values of oy, as illustrated in Fig. 8 for
the same initial wave numbers and oy = 10 and oy = 2. The
reason is that wide bells in the spatial domain imply narrow
ones in the spectral domain. Accordingly, as the only relevant
contribution to the inverse transform, Eq. (11), comes from a
narrow range of k, the remaining non-Gaussian functions in
the integrand are almost constant, thus resulting in an almost
Gaussian wave packet.

The persistence of a Gaussian wave-packet shape during
the evolution of the jet goes beyond a mere asymptotic trend,
which is not always accessible, as the jet may break up sooner.
Rather, this packet shape reveals as an accurate description
of the linear evolution for finite times. The three parame-
ters describing the Gaussian approximation (disregarding the
unchanging phase shift ¢p), namely the amplitude, the bell
width, and the carrier wave number, vary with time due to
the dispersive nature of the system. Accordingly, we must
aim at relating these temporal variations with the Rayleigh
dispersion relation. The progressive shift of the wave number
toward the maximum of the Rayleigh dispersion relation,
whatever its initial value, can be viewed as a dispersive effect
by which the Fourier components with higher growth rates in
the wave packet progressively overtake those with lower ones.
Figure 4 is very illustrative of this effect.

A particularly unexpected dispersive effect is the initial
shift of the carrier wave number from its initial value ko to
a higher one. This is due to the initial conditions considered,
which are associated to velocity and not to deformations,
which implies the presence of the k-dependent transfer func-
tion g. In fact, the wave packet associated to the velocity as
a function of time (not included in Sec. II) does not exhibit
this wave-number shift. Analogously, initial pure-deformation
conditions do not produce a wave-number shift in the defor-
mation wave packet, but in the velocity wave packet.

Recalling the analysis of the transient for harmonic per-
turbation, as developed by Garcia and Gonzélez [14], where
explicit formulas were provided for the transient duration, the
question about the possibility of similar results for packet
perturbations arise. We have seen in the previous section that
the subdominant packet does not have the same Gaussian
behavior as the dominant one. However, Fig. 10 shows that
a subdominant packet with o9 = 10 exhibits a decay well
described by the subdominant growth rate corresponding to
the selected initial carrier wave number, kg = 0.8, up to a
saturation in amplitude associated to a small spectral com-
ponent close to k = 1. In fact, this component is negligible

because it has a small amplitude. Even more, its presence is a
spurious effect, as the dominant packet must include the same
component with opposite amplitude in order to accomplish the
condition of zero deformation at + = O through a destructive
interference of both packets. When describing the dominant
packet, this tiny effect gets masked by the growth of other
spectral components. As a conclusion, the application of the
same explicit formulas developed in Garcia and Gonzélez [14]
can give a close estimation of the transient duration, at least
for the packets that are initially not too narrow.

Finally, the analysis of the results for a significantly greater
viscosity (Oh = 0.25) leads to the same conclusions about
the accuracy of the linear models: The numerical inversion of
the Fourier transform is virtually indistinguishable from the
1D simulations during the linear part of the evolution, and
the analytical approximations give good results, especially
the implicit procedure. This initial transient, along which the
subdominant and dominant wave packets are of the same order
of magnitude, is shorter when compared to the breakup time
than for Oh = 0.01. This is consistent with the general trend
presented in Garcia and Gonzélez [14] for the analysis of
harmonic perturbations.

VII. PRELIMINARY EXPERIMENTS

The previous sections constitute a self-consistent part of
this article in the sense that the linear theory (along with its
analytical approximations) and the nonlinear simulations give
coherent results that imply mutual validation. Of course, it
would be desirable to confront these theoretical results against
experiments, and the goal of this research will ultimately
be this one. However, this goal is difficult because (i) it
may be technically very involved to impose initial Gaussian
velocity perturbations, as these perturbations cannot be di-
rectly controlled, and (ii) close-up observation of the wave
packet should be combined with a global visualization of
the jet, in order to capture the temporal evolution of the
relevant parameters (amplitude, carrier frequency, bell width,
and phase). Circumventing these difficulties would require,
on the one hand, mastering the whole mechanical stimula-
tion process and, on the other hand, designing visualization
strategies not currently available in the literature. For these
reasons, the preliminary experiments presented in this section
constitute only a first step in the experimental validation task,
as well as a source of qualitative observations of very practical
interest.

A. Experimental setup and procedures

The experimental set-up is described in detail elsewhere
[28], so here we only give a brief outline. The jet was
generated by means of a hydraulic circuit connecting in
series an open reservoir receiving the falling jet, a pump,
a secaled chamber that was half-filled with air (buffer), a
second chamber, with one end consisting of a flexible rubber
membrane connected to a mechanical shaker (LDS V201),
and a cylindrical chamber (200 mm long, 50 mm in diameter),
with a perforated disk to eliminate entry vortices, and a
circular nozzle made from brass at the bottom (D = 2.289 +
0.003 mm, [,=100 £ 5 um). Two pressure sensors
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FIG. 13. Voltage packet driving the shaker (dashed line) and two
independent pressure signals induced near the nozzle, as viewed on
the oscilloscope screen. Scales for voltage and pressure are shown.
The voltage packet corresponds to a Gaussian envelope with 0.7 V in
amplitude and 7.15 ms in width; its carrier wave has a frequency of
280 Hz and zero phase delay.

(Honeywell 40PC006G and MEAS) were located on opposed
points at the side of the cylindrical chamber, which were
12 mm away from the base of the nozzle plate. The jet was
visualized by means of a high-speed camera (Phantom Miro
310). An acquisition rate of 48000 fps and exposure time of
5 us were used for all the experiments. All experiments were
carried out with water (u =1 mPam™', y = 0.072 Nm,
o =997.6 kg/m®). The velocity of the jet was measured
with the help of the camera software by following the first
detached drop between 108 and 116 mm from the exit, giving
2.414 m/s. From the flow rate, fixed to 7.35 x 107° m?/s,
and the measured velocity, we derive a jet radius of 0.984 mm.
These values can be adopted as valid for the whole jet length
because gravity has a small effect.

The electromechanical shaker is driven by a voltage signal
of Gaussian wave-packet type, periodically generated by a
LabView routine. The code allows us to fix the amplitude
and width of the Gaussian bell and the frequency and phase
of the carrier signal, as well as the repetition rate at which
this Gaussian wave packet is generated. The voltage signal
is sent through a DAC board (National Instruments) to an
amplifier and monitored by an oscilloscope before feeding
the shaker. An example of a voltage signal used to stimulate
the jet is shown in Fig. 13, just as it was viewed on the
oscilloscope screen. In the same screen there were two more
signals corresponding to the outputs of both pressure sensors,
which are also shown in the figure, to prove the consistency of
the two independent pressure perturbation measurements, Ap.
The distortion between voltage and pressure signals illustrates
the above mentioned difficulty in controlling the actual jet
velocity perturbation. The voltage signal is proportional to
the force exerted by the shaker, but the reservoir and nozzle
characteristics determine the resulting pressure and flow rate
temporal dependence in an uncontrolled way. From a practical
point of view, we have focused our effort on (i) minimizing,
by means of a proper mechanical design, the observable queue
of unwanted pressure oscillations after the wave packet, and
(i1) heuristically selecting the Gaussian parameters, through
observation of the pressure outputs, in order to achieve a
specific type of breakup (isolated, simultaneous pinch-off,
etc.), as described in the next subsection.

B. Applications

The main application of pulsed stimulation is the detach-
ment of a single drop or a group of drops in the middle of the
part of the jet not affected by natural breakup. According to
the previous theoretical and numerical analysis, it is expected
that a packet generated by a temporal pulse will spatially grow
in a quasiexponential manner, while it gets deformed much
more slowly (eventual change of bell width, carrier frequency,
and phase). Thus, an adequate selection of the wave-packet
parameters can control the position and number of the result-
ing drops, as well as other relevant properties of the breakup
process. This possibility is illustrated in Fig. 1, where we
observe the spatiotemporal evolution of a packet generated
by a Gaussian voltage pulse sent to the shaker. Specifically,
conditions were designed to achieve a single-drop detachment
far from a second breakup event (both marked with arrows in
the figure). Note that a Gaussian wave-packet voltage pulse
may not lead in general to a Gaussian-shaped deformation,
as the shaker, reservoir, and nozzle dynamics mediate the
velocity exit conditions. However, as the pressure perturbation
measured at the reservoir only differs slightly from a Gaussian
wave-packet form, we expect the same for the jet velocity
perturbation at the exit.

Isolated drops, or trains of drops, can be periodically
generated by periodically emitted wave-packet pulses. In this
application, a question about interference between neighbor-
ing pulses naturally arises. Our analytical description of the
Gaussian-pulse evolution can give a simple estimate of the
minimum distance, zuin, between two of these pulses in order
to avoid unwanted interferences. The criterion to obtain this
distance requires defining a maximum tolerated overlapping
between two successive Gaussian envelopes, evaluated at the
final stages of their evolution. We measure this overlapping
through a new parameter s, defined as the fraction between
the envelope of the pulse evaluated at z;,/2 (midposition
between pulses) and the amplitude of the envelope, both of
them at the breakup time, f,. In this way, zmi, is obtained
through the condition

(Zmin/2)2

SA() = AW exp——20 =,

(24)

!

| N

T

[N

FIG. 14. Breakup events in jets stimulated by a Gaussian wave-
packet pulse only differing in their initial amplitude (from 1.0 V to
0.2 V in decrements of 0.1 V). The front and rear pinchings become
almost simultaneous in the longest jet.
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FIG. 15. Breakup events in jets stimulated by a Gaussian wave-
packet pulse only differing in their phase (from —150° to 150° in
increments of 60°). The second frame (phase of —90°) shows almost
simultaneous pinching.

or
Zmin = 0 (tp)v/—81n s. 25)

Note that, in practice, each interfering pulse has evolved
during a different lapse of time, but adopting #, for both of
them will never underestimate z,;,. With this approximation,
this distance is obtained in three steps: (i) the breakup time ¢,
and its corresponding bell width, o (#;), are estimated through
the iterative scheme of Eq. (17); (ii) a prescribed tolerated
overlapping parameter value s is chosen, and (iii) Eq. (25)
is applied to estimate the minimum distance between pulses.
For instance, for the case presented in Fig. 7, the bell width
at breakup is o (t,) ~ 8.3. If we accept a total overlapping of
10%, then s = 0.05. Consequently, from Eq. (25) we obtain
Zmin == 40.6, which is the required separation between pulses
in units of jet radius.

Recalling the unstable wave number range in the Rayleigh
dispersion relation, we can note that the purely growing or
decaying behavior of the capillary modes implies a coinci-
dence between the phase velocity and the group velocity:
Any packet suffers deformations but travels downstream at
the same velocity than the mean flow. This is a feature that
practitioners exploit to measure the flow velocity by tracking
the position of a drop resulting from the isolated breakup of
a conveniently tailored wave packet [15,28]. In this respect,
it is important to achieve simultaneous pinching at the front
and rear parts of the detached drop in order to minimize any
unbalanced impulse. Otherwise, the drop velocity can signif-
icantly differ from that of the jet. We have observed a trend
to simultaneous pinching as the breakup length increases.
Figure 14 shows this effect through a comparison between
several jets at their breakup instant, for different amplitudes
of the initial perturbation. Independently from the origin of
this behavior, probably related to the nonlinear part of the
evolution, we can adjust the phase of the temporal Gaussian
pulse to get simultaneous pinching. Figure 15 illustrates this
possibility by a series of breakup events differing only in
the phase of the stimulation. As we increase the phase, we
can observe the transition from a front pinching to a rear
pinching. In this way, we have the required control to produce

a simultaneous pinching, no matter how long the breakup
length is.

VIII. CONCLUSIONS

The linear temporal evolution of a capillary jet perturbed
by a velocity pulse can be formally described as a sum of
a dominant and a subdominant wave packet. The dominant
wave packet is the Fourier sum of the spectral contributions
of the capillary dominant mode corresponding to all the wave
numbers included in the velocity pulse. The subdominant
wave packet, constructed in an analogous way, decays in
amplitude to an unobservable level. That moment defines the
end of a transient, dependent on the Ohnesorge number, after
which the linear evolution of the jet is fully described by
the growth of the dominant wave packet. The duration of the
transient can be estimated by resorting to the transient of a
purely harmonic perturbation with the wave number equal to
the carrier wave number. The final stage of the jet evolution
deviates from the linear predictions when the perturbation
becomes too large, as expected. Although the formulation is
completely general, the described evolution has been analyzed
for a specific pulse, of Gaussian type, by means of both
an FFT numerical approximation of the Fourier sums and a
one dimensional nonlinear simulation. Their comparison give
consistent results in the linear part of the evolution. Moreover,
analytical approximations of the linear formal solution predict
a dominant packet still well approximated by a Gaussian
with time-dependent parameters: the carrier wave number
approaching that of the maximum of the Rayleigh dispersion
relation, increasing bell width, and almost exponentially in-
creasing amplitude. All these behaviors are compatible with
the asymptotic trends. These analytic approximations provide
a clear, simple and sufficiently accurate description of the
evolution of Gaussian wave packets in capillary jets.

Preliminary experiments on pulsed stimulation demon-
strate the ability to generate isolated drops in the middle of the
otherwise intact length of the jet, which are well apart from the
natural breakup region. Moreover, the proper adjustment of
the parameters defining the Gaussian pulse allows to control
key features of the breakup process for applications.
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APPENDIX: SOME USEFUL 1D EXPRESSIONS FOR THE
EXPLICIT APPROXIMATION

The growth rates «; and o, are roots of the exact
3D Rayleigh dispersion relation [48], but excellent 1D
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approximations in the whole unstable range (below a 0.5%
deviation in all cases) can be obtained from the linearization
of the averaged model [21], whose dispersion relation is the
quadratic equation

k2 1
(1 + §)oﬂ +30hk>a — Ek2(1 —k*)=0. (A1)

By implicit differentiation of this equation and the condition
o (ky) = 0 we arrive at

30hkZ g (k) = — k2o (ki )* + k2 — kb (A2)

In (A1), particularized for k = k,,, the substitution of its
second term by (A2) and simplification leads to

2
ag(ky) = % = 2[4(v/2 + 30h)? + 1]'/>— 4(~/2 4 30h).
(A3)

From the first equality in (A3) and the formula giving the sum

of the two roots,
2

k (k) = -30h————, A4
aa (k) + as (k) T (Ad)
at k = k,,, we obtain, again with the help of (A2),
42(k% — 1)
k) = ——2 2 A5
o (k) ) (A5)

We also need to evaluate

1 T (k) — o (k
[In(e)) (k) = + — %a®) =4 k)

(A6)
k- aq(k) — ak)

and

1 kY — o (k
In(@1' () =~z = Zj((k)) _ Z((k))

[y (k) — a; (k)T
[aa (k) — s (k)1
(AT)

both at k = k,,. Successive differentiations of (A4) relate the
required derivatives of both roots, so we only need ag (kp),
obtained through a second implicit differentiation of (A1) to
yield

3232 k2
H(ky) = ————2. A8
oty (ki) yry (A8)
Another helpful result is
8 +k,
aq(ky) — as(ky) = —_—. (A9)
’ V2(8+k2)
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