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Interfacial dynamics and pinch-off singularities for axially symmetric Darcy flow
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We study a model for the evolution of an axially symmetric bubble of inviscid fluid in a homogeneous porous
medium otherwise saturated with a viscous fluid. The model is a moving boundary problem that is a higher-
dimensional analog of Hele-Shaw flow. Here we are concerned with the development of pinch-off singularities
characterized by a blowup of the interface curvature and the bubble subsequently breaking up into two; these
singularities do not occur in the corresponding two-dimensional Hele-Shaw problem. By applying a numerical
scheme based on the level set method, we show that solutions to our problem can undergo pinch-off in various
geometries. A similarity analysis suggests that the minimum radius behaves as a power law in time with exponent
α = 1/3 just before and after pinch-off has occurred, regardless of the initial conditions; our numerical results
support this prediction. Further, we apply our numerical scheme to simulate the time-dependent development
and translation of axially symmetric Saffman-Taylor fingers and Taylor-Saffman bubbles in a cylindrical tube,
highlighting key similarities and differences with the well-studied two-dimensional cases.
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I. INTRODUCTION

Studies of interfacial flows in porous media are motivated
by various important applications such as oil recovery and
salt-water intrusion [1]. There is particular interest in the
physics community in studying immiscible flows that involve
a fluid of lower viscosity displacing a fluid of higher viscosity
since, in this scenario, the interface is unstable and prone to
viscous fingering-type instabilities [2]. This paper provides a
theoretical and numerical analysis of a one-phase model for
flow in a homogeneous porous medium where motion of the
more viscous fluid is governed by Darcy’s law

q = −K

μ
∇p, (1)

while any pressure drop due to the less viscous (or inviscid)
fluid’s motion is ignored. Here q is the Darcy velocity, which
can be thought of as a locally averaged velocity, while p is
the fluid pressure. The two constants K and μ are the porous
medium’s permeability and the fluid’s viscosity, respectively.
The velocity of the fluid is related to the Darcy velocity via

v = q
ϕ

, (2)

where ϕ is the porosity. We will be concerned with flows for
which there is a region of inviscid fluid occupying the domain
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�(t ) (which we refer to as a bubble), so that the boundary
∂�(t ) is a moving interface to be determined as part of the
problem.

As part of the problem specification, an interfacial condi-
tion on the pressure is required. We apply the macroscopic
surface tension condition

p = pB(t ) − γ κ on ∂�, (3)

where pB is the pressure of the inviscid bubble, γ is a
dimensional surface tension, and κ is the mean curvature of
the interface. While such a condition is used extensively in
the context of two-dimensional Hele-Shaw models (which
we will discuss at length below), some justification of (3)
is required. In real porous media, capillarity acts at the pore
scale; for invasion by a nonwetting fluid, this leads to fractal-
like fingering patterns on the scale of the individual pores, for
which a macroscale homogenized model is inadequate. On the
other hand, there is significant experimental and theoretical
evidence that for an advancing wetting fluid, the system
exhibits an effective surface tension effect on a scale much
larger that the pore size (see [3–5] and references therein).
Macroscopic surface tension (3) has been used in studies of
interfacial porous media flow since Chuoke et al. [6] and
more recently by many others [7–14]. We note that, due to its
origin, the boundary condition (3) may be more appropriate
when an interface is advancing, but not receding, or vice
versa. However, due to its simplicity and ubiquity in other
studies, we will use it here in both cases. In the context of
the fluid-fluid interface undergoing pinch-off, assuming the
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viscous fluid is the wetting fluid, the viscous fluid is advancing
near the neck and so the inclusion of surface tension in (3) is
reasonable.

We are particularly interested in scenarios for which the
bubble �(t ) develops a thin neck that subsequently pinches
off and breaks into two parts. This change in topology involves
a singularity in curvature of ∂�, the type of which has been
studied at length both mathematically and experimentally
for a range of phenomena in fluid mechanics, including the
breakup of inviscid bubbles [15–17]. Typically these studies
are centered around seeking a self-similar form describing
the collapse of the neck thickness by the power law hmin ∝
(t0 − t )α , where t0 is the time at which pinch off occurs and
the similarity exponent α is a measure of the rate at which
the velocity of the interface blows up. We refer the reader
to [18–20] for a comprehensive overview of the analysis of
these types of finite-time singularities in partial differential
equations.

A further motivation for our study is to compare and
contrast three-dimensional results (or at least axisymmetric
results) for immiscible flow in a porous medium with the well-
studied two-dimensional problem of flow through a Hele-
Shaw cell. The analogy between these two problems arises
because flow of a viscous fluid through a Hele-Shaw cell is
also governed by Darcy’s law (1), except that the parameter
K in (1) is replaced by b2/12, where b is the small separa-
tion distance between the two parallel Hele-Shaw plates. To
make direct comparisons, we consider (axisymmetric versions
of) flow geometries that have received significant interest
in the Hele-Shaw case. These include bubble contraction
due to inviscid fluid being extracted from a point [21–23],
displacement of viscous fluid in a channel geometry leading to
Saffman-Taylor fingers [24,25], propagation of finite (Taylor-
Saffman) bubbles along a channel [26,27], and injection of
inviscid fluid at a point leading to tip splitting and viscous
fingering patterns in a radial geometry [28,29].

An additional observation to make about (3) is that our
porous medium flow model is also relevant for Stefan prob-
lems which describe certain melting or freezing phenomena;
in that context, the boundary condition (3) is appropriate
(here p would need to be interpreted as temperature) as it
describes the Gibbs-Thomson condition that relates melting
or freezing temperature to the curvature of the solid-melt
interface [30–34].

A further theoretical motivation for our work is to study the
effect that the extra component of curvature has on the flow
when we move from two dimensions to an axially symmetric
geometry. As an example, we note that while Hele-Shaw bub-
bles can undergo pinch-off [22,23], this change in topology
does not involve the same singularities in curvature as it does
for three-dimensional flows (in two dimensions, the curvature
of the interface does not blow up in the limit that pinch-off
is approached); as such, a number of fundamental features
of our examples will not be simple extensions of the Hele-
Shaw cases. From a mathematical perspective, these issues
are reminiscent of the differences between curve shortening
flow and mean curvature flow in differential geometry [35,36].
Given that Hele-Shaw flow may be interpreted as a nonlocal
version of curve shortening flow in the plane [21,37,38], a
final reason to use (3) is that our three-dimensional moving

(a) (b)

(c)
(d)

FIG. 1. Illustration of the four geometries considered in this
article. The blue represents the region filled with a viscous fluid and
the white region denotes an inviscid bubble. (a) Radial geometry,
with the bubble contracting due to either the inviscid fluid extracted
at a point or the viscous fluid injected at r = ∞. (b) Cylindrical tube,
with the interface propagating from left to right due to the inviscid
fluid being injected at z = −∞. (c) Cylindrical tube, with a finite
bubble translating in the +z direction due to the viscous fluid being
extracted at z = ∞. (d) Radial geometry, with the bubble expanding
due to either the inviscid fluid injected at a point or the viscous fluid
extracted at r = ∞.

boundary problem can be considered a nonlocal version of
the mean curvature flow. Again, in this context we are inter-
ested in studying the effect of surface tension in (3) on the
development of axially symmetric curvature singularities.

We begin in Sec. II by summarizing our model and ex-
plaining the connection to Stefan problems. The four flow
geometries we consider are illustrated in Fig. 1. In Sec. III we
treat the first of these geometries, which involves a contracting
bubble surrounded by an infinite body of fluid, as shown
in Fig. 1(a). This radial configuration is used extensively in
the Hele-Shaw literature. Our numerical scheme, based on
the level set method, is summarized for this radial geometry.
The contracting bubble can eventually break up into two
if the initial condition is sufficiently nonconvex. Following
the methodology of Eggers et al. [15] normally associated
with slender-body theory, we derive a similarity solution to
describe the near pinch-off behavior, predicting a similarity
exponent α = 1/3. Our numerical solutions at times just be-
fore and after pinch-off follow the same similarity scaling and
match well with the actual similarity solution in the former
case. In Sec. IV we treat the second and third geometries in
Fig. 1. These involve flow in a cylindrical channel, a setup
that is deliberately chosen as a higher-dimensional analog of
flow in a Hele-Shaw channel. We apply our (suitably adapted)
numerical scheme and explore sufficiently nonconvex initial
conditions that give rise to pinch-off singularities and convex
initial conditions that evolve smoothly to traveling-wave so-
lutions. Such traveling-wave solutions are axially symmetric
analogs of the two-dimensional Saffman-Taylor fingers and
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Taylor-Saffman bubbles and thus our time-dependent study
complements that of Levine and Tu [13] (see also the work
of Brener [10]), which was for steadily moving (axially sym-
metric) Saffman-Taylor fingers only. Finally, our results are
summarized and discussed in Sec. V, where we briefly touch
on the case of an expanding bubble [9,12] [see Fig. 1(d)],
which, provided a single finger is orientated along the axis
of symmetry, can also lead to the same type of pinch-off as in
the other geometries just mentioned.

II. MODEL FORMULATION

A. Flow through a homogeneous porous medium

Our main physical motivation is to model the withdrawal
of a bubble of inviscid fluid from a homogeneous porous
medium that is otherwise saturated with viscous fluid. By
assuming that the viscous fluid is incompressible, ∇ · q = 0,
then from (1) we have Laplace’s equation ∇2 p = 0 in the flow
domain. We scale space, time, the Darcy velocity, the velocity
of the viscous fluid, and pressure with

x = Lx̂, t = L3ϕ

Q
t̂, q = Q

L2
q̂,

v = Q

ϕL2
v̂, p = pB − μQ

KL
φ, (4)

where φ is the velocity potential satisfying q = ∇φ, L is a
representative length scale (related to the initial bubble shape
or, for a more general configuration, the geometry of the flow),
and Q is the flow rate at which the inviscid fluid is injected
or withdrawn. Retaining our original variable names, the
resulting one-phase model for a bubble in a porous medium is

∇2φ = 0 in R3\�, (5a)

vn = ∂φ

∂n
on ∂�, (5b)

φ = σκ on ∂�, (5c)

∂φ

∂r
∼ ± 1

r2
as r → ∞, (5d)

where σ = γ K/μQ is the nondimensional surface tension
parameter and the positive and negative signs in (5d) corre-
spond to the injection and withdrawal of the inviscid bubble,
respectively. The boundary conditions on the bubble boundary
∂�(t ) (5b) and (5c) are often referred to as kinematic and dy-
namic conditions, respectively. The kinematic condition (5b)
simply states that the normal velocity of the boundary is
the normal velocity of the fluid. The dynamic condition (5c)
relates the pressure to the surface tension σ via the mean
curvature κ . This equation, the dimensionless version of (3), is
discussed in the Introduction. From a geometric perspective,
the surface tension acts to smooth out regions of high curva-
ture on the interface. For the above mathematical model to
make sense in the context of contracting bubbles, the inviscid
fluid must be extracted from the point to which the interface
ultimately evolves (or from multiple points in the case in
which the initial bubble breaks up into two or more satellite
bubbles).

For the special case of zero surface tension σ = 0, there
have been a number of studies on contracting bubbles,
focusing on the shape of the interface in the limit that it con-
tracts to a point [39–42], or whether the bubble breaks up into
two [42] [in two dimensions (see [22,23,43,44])]. However,
there has been relatively little theoretical study concerned with
solutions to (5a)–(5d) that undergo changes in topology when
the effects of surface tension are included. For expanding bub-
bles, with the positive sign in (5d), or for the problem involv-
ing displacement of viscous fluid in a cylindrical tube, details
of linear, weakly nonlinear, and traveling-wave analysis has
been performed [9,12,13]. However, for these geometries, no
fully nonlinear time-dependent solutions to (5a)–(5d) (with
appropriate changes due to relevant configuration) have been
previously reported.

B. Application to Stefan problems

The other physical motivation for (5a)–(5d) is to model the
melting and freezing of a crystal dendrite, where now ∂� rep-
resents a solid-melt interface. Typically, melting and freezing
problems are modeled mathematically as a Stefan problem,
where φ represents temperature, and the field equation is the
linear heat equation

1

β

∂φ

∂t
= ∇2φ in R3\�(t ), (6)

where β is the Stefan number, which is the ratio of latent
heat to specific heat. In the regime for which the latent heat is
significantly larger than the specific heat, it follows that β � 1
so that (6) reduces to (5a) [45]. In this context, the far-field
condition (5d) represents the heat flux being prescribed at
infinity. Another, perhaps more suitable, boundary condition
in the context of Stefan problems is that the temperature in
the far field is prescribed, leading to [42]

φ ∼ φ∞ as r → ∞. (7)

As we demonstrate a number of times throughout the paper,
the dynamics of the interface near pinch-off are dependent
only upon (5a)–(5c), and therefore independent of the choice
of far-field boundary condition.

Pinch-off of crystals undergoing phase change is relevant,
for example, for experiments conducted by Ishiguro et al. [46].
In this experiment, 3He crystals were grown in a 4He bath, and
the authors argue the effects of gravity and surface tension
cause the 3He crystal to pinch off, as illustrated in Fig. 2. It
was shown that the neck of the crystal both moves towards and
recoils from pinch-off with a similarity exponent of α = 1/3.
We return to this point in Sec. V.

III. CONTRACTING BUBBLE GEOMETRY

A. Numerical scheme

In this section we are concerned with the behavior of a con-
tracting bubble that undergoes pinch-off. Restricting ourselves
to axially symmetric geometries in spherical coordinates such
that φ = φ(r, θ, t ) and with the bubble interface ∂� defined
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FIG. 2. Time evolution of a dripping 3He crystal surrounded
by liquid 4He (from [46], reproduced with permission from the
American Physical Society). The 3He crystal is grown in the 4He
bath, and when it becomes sufficiently large, it is dragged down
due to gravity and undergoes pinch-off. The width of each frame
is 3.5 mm. Analysis of the video footage both just before and after
pinch-off occurs indicates a scaling exponent of 1/3.

by r = s(θ, t ), our model (5a)–(5d) is

1

r2

∂

∂r

(
r2 ∂φ

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂φ

∂θ

)
= 0 in r > s,

(8a)

st = φr − 1

s2
φθ sθ on r = s, (8b)

φ = σ
3ss2

θ − cot θs3
θ − s2(sθθ + sθ cot θ ) + 2s3

s
(
s2 + s2

θ

)3/2 on r = s,

(8c)

∂φ

∂r
∼ − 1

r2
as r → ∞. (8d)

The simulation of interfaces undergoing a topological
change can be a computationally demanding task. For ir-
rotational, inviscid flow, perhaps the most popular choice
of numerical scheme is the boundary integral method
(BIM) [47–50]. While the BIM has been shown to produce ac-
curate simulations of interfaces approaching pinch-off, it can
only be used for problems where the Green’s functions can
be computed. Furthermore, on its own the BIM cannot easily
handle changes in topology. Success has been achieved using
front capturing methods, which are generally not as accurate
but have greater flexibility [51–53]. The numerical scheme
we use in this article implements the level set method [54], a
numerical framework that describes the evolution of moving
interfaces by representing them as the zero level set of a
higher-dimensional hypersurface. Our scheme was presented
in [42] and used to study solutions to (5a)–(5c) and (7) that
undergo pinch-off for the special case of zero surface tension
σ = 0. In that study it was shown that our numerical scheme
is capable of accurately describing the behavior of interfaces
that contract to either one or multiple points. In this section
we give a brief description of the scheme and refer the reader
to [42] for further details.

To implement the level set method, we construct a signed
distance function ψ (x, t ), where ψ < 0 in the bubble region
and ψ > 0 in the viscous fluid region. If our bubble interface
has a normal speed Vn, then we wish to construct a continuous
function F which satisfies F = Vn on the interface. Thus ψ ,
and in turn the interface, evolves according to

ψt + F |∇ψ | = 0. (9)

In the context of (5a)–(5d),

F = ∇φ · ∇ψ

|∇ψ | , x ∈ R3\�. (10)

The spatial derivatives in (9) are approximated using a second-
order essentially nonoscillatory scheme and integrated in time
using the third-order Runge-Kutta method. To ensure the
numerical solution accurately captures the dynamics of the
interface both as it approaches and as it recoils from pinch-off,
we choose a time-step size t = 0.05 × x/max |F |. Simu-
lations are performed on the computational domain 0 � r �
1.5 and 0 � θ � π using 300 × 630 equally spaced nodes.

We solve for φ using a similar procedure as described
in [55]. For nodes away from the interface, the deriva-
tives in (8a) are evaluated using a standard five-point finite-
difference stencil. For nodes adjacent to the interface, the
stencil is adjusted by imposing a ghost node on the interface
whose location is determined by computing points where
ψ = 0. The value of this ghost node comes from the dynamic
boundary condition (8c), where the curvature term is com-
puted using κ = ∇ · (∇ψ/|∇ψ |). We incorporate the far-field
boundary condition (8d) into the stencil by implementing
a Dirichlet-to-Neumann mapping [56]. While solving for p
allows us to compute F where x ∈ R3\�, to solve (9) we
require an expression for F over the entire computational
domain. It was proposed in [57] that F can be extended into
x ∈ � by solving the biharmonic equation

∇4F = 0, x ∈ �(t ). (11)

Computing the solution to (11) does not require the location of
the interface explicitly. Instead the computational nodes that
need to be included in the biharmonic stencil correspond to
those where ψ < 0. By solving (11), this approach provides
a continuous expression for F over the entire domain while
maintaining Vn = F on the interface. We refer the reader
to [57] for more details.

We now provide a simple test on our numerical scheme.
As we show in the Appendix, the far-field boundary condi-
tion (8d) results in the rate of change of volume of a bubble
evolving according to (8a)–(8d) to be −4π , independently of
σ . Once a change in topology has occurred, the total rate of
change of volume of all bubbles will remain −4π . To confirm
this is consistent with our numerical solution, we consider
the contraction rate of both a symmetric and an asymmetric
bubble, shown in Fig. 3, both of which undergo pinch-off.
Figure 4 shows the rate of decrease of volume V̇ , of both
satellite bubbles, the exact rate of decrease of volume, and
the rate of decrease of the satellite bubbles which form post
pinch-off. For the symmetric bubble, Fig. 4(a) indicates that
the total rate of change of volume of the numerical solution
compares well with the expected rate. Furthermore, the rates
of decrease of the satellite bubbles are both V̇ = −2π , as
expected. For the asymmetric bubble, Fig. 4(b) shows that
the total volume decreases at the expected (constant) rate both
before and after pinch-off occurs.

We note that our model assumes that the pressure of
each bubble remains equalized between the two disconnected
interfaces. In turn, this can lead to counterintuitive volume
changes. For example, if the inviscid bubble is neither injected
or withdrawn (Q = 0) such that V̇ = 0 and if the bubble
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(a)

(b)

FIG. 3. Numerical solution of (8a)–(8d) found using the numer-
ical scheme described in Sec. III A with (a) a symmetric and (b) an
asymmetric dumbbell as the initial shape of the interface. For the
symmetric dumbbell, the bubble contracts and pinches off into two
satellite bubbles of equal volume that contract to a point at the same
time. For the asymmetric dumbbell, when the neck of the bubble
pinches off, two satellite bubbles of difference size form. The smaller
of these two bubbles contracts to a point first, followed by the
second. Simulations are performed on the domain 0 � θ � π and
0 � r � 1.5 with 628 × 300 equally spaced nodes.

pinches off into two satellite bubbles of unequal volume,
as shown in Fig. 3(b), for example, then it is expected that
the smaller bubble will contract to a point. In turn, this
would result in the larger bubble expanding. However, as our
primary motivation is to investigate the behavior of solutions
to (5a)–(5d) both approaching and recoiling from a pinch-off
singularity, we expect that our model is still reasonable.

B. Pinch-off for a contracting bubble

1. Similarity exponents

We wish to study solutions like those presented in Fig. 3
in the neighborhood of the point at which pinch-off occurs,
z = z0. If we set the time at which pinch-off occurs to be t =
t0, then we are particularly interested in the solution behavior
in the limit t → t−

0 . It proves useful to use cylindrical polar
coordinates so that φ = φ(ρ, z, t ) and the interface ∂�(t )

0.03 0.035 0.04 0.045

-16

-12

-8

-4

0
(a)

(b)

Satellite bubbles

Total Pinch-off

0.03 0.035 0.04 0.045

-16

-12

-8

-4

0

Right bubble
Left bubble

TotalPinch-off

FIG. 4. Rate of change of volume V̇ (t ) of the numerical solution
to (8a)–(8d), shown in Fig. 3 with (a) a symmetric and (b) an
asymmetric dumbbell. The solid lines denote the rate of change of
volume of the numerical solution and the dotted (black) line denotes
the exact rate of change V̇ = −4π . The dots denote the points in time
when pinch-off occurs.

is denoted by ρ = h(z, t ). In these coordinates, (5a)–(5c)
become

∂2φ

∂ρ2
+ 1

ρ

∂φ

∂ρ
+ ∂2φ

∂z2
= 0 in ρ > h(z, t ), (12a)

∂h

∂t
+ ∂φ

∂z

∂h

∂z
= ∂φ

∂ρ
on ρ = h(z, t ), (12b)

φ = σ

(
1

h
√

1 + h2
z

− hzz(
1 + h2

z

)3/2

)
on ρ = h(z, t ).

(12c)

We seek similarity solutions to (12a)–(12c) of the form

φ(ρ, z, t ) = (t0 − t )γ �(ξ, ζ ), h(z, t ) = (t0 − t )α f (ζ ),

(13)

ξ = ρ

(t0 − t )α
, ζ = z − z0

(t0 − t )β
. (14)
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In these similarity variables, the moving boundary ρ = h(z, t )
is described by ξ = f (ζ ). By balancing the time dependence
on each side of (12a)–(12c), these equations become

∂2�

∂ξ 2
+ 1

ξ

∂�

∂ξ
+ ∂2�

∂ζ 2
= 0 in ξ > f (ζ ), (15a)

−1

3
f + 1

3
ζ

df

dζ
+ ∂�

∂ζ

df

dζ
= ∂�

∂ξ
on ξ = f (ζ ), (15b)

� = σ

(
1

f
√

1 + f ′2 − f ′′

(1 + f ′2)3/2

)
on ξ = f (ζ ), (15c)

provided

α = 1/3, β = 1/3, γ = −1/3. (16)

To formulate far-field conditions for f (ζ ), we require that
∂h/∂t is finite away from z = z0, which implies that − f /3 +
ζ f ′/3 → 0 as ζ → ±∞ or, alternatively,

f ′ → f /ζ , ζ → ±∞. (17)

By rescaling � by a further σ 2/3 and f , ξ , and ζ by σ 1/3,
the surface tension parameter σ can be completely eliminated
from (15a)–(15c), suggesting that the pinch-off behavior is
universal and independent of all parameters. In terms of our
dimensional quantities, the resulting similarity transforma-
tions would become

p − pB = −
(

μϕγ 2

K

)1/3

(t0 − t )−1/3�,

(ρ, z − z0, h) =
(

γ K

μϕ

)1/3

(ξ, ζ , f ). (18)

We do not attempt to solve (15) and (17), but instead proceed
to derive a more tractable system for the similarity solution
below. For now it is worth emphasizing that we are able
to derive the similarity exponents (16) without any further
analysis, which implies that (13) is a similarity solution of
the first kind. Further, it is interesting to note the scaling
exponent α = 1/3 was observed experimentally in [46] when
3He crystals pinched off; we discuss this issue further in
Sec. V.

2. Similarity solution via an integral equation

In the following our approach is similar to that performed
by Eggers and co-workers [15,17] who study the breakup of
a bubble immersed in a fluid of low viscosity. In cylindrical
polar coordinates, a solution to Laplace’s equation (12a) can
be represented as the integral

φ(ρ, z, t ) =
∫ z0+L

z0−L

C(ẑ, t )√
(ẑ − z)2 + ρ2

dẑ, (19)

where the bubble has a length of 2L(t ) and C(z, t ) is an
unknown function to be determined. The kinematic boundary
condition (12b) becomes

∂h

∂t
− ∂h

∂z

∫ z0+L

z0−L

(z − ẑ)C(z′, t )

[(ẑ − z)2 + h(z, t )2]3/2
dẑ

= −h
∫ z0+L

z0−L

C(ẑ, t )

[(ẑ − z)2 + h(z, t )2]3/2
dẑ, (20)

while the dynamic boundary condition (12c) becomes∫ z0+L

z0−L

C(ẑ, t )√
(ẑ − z)2 + h(z, t )2

dẑ

= 1

h
√

1 + h2
z

− hzz(
1 + h2

z

)3/2 . (21)

Equations (20) and (21), which form a closed form system
for h(z, t ) and C(z, t ), are an analog of the system derived
in [15,17] for a bubble in a inviscid fluid.

As in Sec. III B 1, we write h out as a similarity solution
as in (13) and (14), where again t = t0 is the pinch-off time.
We also write out C(z, t ) = (t0 − t )γ D(ζ ). By balancing ex-
ponents, we find that, provided α, β, and γ are given by (16),
then (20) and (21) become

1

3
(− f + ζ f ′) =

∫ ∞

−∞

[ f ′(ζ )(ζ − ζ̂ ) − f (ζ )]D(ζ̂ )

[(ζ̂ − ζ )2 + f (ζ )2]3/2
d ζ̂ , (22)∫ ∞

−∞

D(ζ̂ )√
(ζ̂ − ζ )2 + f (ζ )2

d ζ̂ = 1

f
√

1 + f ′2 − f ′′

(1 + f ′2)3/2
.

(23)

Note that for this similarity solution we have taken the limit
L/(t0 − t )1/3 → ∞. We solve (22) and (23) numerically for f
and D, as described below.

Before comparing the similarity solution from (22)
and (23) with our numerical solutions to the full moving
boundary problem, we proceed to make an approximation. We
assume that the main contribution to the integral in (22) is
local around ζ̂ = ζ and expand the integrand about this point.
To leading order we find

1

3
(− f + ζ f ′) = −D

f

∫ ∞

−∞

d η̂

(1 + η̂2)3/2
, (24)

which suggests D ≈ f ( f − ζ f ′)/6. As a result, we have
from (23) a single equation for f (ζ ):

1

6

∫ ∞

−∞

f (ζ̂ )[ f (ζ̂ ) − ζ̂ f ′(ζ̂ )]√
(ζ̂ − ζ )2 + f (ζ )2

d ζ̂ = 1

f
√

1 + f ′2 − f ′′

(1 + f ′2)3/2
.

(25)

In contrast to the problem of bubble pinch-off in an inviscid
fluid, the lengths ρ = h and z in our Darcy flow problem scale
the same way (both with the exponent 1/3), so this type of
analysis is not exact in the limit t → t−

0 . However, as we now
show, solutions to (25) with (17) still provide a very good
approximation to the pinch-off profile, which is interesting.

We compare the numerical solution of (22) and (23) with
the numerical solution to (25), shown in Fig. 5. Solutions are
computed on the truncated domain −40 � ξ � 40, which is
discretized into equally spaced grid points with ξ = 0.1.
The derivatives and integrals are approximated using cen-
tral differences and the trapezoidal rule, respectively. This
approach leads to a nonlinear system of algebraic equations
which is solved using the Newton-Raphson method. We find
that the gradient of f from the solution to (22) and (23)
is slightly steeper than the solution to (25) in the far field.
However, around the pinch-region where ξ = 0, the two so-
lutions are indistinguishable (at this scale). This comparison
suggests that the solution to (25) works effectively as well
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FIG. 5. Comparison of numerical solution to (22) and (23) (solid
blue line) with the numerical solution to (25) (dashed red line).

as the solution to (22) and (23) for describing the behavior
of bubbles approaching a pinch-off event. This observation is
interesting since the spatial rescaling in the ρ and z directions
is the same, suggesting that the neck is not slender except very
close to point at which ∂h/∂z = 0.

The far-field boundary condition (17) implies the linear
behavior f ∼ ±Aξ as ξ → ±∞ for some unknown A such
that the free surface takes the shape of a double cone at the
point of pinch-off. We approximate A from the numerical
solution to (22) and (23) to be A ≈ 0.97, which gives a
cone angle of θ ≈ 44◦. In comparison, the numerical solution
to (25) gives A ≈ 0.94 resulting in a slightly smaller angle
of θ = 43◦. We note that this cone angle is larger than the
value determined experimentally by Ishiguro et al. [46], who
approximated this angle from a video frame of the experiment
just after pinch-off had occurred and found θ ≈ 35◦.

3. Numerical solution to full moving boundary problem

We now present numerical solutions to the full moving
boundary problem (5a)–(5d), produced by our numerical
scheme described in Sec. III A. We begin by checking whether
the similarity exponent of α = 1/3 is consistent with the full
solution. To do so, we solve (8a)–(8d) for the case in which
the interface is initially an asymmetric dumbbell (see Fig. 3)
for different values of the surface tension parameter σ . While
increasing σ decreases the time t0 at which pinch-off occurs,
the similarity exponent α is independent of the parameters of
the model. Figure 6(a) compares the minimum neck radius of
each of these solutions as a function of the time to pinch-off
t0 − t , where σ = 1 (blue line), 0.5 (red line), and 0.1 (yellow
line), while Fig. 6(b) shows the corresponding log-log plot.
By taking a line of best fit (dashed black lines) for each value
of σ , we compute α = 0.33 to two decimal places, which is in
good agreement with the theoretical result α = 1/3 derived in
Sec. III B 1.

We also compare the interfacial profiles of the numerical
solution to (8a)–(8d) with the similarity solution (22) and (23).
Figure 7 shows the evolution of the solution to (8a)–(8d)
for both symmetric and asymmetric initial conditions (see
Fig. 3) up to t = t0. The insets compare the numerical solu-
tion of (8a)–(8d) scaled according to (13) and (14) with the

0 0.2 0.4 0.6 0.8 1

10-3

0

0.01
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0.03

0.04

0.05

-12 -10 -8 -6 -4
-4

-3.5

-3

-2.5

-2

(a)

(b)

FIG. 6. (a) Minimum neck radius computed from the numerical
solution to (8a)–(8d) as a function of time to pinch off with, from
left to right, σ = 1 (blue line), 0.5 (red line), and 0.1 (yellow line).
(b) Corresponding log-log plot, where dashed curves are lines of best
fit, demonstrating that our numerical scheme supports the assertion
that the similarity exponent α = 1/3.

numerical solution to (22) and (23). For both the symmetric
and asymmetric initial conditions, around the pinch region
we observe good agreement between the similarity solution
and the full numerical solution. Away from the pinch region
where |ξ | is large, there is noticeable deviation between
the numerical solution to (8a)–(8d) and the solution to (22)
and (23), at least for the asymmetric case. As (22) and (23)
were derived in the limit that pinch-off is approached, these
deviations are to be expected.

C. Recoil

In Sec. III B we investigated the behavior of the bubble
whose boundary’s velocity blows up as it approaches pinch-
off due to the unbounded increase in interfacial curvature.
Once pinch-off has occurred, the two newly formed satellite
bubbles will rapidly recoil due to the large local curvature
at each of the tips. While many studies concerned with
the pinch-off of viscous or inviscid fluids have focused on
the behavior of the interface approaching pinch-off, fewer
studies consider the behavior of post breakup [58–60]. As a
starting point, we expect the argument in Sec. III B 1 to still
hold post breakup, leading to the same similarity exponents,
namely, α = 1/3 and β = 1/3, as was computed from the
pre-pinch-off solution.

To confirm that our numerical solution produces the scaling
exponent of β = 1/3, we consider the evolution of an asym-
metric dumbbell bubble (see Fig. 3) for t > t0. After pinch-off,
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FIG. 7. Time evolution of the numerical solution to (5a)–(5d) up
to when pinch-off occurs for (a) a symmetric and (b) an asymmetric
initial condition. The dots (in red) denote the locations of the mini-
mum neck radius. The insets compare the interfacial profile rescaled
according to (13) and (14) with α = β = 1/3 (solid blue line) with
the numerical solution to (22) and (23) (dashed red line).

we compute the distance between the point where pinch-off
occurs and the tip of the two retracting satellite bubbles as a
function of the time. Figure 8(a) shows the evolution of this
distance for both the left and right satellite bubbles, while
Fig. 8(b) is the corresponding plot on a log-log scale. By
taking a line of best fit, we find an approximation of the
similarity exponent to be β = 0.33 to two decimal plates
for both bubbles, which is consistent with the theoretical
prediction. We repeat this procedure for a range of values of
σ (not shown) and, as was found in Sec. III B 3, our numerical
results are in good agreement with the theoretical prediction
of β = 1/3.

Just after pinch-off, we expect the interface to also act in
a self-similar fashion. In this case, however, the represen-
tation (19) is unlikely to be valid [17] and the approxima-
tion (24) no longer true, as f ′(ξ ) → ∞ where the interface
intersects the ξ axis. Due to this difficulty, we do not solve the
similarity problem here. While we do not provide a numerical
solution of the asymptotic equations post breakup, we perform
a numerical test to confirm that solutions to (8a)–(8d) are
self-similar in the limit. We redefine our self-similar solution
after pinch-off to be

h = (t − t0)1/3 f (ξ ), where ξ = z − z0

(t − t0)1/3
, (26)

0 0.5 1 1.5 2
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FIG. 8. (a) Distance between the point at which pinch-off occurs
and the tip of the right (blue line) and left (red line) satellite bubbles.
(b) Corresponding log-log plot, where the dashed black lines are
lines of best fit, providing evidence that our numerical solutions post
pinch-off scale like (26).

noting that now t > t0. In Fig. 9 we plot the numerical solution
to (8a)–(8d) scaled according to (26) for times where t − t0 �
1 for the symmetric [Fig. 9(a)] and asymmetric [Fig. 9(b)]
dumbbell initial conditions. For both cases, Fig. 9 suggests
that the interfaces do indeed converge to a self-similar profiles
around the pinch region.

IV. TRANSLATING BUBBLES IN A CYLINDRICAL TUBE

We now turn our attention to a situation in which an
inviscid bubble is translating from left to right in a cylindrical
tube of unit diameter, as illustrated in Figs. 1(b) and 1(c). In
Fig. 1(b) the viscous fluid fills the domain to the right of the
bubble interface, while in Fig. 1(c) the bubble is finite and
the surrounding viscous fluid extends infinitely far in both
directions. In cylindrical polar coordinates with the z axis
running down the center of the cylinder, velocity potential is
φ = φ(ρ, z, t ) and the interface is defined by ρ = h(z, t ). We
impose a no-flux boundary condition on the cylinder wall so
that ∂φ/∂ρ = 0 on ρ = 1/2. Further, our flow is driven by a
flux of fluid in the far field so that ∂φ/∂z ∼ 1 as z → ∞. It
is straightforward to adapt the numerical scheme presented in
Sec. III A to this geometry.

A. Development of a Saffman-Taylor-like finger

We consider here the geometry in Fig. 1(b) where the
inviscid fluid is displacing the viscous fluid. The Saffman-
Taylor instability causes a small perturbation of the interface
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FIG. 9. Numerical solution to (8a)–(8d) scaled according to (26)
for (a) a symmetric and (b) an asymmetric dumbbell initial condition.
These solutions illustrate how the full numerical solution post pinch-
off approaches a similarity solution for | f | � 1.

to grow and eventually a single long finger of inviscid fluid
will develop and propagate into the viscous fluid. To illustrate
this progression, we show in Fig. 10 a solution for which
the initial condition is a flat interface with a small sinusoidal
perturbation. The evolution to a long finger is clear.

FIG. 10. Evolution of a bubble in a cylindrical tube. The bubble
initially has a flat interface with a small sinusoidal perturbation. As
the interface grows, it becomes unstable and develops a long fin-
ger analogous to the two-dimensional Saffman-Taylor finger which
forms in Hele-Shaw cells. As time increases, both the speed and
shape of this tip tend towards a constant.

0 0.02 0.04 0.06 0.08
0.6

0.62

0.64

0.66

0.68

FIG. 11. Finger width λ as a function of the surface tension
parameter σ of an axially symmetric analog of the Saffman-Taylor
finger. The finger width is determined by evolving a near-flat inter-
face with a small sinusoidal perturbation until both the shape and
speed of the finger are constant.

This example is an axisymmetric analog of the well-studied
Hele-Shaw problem for which a Saffman-Taylor finger
develops in a rectangular channel [25]. As is well known
in that two-dimensional problem, both experimentally and in
time-dependent numerical simulations, a single finger devel-
ops whose width λ appears to be slightly more than half of the
channel diameter provided the capillary number is sufficiently
high [61,62]. Assuming a traveling-wave solution with a
finger moving at speed U , numerical studies show there is a
countably infinite number of possible finger widths λ for each
fixed value of the surface tension σ [24,63,64]. The lowest of
these finger widths has been shown to correspond to a stable
solution while the remaining solutions are unstable [65]. Each
family of solutions has the asymptotic behaviours λ → 1/2+
as σ → 0 and λ → 1− as σ → ∞ [66–69].

Returning to the axisymmetric version of this problem with
which we are concerned here, there are numerical results
for the traveling-wave problem by Levine and Tu [13], who
show that much of the behavior is qualitatively similar to
the Hele-Shaw case, with multiple solutions for fixed values
of the surface tension σ . However, a key difference is that
the solution branches do not all tend towards λ = 1/2 as σ

decreases, but instead solutions only exist down to a minimum
value of σ at which point pairs of branches merge together
(this type of merging of pairs of branches also occurs for
the Hele-Shaw wedge problem studied by Ben Amar and
Combescot [70–72]).

Our contribution here is to study the full time-dependent
axisymmetric problem. To gather data equivalent to that
provided in [13], we must compute the transient solution
for a sufficient amount of time such that the finger which
develops evolves at a constant shape and speed. Of course,
this approach only allows us to track the stable branch, as
the solution will not evolve to an unstable traveling-wave
solution.

We show in Fig. 11 the results of our calculations with
various values of the finger width λ plotted against surface
tension σ . The smallest value of finger width we observe
is λ ≈ 0.6, which is similar to the minimum value observed
by Levine and Tu [13]. Our time-dependent calculations for
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FIG. 12. Numerical simulation of an expanding bubble in a
cylindrical tube computed using the numerical scheme described in
Sec. III A. As the bubble expands, the neck of the interface is small
enough that the curvature in the cylindrical direction is sufficiently
large to pull the interface towards a pinch-off singularity.

smaller values of surface tension do not lead to single steadily
propagating fingers, but instead a type of axially symmetric
tip splitting occurs, where a dimple forms at the front of the
bubble and subsequently the bubble takes the shape of an
off-axis finger rotated around the z axis. We speculate that
this bubble shape would not be observed experimentally as
it is likely unstable to nonaxisymmetric perturbations.

B. Pinch-off of a Saffman-Taylor-like finger

The simulations discussed in Sec. IV A were initiated
with a small perturbation of flat interface. For very different
nonconvex initial conditions which involve a thin neck, the
bubble can undergo a pinch-off event which is similar to
that described in Sec. III B. One such example is provided in
Fig. 12, illustrating how the very large azimuthal curvature in
the neck region “pulls” the interface towards pinch-off even
though the volume is increasing. These singularities do not
develop in the classical two-dimensional Hele-Shaw problem
as there is no increasingly large component of curvature in that
case. As such, this behavior is another example of a difference
between the axially symmetric problem we consider here in
this paper and the Hele-Shaw version.

We now demonstrate that the pinch-off singularity that
occurs in this cylindrical geometry is the same as that pre-
sented in Sec. III B for a shrinking bubble. Following the same
methodology, we estimate α from the full numerical solution
by taking a line of best fit of the minimum neck radius hmin

as a function of the time to pinch-off t0 − t on a log-log
scale, as shown in Fig. 13(a). We find a value of α = 0.33
to two decimal places, which is again consistent with both the
similarity problem derived in Sec. III B 1 and the numerical
solution of the contracting bubble presented in Sec. III B 3.
Furthermore, the inset compares the full numerical solution
scaled according to (13) with the solution to (22) and (23). As
we observed in Fig. 7, around the pinch region where |ξ | is
small we find good agreement between the similarity solution
and the full numerical solution. Regarding the post-pinch-off
behavior, Fig. 13(b) shows a log-log plot of the distance
between the point where pinch-off occurs and the tip of the

(b)

(a)

FIG. 13. (a) A log-log plot of the minimum neck radius of the
bubble in cylindrical tube geometry, shown in Fig. 12. The dashed
curve is a line of best fit with gradient α. The inset shows a
comparison of the solution to (22) and (23) (dashed red line) with full
numerical solution scaled according to (13) (solid blue line). (b) A
log-log plot of the distance between the point where pinch-off occurs
and the receding tip of the bubble, compared with a line of slope
β = 1/3. The inset shows the numerical solution scaled according
to (13) for times when t − t0 � 1.

recoiling bubble as a function of time after pinch-off t − t0.
Again, we estimate a similarity exponent consistent with the
theoretical prediction.

C. Evolution of a Taylor-Saffman-like bubble

In Sec. IV B we discussed how an interface may break
up to produce a bubble of finite volume that transverses
through a cylindrical tube. When such a bubble propagates
along the channel and eventually settles into a steady motion
with constant shape and speed U , it can be thought of as an
axially symmetric version of a Taylor-Saffman bubble [26].
By choosing the initial condition of the bubble to be a
prolate spheroid with varying aspect ratios, we are able to
plot the steady-state speed U versus surface tension σ for
a fixed volume of these Taylor-Saffman-like bubbles, as in
Fig. 14. These plots show the same qualitative behavior as
the well-studied two-dimensional case [27,73]. Namely, for
small bubbles (� and �), the steady-state shape of the bubble
will tend to a sphere as σ increases, whose speed is dependent
upon the radius of this sphere. For larger bubbles whose
size is too large to allow a spherical shape in the channel
(� and �), their speed appears to be approaching unity
as σ increases, although it is not clear whether there is a
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FIG. 14. Speed of an axially symmetric Taylor-Saffman-like
bubble U propagating through a cylindrical tube as a function of the
surface tension parameter σ . The initial condition is a spheroid with
semiaxis given by ρ = 0.4 and z = 0.2 (� blue), 0.4 (� red), 0.8 (�
yellow), and 1 (� purple). The bubble is evolved until both its shape
and speed appear constant, at which time U is estimated.

maximum value of σ for which solutions on this branch exist.
A difference between our axially symmetric bubbles and the
two-dimensional Hele-Shaw problem is that in our case, each
solution branch approaches U = 3− in the limit σ → 0, while
in the two-dimensional case, the branches select U = 2− in
this limit.

As just mentioned, while small steady bubbles will tend to
spheres for large surface tension, the limiting shape of large
steady bubbles as surface tension is increased is less obvious.
We compare the numerical solution computed using different
values of the surface tension parameter (at a sufficiently large
time such that the bubble’s speed and shape are essentially
constant) in Fig. 15. For low surface tension [Fig. 15(a)], we
find that the bubble tends to a long thin shape. As surface
tension increases [Fig. 15(b)], we find that the sides of the
bubble are no longer parallel but instead the bubble’s trailing
end is wider. For large values of surface tension [Figs. 15(c)
and 15(d)], we find the length of the bubble decreases and
the width of the bubble is nearly as large as the radius of the
cylinder.

The shape of the bubble in Fig. 15(b) is similar to those
of Taylor bubbles in cylindrical tubes. This problem, where
a large bubble is moving steadily in a tube otherwise filled
with viscous fluid (in contrast to our problem, where the tube
is filled with a porous medium saturated with viscous fluid),
has an extensive history going back to Bretherton [74] and
Taylor [75] and is still attracting plenty of interest (see [76,77],
for example). Our brief study in this section suggests that it
is worth investigating further the links between our Taylor-
Saffman-like bubbles and the well-studied Taylor bubbles.

V. DISCUSSION

In this paper we conducted a numerical and theoretical
study investigating the behavior of solutions to a one-phase
Darcy model describing the evolution of a inviscid bubble
within a fully saturated homogeneous porous medium. The
model is a moving boundary problem which is an analog of
that for the one-phase Hele-Shaw problem, including a dy-
namic condition (3) with pressure across the interface related

FIG. 15. Numerical simulation of bubble traveling through cylin-
drical tube with (a) σ = 5 × 10−4, (b) σ = 3 × 10−3, (c) σ = 7 ×
10−3, and (d) σ = 1.5 × 10−2. The initial condition of these simula-
tions is a prolate spheroid of major and minor axes 1 and 0.4. The
solutions are shown at a time sufficiently large such that both the
speed and shape of the bubble are constant. The ẑ coordinate is z
scaled such that the bubble is centered at the origin.

to the curvature κ via the surface tension. This type of model is
analyzed and discussed in [3–14], for example. An important
difference between our axially symmetric model and the Hele-
Shaw version is that κ represents the mean curvature of the
surface while in the Hele-Shaw model it represents curvature
in the plane. This difference drives behavior not witnessed in
the Hele-Shaw problem, which is worth recording.

A key focus of our paper is to study how a bubble under-
goes a pinch-off singularity. In Sec. III A we summarized a
flexible numerical scheme based on the level set method that
is able to accurately solve (5a)–(5d) both before and after a
pinch-off singularity has developed. Using this scheme, we
have shown that the self-similar solution derived by applying
an integral equation (motivated by [15]) matches well with full
numerical solutions to (5a)–(5d). This was done for both con-
tracting bubbles in radial geometry (Sec. III) and translating
bubbles in cylindrical channel geometry (Sec. IV).

It is worth mentioning the problem of an expanding bubble
due to injecting an inviscid fluid at a point, as illustrated
by Fig. 1(d). This is a very-well-studied geometry in the
two-dimensional Hele-Shaw case, as it acts as a prototype
problem for viscous fingering and interfacial pattern forma-
tion [78–80]. In three dimensions, the interfacial dynamics are
more complicated due to the extra degree of freedom [9,12]
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FIG. 16. Numerical solution to (5a)–(5d) for an expanding bub-
ble with σ = 2.5 × 10−3. The interface of the bubble is unstable as it
expands and a type of axially symmetric viscous fingering develops.
When a single finger is aligned with the z axis, it can pinch off due
to the curvature acting in the cylindrical direction.

and the possibility of fingers pinching off the main bubble in
the same manner as we have been studying in this paper. We
illustrate this point via an example shown in Fig. 16. Here we
solve (5a)–(5d) with the positive sign in (5d) in order to sim-
ulate a bubble expanding. For the particular initial condition
used in Fig. 16, we see a finger propagate along the +z axis
which eventually breaks off the main bubble. While we have
not included the details here, the accompanying singularity in
curvature is of the same form, both before and after pinch-
off, as that considered in Secs. III and IV. Of course, this
example is partly contrived as it involves an axially symmetric
geometry that does not illustrate the full three-dimensional
nature of viscous fingering. It does however demonstrate how
singularities in curvature develop for expanding bubbles, a
feature which is not present in two dimensions.

While our main physical motivation has been to study
the evolution of a bubble in a porous medium, as noted in
Sec. II B, Eqs. (5a)–(5d) can also be interpreted as describing
the melting or freezing of a crystal dendrite. The pinch-off
of crystals has been experimentally studied in [46], where it
was shown that the neck of the crystal both approaches and
recoils from pinch-off with the scaling exponent α = 1/3. To
make analytical progress, the authors argued that the solid-
melt interface can be approximated via mean curvature flow
vn = −κ , which was shown to have a similarity exponent
of α = 1/2. The authors offered the explanation for this
discrepancy that the mean curvature flow is slow to converge
to self-similar behavior, and the experimental results were
not accurate enough to reflect this. It is interesting that our
model (5a)–(5d), which is the large Stefan number version
of (6) with (5b)–(5d), gives the same similarity scaling.

Apart from studying pinch-off singularities, our other
key focus has been on the time-dependent development of

axially symmetric analogs of Saffman-Taylor fingers and
Taylor-Saffman bubbles in a cylindrical channel, highlighting
the differences and similarities between the axially symmetric
and two-dimensional problems. One noteworthy property of
the finger problem is that families of steadily propagating
axially symmetric fingers merge for finite values of surface
tension in a similar manner to that observed in the Hele-Shaw
wedge problem [70]. Our numerical results indicate that the
speed of bubbles (of any volume) will tend towards 3− in the
limit that σ → 0, which differs from Taylor-Saffman bubbles
in a two-dimensional Hele-Shaw cell whose speed is known
to tend towards 2− [27,73,81–83]. More accurate calculations
of the data in Fig. 14 and shapes of steady-state axially
symmetric Taylor-Saffman-like bubbles could be obtained by
moving to the reference frame of the steadily moving bubbles
and applying a boundary integral method. The accompanying
selection problem for U = 3 would provide an interesting
challenge requiring techniques in exponential asymptotics,
especially given the lack of exact solution for the leading-
order problem.
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APPENDIX: PRESCRIBED RATE OF VOLUME DECREASE

We now show that the form of the far-field boundary
condition (5d) results in the rate of change of volume of a
bubble evolving according to (5a)–(5d) to be ±4π . The rate
of change of volume of a hypersurface whose boundary moves
with normal velocity vn is

dV

dt
=

∫
∂�

vndS, (A1)

which, using the kinematic boundary condition (5b), gives

dV

dt
=

∫
∂�

∇φ · n dS. (A2)

Supposing that the viscous fluid occupies the region x ∈
B\�(t ), where B is a sphere of radius R, then

0 =
∫

B\�
∇2φ dV =

∫
∂B

∇φ · n dS −
∫

∂�

∇φ · n dS, (A3)

which comes about via the divergence theorem. Setting
∇2φ = 0 and substituting (A2) into (A3) gives

dV

dt
=

∫
∂B

∇φ · n dS =
∫

∂B
± 1

r2
dS = ±4π. (A4)

We note that if a bubble were to undergo a change in topology,
the rate of change of the total volume will remain ±4π .
However, each individual bubble may not expand or contract
at a constant rate. We further investigate the evolution of
bubbles after pinch-off has occurred in Sec. III A.

[1] J. Bear, Dynamics of Fluids in Porous Media (Courier, Chelms-
ford, 2013).

[2] G. M. Homsy, Viscous fingering in porous media, Annu. Rev.
Fluid Mech. 19, 271 (1987).

053109-12

https://doi.org/10.1146/annurev.fl.19.010187.001415
https://doi.org/10.1146/annurev.fl.19.010187.001415
https://doi.org/10.1146/annurev.fl.19.010187.001415
https://doi.org/10.1146/annurev.fl.19.010187.001415


INTERFACIAL DYNAMICS AND PINCH-OFF … PHYSICAL REVIEW E 100, 053109 (2019)

[3] M. Cieplak and M. O. Robbins, Influence of contact angle on
quasistatic fluid invasion of porous media, Phys. Rev. B 41,
11508 (1990).

[4] N. Martys, M. Cieplak, and M. O. Robbins, Critical Phenomena
in Fluid Invasion of Porous Media, Phys. Rev. Lett. 66, 1058
(1991).

[5] R. Rangel and S. Rojas, Montecarlo DLA-type simulations
of wetting effects in fluid displacement in porous media,
Computat. Geosci. 13, 215 (2009).

[6] R. L. Chuoke, P. Van Meurs, and C. van der Poel, The instability
of slow, immiscible, viscous liquid-liquid displacements in
permeable media, Petrol. Trans. AIME 216, 188 (1959).

[7] D. M. Ambrose and M. Siegel, A non-stiff boundary inte-
gral method for 3D porous media flow with surface tension,
Math. Comput. Simul. 82, 968 (2012).

[8] D. M. Ambrose, M. Siegel, and S. Tlupova, A small-scale
decomposition for 3D boundary integral computations with
surface tension, J. Comput. Phys. 247, 168 (2013).

[9] R. Brandão, E. O. Dias, and J. A. Miranda, Immiscible three-
dimensional fingering in porous media: A weakly nonlinear
analysis, Phys. Rev. Fluids 3, 034002 (2018).

[10] E. Brener, Nonaxisymmetric patterns in the Saffman-Taylor
problem and in three-dimensional directional solidification at
low velocity, Phys. Rev. E 48, 4437 (1993).

[11] H. D. Ceniceros and H. Si, Computation of axisymmetric
suction flow through porous media in the presence of surface
tension, J. Comput. Phys. 165, 237 (2000).

[12] E. O. Dias, Viscous-fingering minimization in uniform
three-dimensional porous media, Phys. Rev. E 88, 063007
(2013).

[13] H. Levine and Y. Tu, Mean-field diffusion-limited aggrega-
tion and the Saffman-Taylor problem in three dimensions,
Phys. Rev. A 45, 1044 (1992).

[14] E. Vondenhoff and G. Prokert, Stability of self-similar ex-
tinction solutions for a 3D Darcy flow suction problem,
Eur. J. Appl. Math. 20, 343 (2009).

[15] J. Eggers, M. A. Fontelos, D. Leppinen, and J. H. Snoeijer,
Theory of the Collapsing Axisymmetric Cavity, Phys. Rev. Lett.
98, 094502 (2007).

[16] S. T. Thoroddsen, T. G. Etoh, and K. Takehara, Experiments on
bubble pinch-off, Phys. Fluids 19, 042101 (2007).

[17] M. A. Fontelos, J. H. Snoeijer, and J. Eggers, The spatial
structure of bubble pinch-off, SIAM J. Appl. Math. 71, 1696
(2011).

[18] J. Eggers, Nonlinear dynamics and breakup of free-surface
flows, Rev. Mod. Phys. 69, 865 (1997).

[19] J. Eggers and M. A. Fontelos, The role of self-similarity in
singularities of partial differential equations, Nonlinearity 22,
R1 (2008).

[20] J. Eggers and M. A. Fontelos, Singularities: Formation, Struc-
ture, and Propagation (Cambridge University Press, Cam-
bridge, 2015), Vol. 53.

[21] M. C. Dallaston and S. W. McCue, Bubble extinction in Hele-
Shaw flow with surface tension and kinetic undercooling regu-
larization, Nonlinearity 26, 1639 (2013).

[22] V. Entov and P. Etingof, On the breakup of air bubbles in a Hele-
Shaw cell, Eur. J. Appl. Math. 22, 125 (2011).

[23] S. Y. Lee, E. Bettelheim, and P. Wiegmann, Bubble break-off
in Hele-Shaw flows—Singularities and integrable structures,
Physica D 219, 22 (2006).

[24] J. W. McLean and P. G. Saffman, The effect of surface tension
on the shape of fingers in a Hele Shaw cell, J Fluid Mech. 102,
455 (1981).

[25] P. G. Saffman and G. I. Taylor, The penetration of a fluid into
a porous medium or Hele-Shaw cell containing a more viscous
liquid, Proc. R. Soc. London Ser. A 245, 312 (1958).

[26] G. Taylor and P. G. Saffman, A note on the motion of bubbles in
a Hele-Shaw cell and porous medium, Q. J. Mech. Appl. Math.
12, 265 (1959).

[27] S. Tanveer, The effect of surface tension on the shape of a Hele-
Shaw cell bubble, Phys. Fluids 29, 3537 (1986).

[28] L. Paterson, Radial fingering in a Hele Shaw cell, J. Fluid Mech.
113, 513 (1981).

[29] S. Li, J. S. Lowengrub, J. Fontana, and P. Palffy-Muhoray,
Control of Viscous Fingering Patterns in a Radial Hele-Shaw
Cell, Phys. Rev. Lett. 102, 174501 (2009).

[30] J. M. Back, S. W. McCue, M. H.-N. Hsieh, and T. J. Moroney,
The effect of surface tension and kinetic undercooling on a
radially-symmetric melting problem, Appl. Math. Comput. 229,
41 (2014).

[31] F. Font and T. Myers, Spherically symmetric nanoparticle melt-
ing with a variable phase change temperature, J. Nanopart. Res.
15, 2086 (2013).

[32] B. J. Florio and T. G. Myers, The melting and solidification of
nanowires, J. Nanopart. Res. 18, 168 (2016).

[33] S. W. McCue, B. Wu, and J. M. Hill, Micro/nanoparticle
melting with spherical symmetry and surface tension,
IMA J. Appl. Math. 74, 439 (2009).

[34] H. Ribera and T. Myers, A mathematical model for nanoparticle
melting with size-dependent latent heat and melt temperature,
Microfluid. Nanofluid. 20, 147 (2016).

[35] T. Colding, W. Minicozzi, and E. Pedersen, Mean curvature
flow, Bull. Am. Math. Soc. 52, 297 (2015).

[36] P. Topping, Mean curvature flow and geometric inequalities, J.
Reine. Angew. Math. 503, 47 (1998).

[37] X. Chen, The Hele-Shaw problem and area-preserving curve-
shortening motions, Arch. Ration. Mech. Anal. 123, 117 (1993).

[38] M. C. Dallaston and S. W. McCue, A curve shortening flow
rule for closed embedded plane curves with a prescribed rate
of change in enclosed area, Proc. Math. Phys. Eng. Sci. 472,
20150629 (2016).

[39] E. M. DiBenetto and A. Friedman, Bubble growth in porous
media, Indiana Univ. Math. J. 35, 573 (1986).

[40] S. D. Howison, Bubble growth in porous media and Hele-Shaw
cells, Proc. R. Soc. Edinb. A 102, 141 (1986).

[41] S. W. McCue, J. R. King, and D. S. Riley, Extinction behaviour
of contracting bubbles in porous media, Q. J. Mech. Appl. Math.
56, 455 (2003).

[42] L. C. Morrow, J. R. King, T. J. Moroney, and S. W. McCue,
Moving boundary problems for quasi-steady conduction limited
melting, SIAM J. Appl. Math. 79, 2107 (2019).

[43] V. M. Entov and P. I. Etingof, Bubble contraction in Hele-Shaw
cells, Q. J. Mech. Appl. Math. 44, 507 (1991).

[44] S. W. McCue and J. R. King, Contracting bubbles in Hele-Shaw
cells with a power-law fluid, Nonlinearity 24, 613 (2011).

[45] S. W. McCue, J. R. King, and D. S. Riley, The ex-
tinction problem for three-dimensional inward solidification,
J. Eng. Math. 52, 389 (2005).

[46] R. Ishiguro, F. Graner, E. Rolley, S. Balibar, and J. Eggers,
Dripping of a crystal, Phys. Rev. E 75, 041606 (2007).

053109-13

https://doi.org/10.1103/PhysRevB.41.11508
https://doi.org/10.1103/PhysRevB.41.11508
https://doi.org/10.1103/PhysRevB.41.11508
https://doi.org/10.1103/PhysRevB.41.11508
https://doi.org/10.1103/PhysRevLett.66.1058
https://doi.org/10.1103/PhysRevLett.66.1058
https://doi.org/10.1103/PhysRevLett.66.1058
https://doi.org/10.1103/PhysRevLett.66.1058
https://doi.org/10.1007/s10596-008-9110-1
https://doi.org/10.1007/s10596-008-9110-1
https://doi.org/10.1007/s10596-008-9110-1
https://doi.org/10.1007/s10596-008-9110-1
https://doi.org/10.1016/j.matcom.2010.05.018
https://doi.org/10.1016/j.matcom.2010.05.018
https://doi.org/10.1016/j.matcom.2010.05.018
https://doi.org/10.1016/j.matcom.2010.05.018
https://doi.org/10.1016/j.jcp.2013.03.045
https://doi.org/10.1016/j.jcp.2013.03.045
https://doi.org/10.1016/j.jcp.2013.03.045
https://doi.org/10.1016/j.jcp.2013.03.045
https://doi.org/10.1103/PhysRevFluids.3.034002
https://doi.org/10.1103/PhysRevFluids.3.034002
https://doi.org/10.1103/PhysRevFluids.3.034002
https://doi.org/10.1103/PhysRevFluids.3.034002
https://doi.org/10.1103/PhysRevE.48.4437
https://doi.org/10.1103/PhysRevE.48.4437
https://doi.org/10.1103/PhysRevE.48.4437
https://doi.org/10.1103/PhysRevE.48.4437
https://doi.org/10.1006/jcph.2000.6613
https://doi.org/10.1006/jcph.2000.6613
https://doi.org/10.1006/jcph.2000.6613
https://doi.org/10.1006/jcph.2000.6613
https://doi.org/10.1103/PhysRevE.88.063007
https://doi.org/10.1103/PhysRevE.88.063007
https://doi.org/10.1103/PhysRevE.88.063007
https://doi.org/10.1103/PhysRevE.88.063007
https://doi.org/10.1103/PhysRevA.45.1044
https://doi.org/10.1103/PhysRevA.45.1044
https://doi.org/10.1103/PhysRevA.45.1044
https://doi.org/10.1103/PhysRevA.45.1044
https://doi.org/10.1017/S0956792509007906
https://doi.org/10.1017/S0956792509007906
https://doi.org/10.1017/S0956792509007906
https://doi.org/10.1017/S0956792509007906
https://doi.org/10.1103/PhysRevLett.98.094502
https://doi.org/10.1103/PhysRevLett.98.094502
https://doi.org/10.1103/PhysRevLett.98.094502
https://doi.org/10.1103/PhysRevLett.98.094502
https://doi.org/10.1063/1.2710269
https://doi.org/10.1063/1.2710269
https://doi.org/10.1063/1.2710269
https://doi.org/10.1063/1.2710269
https://doi.org/10.1137/090776470
https://doi.org/10.1137/090776470
https://doi.org/10.1137/090776470
https://doi.org/10.1137/090776470
https://doi.org/10.1103/RevModPhys.69.865
https://doi.org/10.1103/RevModPhys.69.865
https://doi.org/10.1103/RevModPhys.69.865
https://doi.org/10.1103/RevModPhys.69.865
https://doi.org/10.1088/0951-7715/22/1/R01
https://doi.org/10.1088/0951-7715/22/1/R01
https://doi.org/10.1088/0951-7715/22/1/R01
https://doi.org/10.1088/0951-7715/22/1/R01
https://doi.org/10.1088/0951-7715/26/6/1639
https://doi.org/10.1088/0951-7715/26/6/1639
https://doi.org/10.1088/0951-7715/26/6/1639
https://doi.org/10.1088/0951-7715/26/6/1639
https://doi.org/10.1017/S095679251000032X
https://doi.org/10.1017/S095679251000032X
https://doi.org/10.1017/S095679251000032X
https://doi.org/10.1017/S095679251000032X
https://doi.org/10.1016/j.physd.2006.05.010
https://doi.org/10.1016/j.physd.2006.05.010
https://doi.org/10.1016/j.physd.2006.05.010
https://doi.org/10.1016/j.physd.2006.05.010
https://doi.org/10.1017/S0022112081002735
https://doi.org/10.1017/S0022112081002735
https://doi.org/10.1017/S0022112081002735
https://doi.org/10.1017/S0022112081002735
https://doi.org/10.1098/rspa.1958.0085
https://doi.org/10.1098/rspa.1958.0085
https://doi.org/10.1098/rspa.1958.0085
https://doi.org/10.1098/rspa.1958.0085
https://doi.org/10.1093/qjmam/12.3.265
https://doi.org/10.1093/qjmam/12.3.265
https://doi.org/10.1093/qjmam/12.3.265
https://doi.org/10.1093/qjmam/12.3.265
https://doi.org/10.1063/1.865831
https://doi.org/10.1063/1.865831
https://doi.org/10.1063/1.865831
https://doi.org/10.1063/1.865831
https://doi.org/10.1017/S0022112081003613
https://doi.org/10.1017/S0022112081003613
https://doi.org/10.1017/S0022112081003613
https://doi.org/10.1017/S0022112081003613
https://doi.org/10.1103/PhysRevLett.102.174501
https://doi.org/10.1103/PhysRevLett.102.174501
https://doi.org/10.1103/PhysRevLett.102.174501
https://doi.org/10.1103/PhysRevLett.102.174501
https://doi.org/10.1016/j.amc.2013.12.003
https://doi.org/10.1016/j.amc.2013.12.003
https://doi.org/10.1016/j.amc.2013.12.003
https://doi.org/10.1016/j.amc.2013.12.003
https://doi.org/10.1007/s11051-013-2086-3
https://doi.org/10.1007/s11051-013-2086-3
https://doi.org/10.1007/s11051-013-2086-3
https://doi.org/10.1007/s11051-013-2086-3
https://doi.org/10.1007/s11051-016-3469-z
https://doi.org/10.1007/s11051-016-3469-z
https://doi.org/10.1007/s11051-016-3469-z
https://doi.org/10.1007/s11051-016-3469-z
https://doi.org/10.1093/imamat/hxn038
https://doi.org/10.1093/imamat/hxn038
https://doi.org/10.1093/imamat/hxn038
https://doi.org/10.1093/imamat/hxn038
https://doi.org/10.1007/s10404-016-1810-6
https://doi.org/10.1007/s10404-016-1810-6
https://doi.org/10.1007/s10404-016-1810-6
https://doi.org/10.1007/s10404-016-1810-6
https://doi.org/10.1090/S0273-0979-2015-01468-0
https://doi.org/10.1090/S0273-0979-2015-01468-0
https://doi.org/10.1090/S0273-0979-2015-01468-0
https://doi.org/10.1090/S0273-0979-2015-01468-0
https://doi.org/10.1515/crll.1998.099
https://doi.org/10.1515/crll.1998.099
https://doi.org/10.1515/crll.1998.099
https://doi.org/10.1515/crll.1998.099
https://doi.org/10.1007/BF00695274
https://doi.org/10.1007/BF00695274
https://doi.org/10.1007/BF00695274
https://doi.org/10.1007/BF00695274
https://doi.org/10.1098/rspa.2015.0629
https://doi.org/10.1098/rspa.2015.0629
https://doi.org/10.1098/rspa.2015.0629
https://doi.org/10.1098/rspa.2015.0629
https://doi.org/10.1512/iumj.1986.35.35030
https://doi.org/10.1512/iumj.1986.35.35030
https://doi.org/10.1512/iumj.1986.35.35030
https://doi.org/10.1512/iumj.1986.35.35030
https://doi.org/10.1017/S0308210500014554
https://doi.org/10.1017/S0308210500014554
https://doi.org/10.1017/S0308210500014554
https://doi.org/10.1017/S0308210500014554
https://doi.org/10.1093/qjmam/56.3.455
https://doi.org/10.1093/qjmam/56.3.455
https://doi.org/10.1093/qjmam/56.3.455
https://doi.org/10.1093/qjmam/56.3.455
https://doi.org/10.1137/18M123445X
https://doi.org/10.1137/18M123445X
https://doi.org/10.1137/18M123445X
https://doi.org/10.1137/18M123445X
https://doi.org/10.1093/qjmam/44.4.507
https://doi.org/10.1093/qjmam/44.4.507
https://doi.org/10.1093/qjmam/44.4.507
https://doi.org/10.1093/qjmam/44.4.507
https://doi.org/10.1088/0951-7715/24/2/009
https://doi.org/10.1088/0951-7715/24/2/009
https://doi.org/10.1088/0951-7715/24/2/009
https://doi.org/10.1088/0951-7715/24/2/009
https://doi.org/10.1007/s10665-005-3501-2
https://doi.org/10.1007/s10665-005-3501-2
https://doi.org/10.1007/s10665-005-3501-2
https://doi.org/10.1007/s10665-005-3501-2
https://doi.org/10.1103/PhysRevE.75.041606
https://doi.org/10.1103/PhysRevE.75.041606
https://doi.org/10.1103/PhysRevE.75.041606
https://doi.org/10.1103/PhysRevE.75.041606


MORROW, DALLASTON, AND MCCUE PHYSICAL REVIEW E 100, 053109 (2019)

[47] J. C. Burton and P. Taborek, Two-dimensional inviscid
pinch-off: An example of self-similarity of the second kind,
Phys. Fluids 19, 102109 (2007).

[48] R. F. Day, E. J. Hinch, and J. R. Lister, Self-Similar Capillary
Pinchoff of an Inviscid Fluid, Phys. Rev. Lett. 80, 704 (1998).

[49] J. Eggers and E. Villermaux, Physics of liquid jets,
Rep. Prog. Phys. 71, 036601 (2008).

[50] D. Leppinen and J. R. Lister, Capillary pinch-off in inviscid
fluids, Phys. Fluids 15, 568 (2003).

[51] J. Dinic and V. Sharma, Computational analysis of self-similar
capillary-driven thinning and pinch-off dynamics during drip-
ping using the volume-of-fluid method, Phys. Fluids 31, 021211
(2019).

[52] M. Garzon, L. J. Gray, and J. A. Sethian, Numerical simula-
tion of non-viscous liquid pinch-off using a coupled level set-
boundary integral method, J. Comput. Phys. 228, 6079 (2009).

[53] M. Garzon, L. J. Gray, and J. A. Sethian, Simulation
of the droplet-to-bubble transition in a two-fluid system,
Phys. Rev. E 83, 046318 (2011).

[54] S. Osher and J. A. Sethian, Fronts propagating with curvature-
dependent speed: Algorithms based on Hamilton-Jacobi formu-
lations, J. Comput. Phys. 79, 12 (1988).

[55] S. Chen, B. Merriman, S. Osher, and P. Smereka, A simple level
set method for solving Stefan problems, J. Comput. Phys. 135,
8 (1997).

[56] D. Givoli, Numerical Methods for Problems in Infinite Domains
(Elsevier, Amsterdam, 2013), Vol. 33 .

[57] T. J. Moroney, D. R. Lusmore, S. W. McCue, and S. McElwain,
Extending fields in a level set method by solving a biharmonic
equation, J. Comput. Phys. 343, 170 (2017).

[58] J. Eggers, Post-breakup solutions of Navier-Stokes and Stokes
threads, Phys. Fluids 26, 072104 (2014).

[59] D. T. Papageorgiou, Analytical description of the breakup of
liquid jets, J. Fluid Mech. 301, 109 (1995).

[60] A. Sierou and J. R. Lister, Self-similar recoil of inviscid drops,
Phys. Fluids 16, 1379 (2004).

[61] A. J. DeGregoria and L. W. Schwartz, A boundary-integral
method for two-phase displacement in Hele-Shaw cells,
J. Fluid Mech. 164, 383 (1986).

[62] P. Tabeling, G. Zocchi, and A. Libchaber, An experimental
study of the Saffman-Taylor instability, J. Fluid Mech. 177, 67
(1987).

[63] J.-M. Vanden-Broeck, Fingers in a Hele-Shaw cell with surface
tension, Phys. Fluids 26, 2033 (1983).

[64] B. P. J. Gardiner, S. W. McCue, and T. J. Moroney, Dis-
crete families of Saffman-Taylor fingers with exotic shapes,
Results Phys. 5, 103 (2015).

[65] D. Bensimon, Stability of viscous fingering, Phys. Rev. A 33,
1302 (1986).

[66] S. J. Chapman, On the role of Stokes lines in the selec-
tion of Saffman-Taylor fingers with small surface tension,
Eur. J. Appl. Math. 10, 513 (1999).

[67] R. Combescot, T. Dombre, V. Hakim, Y. Pomeau, and A. Pumir,
Shape Selection of Saffman-Taylor Fingers, Phys. Rev. Lett. 56,
2036 (1986).

[68] D. C. Hong and J. S. Langer, Analytic Theory of the Selection
Mechanism in the Saffman-Taylor Problem, Phys. Rev. Lett. 56,
2032 (1986).

[69] S. Tanveer, Analytic theory for the selection of a symmetric
Saffman-Taylor finger in a Hele-Shaw cell, Phys. Fluids 30,
1589 (1987).

[70] M. Ben Amar, Viscous fingering in a wedge, Phys. Rev. A 44,
3673 (1991).

[71] R. Combescot and M. Ben Amar, Selection of Saffman-Taylor
Fingers in the Sector Geometry, Phys. Rev. Lett. 67, 453 (1991).

[72] R. Combescot, Saffman-Taylor fingers in the sector geometry,
Phys. Rev. A 45, 873 (1992).

[73] S. Tanveer, New solutions for steady bubbles in a Hele-Shaw
cell, Phys. Fluids 30, 651 (1987).

[74] F. P. Bretherton, The motion of long bubbles in tubes, J. Fluid
Mech. 10, 166 (1961).

[75] G. I. Taylor, Deposition of a viscous fluid on the wall of a tube,
J. Fluid Mech. 10, 161 (1961).

[76] G. Balestra, L. Zhu, and F. Gallaire, Viscous Taylor droplets
in axisymmetric and planar tubes: From Bretherton’s theory to
empirical models, Microfluid. Nanofluid. 22, 67 (2018).

[77] M. Magnini, S. Khodaparast, O. K. Matar, H. A. Stone, and J. R.
Thome, Dynamics of long gas bubbles rising in a vertical tube
in a cocurrent liquid flow, Phys. Rev. Fluids 4, 023601 (2019).

[78] E. Ben-Jacob and P. Garik, The formation of patterns in non-
equilibrium growth, Nature (London) 343, 523 (1990).

[79] D. A. Kessler, J. Koplik, and H. Levine, Pattern selection in
fingered growth phenomena, Adv. Phys. 37, 255 (1988).

[80] J. S. Langer, Instabilities and pattern formation in crystal
growth, Rev. Mod. Phys. 52, 1 (1980).

[81] C. C. Green, C. J. Lustri, and S. W. McCue, The effect of surface
tension on steadily translating bubbles in an unbounded Hele-
Shaw cell, Proc. R. Soc. A 473, 20170050 (2017).

[82] C. J. Lustri, C. C. Green, and S. W. McCue, Selection of a Hele-
Shaw bubble via exponential asymptotics, SIAM J. Appl. Math.
(to be published).

[83] S. Tanveer, Analytic theory for the determination of ve-
locity and stability of bubbles in a Hele-Shaw cell,
Theor. Comput Fluid Dyn. 1, 135 (1989).

053109-14

https://doi.org/10.1063/1.2800387
https://doi.org/10.1063/1.2800387
https://doi.org/10.1063/1.2800387
https://doi.org/10.1063/1.2800387
https://doi.org/10.1103/PhysRevLett.80.704
https://doi.org/10.1103/PhysRevLett.80.704
https://doi.org/10.1103/PhysRevLett.80.704
https://doi.org/10.1103/PhysRevLett.80.704
https://doi.org/10.1088/0034-4885/71/3/036601
https://doi.org/10.1088/0034-4885/71/3/036601
https://doi.org/10.1088/0034-4885/71/3/036601
https://doi.org/10.1088/0034-4885/71/3/036601
https://doi.org/10.1063/1.1537237
https://doi.org/10.1063/1.1537237
https://doi.org/10.1063/1.1537237
https://doi.org/10.1063/1.1537237
https://doi.org/10.1063/1.5061715
https://doi.org/10.1063/1.5061715
https://doi.org/10.1063/1.5061715
https://doi.org/10.1063/1.5061715
https://doi.org/10.1016/j.jcp.2009.04.048
https://doi.org/10.1016/j.jcp.2009.04.048
https://doi.org/10.1016/j.jcp.2009.04.048
https://doi.org/10.1016/j.jcp.2009.04.048
https://doi.org/10.1103/PhysRevE.83.046318
https://doi.org/10.1103/PhysRevE.83.046318
https://doi.org/10.1103/PhysRevE.83.046318
https://doi.org/10.1103/PhysRevE.83.046318
https://doi.org/10.1016/0021-9991(88)90002-2
https://doi.org/10.1016/0021-9991(88)90002-2
https://doi.org/10.1016/0021-9991(88)90002-2
https://doi.org/10.1016/0021-9991(88)90002-2
https://doi.org/10.1006/jcph.1997.5721
https://doi.org/10.1006/jcph.1997.5721
https://doi.org/10.1006/jcph.1997.5721
https://doi.org/10.1006/jcph.1997.5721
https://doi.org/10.1016/j.jcp.2017.04.049
https://doi.org/10.1016/j.jcp.2017.04.049
https://doi.org/10.1016/j.jcp.2017.04.049
https://doi.org/10.1016/j.jcp.2017.04.049
https://doi.org/10.1063/1.4890203
https://doi.org/10.1063/1.4890203
https://doi.org/10.1063/1.4890203
https://doi.org/10.1063/1.4890203
https://doi.org/10.1017/S002211209500382X
https://doi.org/10.1017/S002211209500382X
https://doi.org/10.1017/S002211209500382X
https://doi.org/10.1017/S002211209500382X
https://doi.org/10.1063/1.1689031
https://doi.org/10.1063/1.1689031
https://doi.org/10.1063/1.1689031
https://doi.org/10.1063/1.1689031
https://doi.org/10.1017/S0022112086002604
https://doi.org/10.1017/S0022112086002604
https://doi.org/10.1017/S0022112086002604
https://doi.org/10.1017/S0022112086002604
https://doi.org/10.1017/S0022112087000867
https://doi.org/10.1017/S0022112087000867
https://doi.org/10.1017/S0022112087000867
https://doi.org/10.1017/S0022112087000867
https://doi.org/10.1063/1.864406
https://doi.org/10.1063/1.864406
https://doi.org/10.1063/1.864406
https://doi.org/10.1063/1.864406
https://doi.org/10.1016/j.rinp.2015.04.002
https://doi.org/10.1016/j.rinp.2015.04.002
https://doi.org/10.1016/j.rinp.2015.04.002
https://doi.org/10.1016/j.rinp.2015.04.002
https://doi.org/10.1103/PhysRevA.33.1302
https://doi.org/10.1103/PhysRevA.33.1302
https://doi.org/10.1103/PhysRevA.33.1302
https://doi.org/10.1103/PhysRevA.33.1302
https://doi.org/10.1017/S0956792599003848
https://doi.org/10.1017/S0956792599003848
https://doi.org/10.1017/S0956792599003848
https://doi.org/10.1017/S0956792599003848
https://doi.org/10.1103/PhysRevLett.56.2036
https://doi.org/10.1103/PhysRevLett.56.2036
https://doi.org/10.1103/PhysRevLett.56.2036
https://doi.org/10.1103/PhysRevLett.56.2036
https://doi.org/10.1103/PhysRevLett.56.2032
https://doi.org/10.1103/PhysRevLett.56.2032
https://doi.org/10.1103/PhysRevLett.56.2032
https://doi.org/10.1103/PhysRevLett.56.2032
https://doi.org/10.1063/1.866225
https://doi.org/10.1063/1.866225
https://doi.org/10.1063/1.866225
https://doi.org/10.1063/1.866225
https://doi.org/10.1103/PhysRevA.44.3673
https://doi.org/10.1103/PhysRevA.44.3673
https://doi.org/10.1103/PhysRevA.44.3673
https://doi.org/10.1103/PhysRevA.44.3673
https://doi.org/10.1103/PhysRevLett.67.453
https://doi.org/10.1103/PhysRevLett.67.453
https://doi.org/10.1103/PhysRevLett.67.453
https://doi.org/10.1103/PhysRevLett.67.453
https://doi.org/10.1103/PhysRevA.45.873
https://doi.org/10.1103/PhysRevA.45.873
https://doi.org/10.1103/PhysRevA.45.873
https://doi.org/10.1103/PhysRevA.45.873
https://doi.org/10.1063/1.866369
https://doi.org/10.1063/1.866369
https://doi.org/10.1063/1.866369
https://doi.org/10.1063/1.866369
https://doi.org/10.1017/S0022112061000160
https://doi.org/10.1017/S0022112061000160
https://doi.org/10.1017/S0022112061000160
https://doi.org/10.1017/S0022112061000160
https://doi.org/10.1017/S0022112061000159
https://doi.org/10.1017/S0022112061000159
https://doi.org/10.1017/S0022112061000159
https://doi.org/10.1017/S0022112061000159
https://doi.org/10.1007/s10404-018-2084-y
https://doi.org/10.1007/s10404-018-2084-y
https://doi.org/10.1007/s10404-018-2084-y
https://doi.org/10.1007/s10404-018-2084-y
https://doi.org/10.1103/PhysRevFluids.4.023601
https://doi.org/10.1103/PhysRevFluids.4.023601
https://doi.org/10.1103/PhysRevFluids.4.023601
https://doi.org/10.1103/PhysRevFluids.4.023601
https://doi.org/10.1038/343523a0
https://doi.org/10.1038/343523a0
https://doi.org/10.1038/343523a0
https://doi.org/10.1038/343523a0
https://doi.org/10.1080/00018738800101379
https://doi.org/10.1080/00018738800101379
https://doi.org/10.1080/00018738800101379
https://doi.org/10.1080/00018738800101379
https://doi.org/10.1103/RevModPhys.52.1
https://doi.org/10.1103/RevModPhys.52.1
https://doi.org/10.1103/RevModPhys.52.1
https://doi.org/10.1103/RevModPhys.52.1
https://doi.org/10.1098/rspa.2017.0050
https://doi.org/10.1098/rspa.2017.0050
https://doi.org/10.1098/rspa.2017.0050
https://doi.org/10.1098/rspa.2017.0050
https://doi.org/10.1007/BF00417917
https://doi.org/10.1007/BF00417917
https://doi.org/10.1007/BF00417917
https://doi.org/10.1007/BF00417917

