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Harmonic and subharmonic waves on the surface of a vibrated liquid drop
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Liquid drops and vibrations are ubiquitous in both everyday life and technology, and their combination can
often result in fascinating physical phenomena opening up intriguing opportunities for practical applications
in biology, medicine, chemistry, and photonics. Here we study, theoretically and experimentally, the response
of pancake-shaped liquid drops supported by a solid plate that vertically vibrates at a single, low acoustic
range frequency. When the vibration amplitudes are small, the primary response of the drop is harmonic at the
frequency of the vibration. However, as the amplitude increases, the half-frequency subharmonic Faraday waves
are excited parametrically on the drop surface. We develop a simple hydrodynamic model of a one-dimensional
liquid drop to analytically determine the amplitudes of the harmonic and the first superharmonic components of
the linear response of the drop. In the nonlinear regime, our numerical analysis reveals an intriguing cascade of
instabilities leading to the onset of subharmonic Faraday waves, their modulation instability, and chaotic regimes
with broadband power spectra. We show that the nonlinear response is highly sensitive to the ratio of the drop
size and Faraday wavelength. The primary bifurcation of the harmonic waves is shown to be dominated by a
period-doubling bifurcation, when the drop height is comparable with the width of the viscous boundary layer.
Experimental results conducted using low-viscosity ethanol and high-viscocity canola oil drops vibrated at 70 Hz
are in qualitative agreement with the predictions of our modeling.

DOI: 10.1103/PhysRevE.100.053106

I. INTRODUCTION

Parametrically excited waves on the surface of a vertically
vibrated fluid, originally observed in 1831 by Faraday [1],
have become a paradigmatic example of a nonlinear wave
system that exhibits highly complex dynamics, including peri-
odic [2], quasiperiodic [3–5], and chaotic behavior [6–9]. Sev-
eral recent studies have also opened a series of new frontiers
for potential applications of Faraday waves going well beyond
fluid dynamics and nowadays including photonics [10,11],
metamaterials [12], alternative sources of energy [13], and
biology [14].

Because Faraday waves can readily be observed in a
vertically vibrated container filled with fluid, a large and
growing body of experimental research uses them to investi-
gate nonlinear wave phenomena such as rouge surface waves
and solitons [7,8]. Faraday waves emerge on the flat fluid
surface as standing subharmonic waves that oscillate at half
of the vibration frequency. The nonlinear dynamics regime
of the emerging waves is in particular rich and very sensitive
to the aspect ratio of the container, fluid depth, vibration fre-
quency and amplitude, as well as to the presence of surfactants
[6–9,15]. The fundamental instability of the standing waves is
associated with the modulation instability of their amplitude
and it was experimentally observed in cylindrical containers
with small and large aspect ratios [3,5,6]. Modulation of
the amplitude occurs on a much larger timescale than the
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vibration period and can be detected by observing the de-
velopment of zero frequency sideband in the power spec-
trum of optical signal reflected from the fluid surface. The
importance of the boundary and contact line effects on the
stability threshold of standing waves has been recognized in
early experiments performed in cylindrical and square tanks
with small aspect ratio [3,5]. For example, it was shown that
viscous dissipation at the contact line increases wave damping
close to solid boundaries [2,4].

In a different class of experiments, various types of external
forcing, including mechanical vibration, electrowetting, and
surface acoustic waves, have been used to excite capillary
waves on the surface of a liquid drop. A partially wetting drop
in contact with a solid plate exhibits a discrete spectrum of
eigenfrequencies and vibration modes that strongly depend
on the wettability of the solid and mobility of the contact
line [16,17]. When a drop is periodically forced, its linear
response can be cast into the framework of a standard damped-
driven harmonic oscillator [18,19], which implies that the
longtime response of the drop is harmonic at the frequency
of the forcing. For example, a harmonic nature of the primary
response was confirmed in experiments using 10- to 100-μl
liquid drops driven by surface acoustic waves [20,21].

At a sufficiently strong vibration, the deformation of free
surface enters a nonlinear regime and therefore the tempo-
ral signature of the drop response loses a simple periodic
character. While general characteristics of the nonlinear re-
sponse strongly depend on the driving frequency, in a partic-
ular experiment with ∼10-μl water drops, the low-frequency
(∼100-Hz) modulation of a 20 MHz acoustic wave was shown
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to induce harmonic, superharmonic, and subharmonic excita-
tions of volumetric oscillation modes [21]. In the cited paper,
the subharmonic response was observed at the modulation
frequency that is approximately twice as large as the Rayleigh
volumetric frequency of the drop. However, when a drop of
a similar volume was driven by a high-frequency acoustic
wave without modulation, the subharmonic half-frequency
component was noticeably absent in the nonlinear response
[20]. Instead, the power spectrum of surface deformation
developed a broadband component at an approximately 100
times lower frequency than the driving one.

The volumetric oscillation frequency fV of a sessile drop
decreases with its volume V . Note that the classical Rayleigh-
Lamb result for levitated drops gives the fV ∼ V −1/2 depen-
dence. If an inviscid liquid drop is flattened by the gravity,
then it takes the form of a pancake with the horizontal radius
R0 and height H0. In the limit of large drop volume, i.e., R0 �
H0, the eigenfrequency is given by fV ∼ (R3

0)−1/2 [22,23].
Volumetric oscillations of mm- and cm-sized liquid drops
supported by vertically vibrating plates has been extensively
studied in the past [16–19,23]. Different volumetric modes
can be classified using the pair of wave numbers, similarly
to spherical harmonics description. Generally, one distin-
guishes among zonal (axisymmetric), sectoral (star-shaped),
and tesseral (all other shapes) modes. It was found that
zonal modes typically oscillate at the forcing frequency, while
nonzonal modes are half-frequency subharmonic modes [19].
Subharmonic star-shaped modes have also been observed
in experiments with leidenfrost drops [24,25] and in drops
levitated by air flow [26,27]. The inviscid theory developed
in Ref. [16] for partially wetting drops was verified experi-
mentally in Refs. [17,19] and was shown to be qualitatively
accurate for relatively small-volume lens-shaped drops. How-
ever, as the volume of the drop increases, the viscous damping
at the solid plate can no longer be neglected, and the inviscid
theory breaks down [19].

If a pancake-shaped drop, whose horizontal size is much
larger than its height, is vertically vibrated, then its primary
response is the onset of the capillary waves on the flattened
upper liquid-gas interface [28–30]. The spectrum of these
waves can be approximated by the dispersion relation for
the gravity-capillary waves in infinitely extended thin films
[31]. In accordance with the linear theory for isolated drops
[16,18], the primary response is harmonic at the frequency of
the forcing. However, as the amplitude of the forcing increases
beyond a certain critical value, half-frequency subharmonic
Faraday waves develop on the drop surface. While the linear
theory of the Faraday waves on the surface of infinitely
extended liquid films is well known [31], a fully nonlinear
theory of the Faraday waves that takes into account boundary
and contact line effects is missing.

In this present paper we study, theoretically and exper-
imentally, instabilities of harmonic waves emerging on the
surface of a pancake-shaped liquid drop located on top of
a vertically vibrated solid plate. Unlike in fluids constrained
by the side walls of a container, a liquid drop changes its
shape in responses to vibration and therefore can be used as
a prototype of a domain with soft adjustable boundaries. A
weak external vibration linearly excites harmonic capillary
waves on the drop surface [18,19]. To excite subharmonic

Faraday waves oscillating at half the driving frequency, a
certain threshold amplitude has to be passed. In the following,
we will describe the transition from the harmonic waves to
subharmonic Faraday waves in a pancake-shaped drop and
study their secondary bifurcations as a function of a gradually
changing amplitude of vertical vibrations.

To describe the dynamics of a pancake-shaped drop with a
sufficiently large volume, we adopt a simplified version of the
reduced long-wave model [32]. When the driving frequency
is in the 10- to 100-Hz range, the resonance due to volumet-
ric oscillation modes is not observed. We develop a linear
response theory of a one-dimensional drop that takes into
account oscillations of the meniscus at the drop edge. Excess
Laplace pressure in the meniscus excites harmonic waves on
the surface of the drop, whose amplitude is shown to obey a
driven-damped Mathieu equation. Using the small-amplitude
expansion, with the driving amplitude as a small parameter,
we derive the amplitudes of harmonic and first superharmonic
responses.

Then, we numerically integrate the full nonlinear model
equations to study the instabilities of the harmonic waves. By
matching the model parameters to describe the dynamics of an
ethanol drop vibrated at 20- to 30-Hz frequencies, we grad-
ually increase the vibration amplitude to observe the onset
of the subharmonic Faraday waves via super- or subcritical
period doubling or torus bifurcations of the harmonic wave
solutions. The bifurcation scenario is shown to be highly
sensitive to the relationship between the horizontal drop size
to the Faraday wavelength. Moreover, when the viscosity
of the fluid is increased severalfold while keeping all other
parameters unchanged, we find that the primary instability
of the harmonic waves is dominated by the supercritical
period-doubling bifurcation. In the nonlinear regime, longer
Faraday waves interact with shorter harmonic waves, thereby
giving rise to a complex mixed state whose temporal signature
is characterized by the presence of subharmonic, harmonic,
and superharmonic peaks in the temporal power spectrum
of the surface deformations. When the vibration amplitude
is further increased, we observe modulation instability of
the Faraday waves that occurs on the timescale much larger
than the vibration period. Stronger vibration gives rise to a
chaotic response with broadband power spectrum across all
frequencies.

To validate our findings, we conduct a series of experi-
ments with a low-viscosity pancakelike ethanol drop and a
high-viscosity canola oil drop. In both series of experiments,
the Teflon plate supporting the drops is vibrated at 70 Hz.
The response of the drops to the vertical vibration is recorded
using laser light reflected from the drop surface. We show that
our experimental results are in a qualitative agreement with
the predictions of the long wave model.

II. HYDRODYNAMIC MODEL OF A VIBRATED
LIQUID DROP

Correct description of the contact line motion is one of the
biggest hurdles in modeling the dynamics of liquid drops that
rest on a solid plate. To avoid the well-known hydrodynamic
singularities at the true contact line [33], we use the standard
regularization method based on the molecularly thin precursor
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film that emanates from the foot of the drop and covers
the entire solid plate [34]. The equilibrium contact angle is
determined by balancing the pressure in the precursor film and
in the drop. For small contact angles, the total pressure can be
written in terms of the drop thickness h(x, y) [34],

P = −σ (∂xx + ∂yy)h + ρgh − �(h), (1)

where σ and ρ are the surface tension and the fluid density
and �(h) is the disjoining pressure that describes the long-
range van der Waals forces giving rise to the formation of
the precursor film. Any stationary drop profile h(x, y) can be
found from Eq. (1) by setting P = C, where the constant C is
determined by the volume of the fluid. Generally, the function
�(h) that allows the existence of a steady drop with nonzero
contact angle is given by [35]

�(h) = B

hn∞

(
hn

∞
hn

− hm
∞

hm

)
, (2)

where B is some constant, h∞ is the precursor film thickness,
and the (m, n) are some integers. Without any loss of gener-
ality of the results, we follow Refs. [32,36] and choose n = 6
and m = 3. With this choice, the disjoining pressure Eq. (2)
can be written in terms of the Hamaker constant AH

�(h) = AH

h3

(
h3

∞
h3

− 1

)
. (3)

The equilibrium contact angle θ � 1 is related to AH and h∞
via [35]

AH ≈ 5h2
∞

3
σθ2. (4)

A reduced hydrodynamic model describing the dynamics
of liquid drop an nonzero Reynolds numbers under the action
of external vertical vibration was developed in Ref. [32].
Here we adopt a simplified version of the model [32] that
captures all essential features of the flow field but has a more
simple expression for the nonlinear terms. Thus, we only take
into account the long-wave deformations of the liquid-gas
interface and assume a quadratic dependence of the horizontal
fluid velocity u(x, y, z) on the vertical coordinate z,

u = �

(
z2

2
− hz

)
, (5)

that satisfies the boundary conditions at the solid plate u(z =
0) = 0 and the liquid-gas interface ∂zu(z = h) = 0 for some
arbitrary function �(x, y). The flow field across the layer q =∫ h

0 u dz can be expressed in terms of �,

q = −�
h3

3
. (6)

The Navier-Stokes equation in the long-wave approximation
is

ρ[∂t u + ∇(u ⊗ u) + ∂z(uw)] = μ∂zzu − ∇P, (7)

where u ⊗ u denotes the matrix product, μ is the dynamic
viscosity, w is the vertical component of the velocity, and P is
the pressure. Integrating Eq. (7) over z and using the kinematic
boundary condition ∂t h + (u · ∇h) = w, we obtain similarly
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FIG. 1. Stability diagram for the subharmonic Faraday waves
onset in 2-mm-thick ethanol film with ρ = 789 kg/m3, σ =
0.022 N/m, μ = 0.0012 Pa s, vibrated at 20 Hz. The solid line
is obtained from the reduced model Eq. (9), and the dashed line
corresponds to the exact stability threshold [31]. The arrow indicates
the critical wave vector from Eq. (11).

to Refs. [37],

ρ

[
∂t q + 6

5
∇ ·

(
q ⊗ q

h

)]
= −3μq

h2
− h∇P,

∂t h + (∇ · q) = 0. (8)

In the case of a drop supported by a solid plate that vibrates
vertically with the amplitude A0 and frequency �, Eqs. (8)
are valid in the comoving frame of the plate. The pressure
P is taken from Eq. (1) with g replaced by g(1 + a cos �t ),
where a = A0�

2/g is the dimensionless vibration amplitude.
We note that the validity of system Eqs. (8) is restricted to
small contact angles and long-wave deformations of the drop
height h. In addition, the characteristic horizontal deformation
wavelength λ must be larger than the length of the viscous
boundary layer l = √

2μ/(ρ�) associated with the vibration
frequency � [38].

For a flat film of thickness h0 � h∞ the disjoining pressure
term �(h) can be neglected. Linearizing Eqs. (8) about the
trivial steady state h = h0 and q = 0 we obtain the damped
Mathieu equation

∂tt h̃ + 3μ

ρh2
0

∂t h̃ + h0

[
σ

ρ
	2 + g(1 + a cos �t )	

]
h̃ = 0, (9)

where h̃ denotes small deviation of the film thickness from h0.
For inviscid and undriven fluids (μ = a = 0), Eq. (9)

gives the well-known dispersion relation of plane
waves h̃ ∼ eiωt+ik·r on the surface of the flat film
ω2 = ( σ

ρ
k3 + gk) tanh kh0 [31],

ω2 = h0

(
σ

ρ
k4 + gk2

)
≈

(
σ

ρ
k3 + gk

)
tanh kh0. (10)

To further validate our model, we calculate the stability dia-
gram for the onset of the Faraday waves of wave number k on
the surface of a flat film with thickness h0 � h∞. The exact
stability threshold found according to Ref. [31] is compared
with the prediction of the reduced model Eq. (9) in Fig. 1 for
the case of a 2-mm-thick ethanol film vibrated at 20 Hz. For
these parameter values, the agreement is reasonable for the
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first subharmonic tongue. We note, however, that the model
deviates from the exact theory if the vibrating frequency, or
the film thickness h0, is further increased.

At a low value of the kinematic viscosity μ/ρ, the critical
vibrational amplitude a corresponding to the tip of the tongue
in Fig. 1 is small. This allows estimating the onset wave
number kc of the Faraday waves, which are excited subhar-
monically at half of the driving frequency and harmonically
at the frequency of the forcing. Using the standard result for
the classical undamped Mathieu equation [39], from Eq. (9)
in the limit of μ/ρ → 0 we obtain

2k2
c =

√
(gρ/σ )2 + ρ(n�)2/(σh0) − gρ/σ, (11)

where odd (even) integers n = 1, 2, 3, . . . correspond to the
subharmonic and harmonic waves, respectively. The critical
wave vector kc calculated from Eq. (11) for the first subhar-
monic (n = 1) tongue is shown by the arrow in Fig. 1.

III. VIBRATED PANCAKE SHAPED DROP

Next we nondimensionalize Eqs. (8) by scaling the time
with 2/�, the coordinates (x, y) with k−1

c , where kc from
Eq. (11) corresponds to the tip of the first subharmonic tongue,
and the film thickness with h0 and the fluid flux q with
h0�/(2kc). In what follows we associate the dimensionless
wave vector k = 1 with the Faraday wave vector and the
corresponding wavelength 2π with the Faraday wavelength
λF = 2π .

The dimensionless dynamic equations of the drop are ob-
tained from Eqs. (8) by setting ρ = 1, 3μ = γ = 6μ/(ρh2

0�)
and replacing the pressure term [Eq. (1)] by

P = −
	h + Gh[1 + a cos(2t )] + H h−3[1 − (β/h)3], (12)

with the dimensionless 
 = 4σh0k4
c /(ρ�2), G = 4gh0k2

c /�
2,

H = 4AH k2
c /(ρh3

0�
2), and β = (h∞/h0). Note that 
 + G =

1 and we use the same notations for the scaled variables
as for the original physical variables. The scaled damping
parameter γ = 6μ/(ρh2

0�) can be written in terms of the
ratio of the viscous boundary layer length l = √

2μ/(ρ�)
and the drop height h0, namely γ = 3(l/h0)2. The scaled
disjoining pressure parameters H and β must be chosen to be
sufficiently small. Specifically, we choose β � 1 and H � G
so that the disjoining pressure in a flat film with height h = 1
can be safely neglected as compared with the hydrostatic
pressure. Additionally, we require that h = 1 corresponds to
the equilibrium dimensionless height of a steady pancake
shaped drop. Note that h0 is related to the equilibrium contact
angle θ via ρgh2

0 = 2σ [1 − cos(θ )]. Consequently, for any
given fluid parameters ρ and σ , a fixed value of h0 corresponds
to a constant value of the contact angle θ . This implies that in
the chosen here scaling (when the dimensionless drop height
is h = 1), the dimensionless Hamaker constant H and β are
not independent. In fact, H ∼ β2 as follows from Eq. (4). In
our numerical simulations, we choose β as an independent
parameter and determine for any given G the corresponding
value of H from the Maxwell equal-area construction to
the function f (h) = Gh + H h−3[1 − (β/h)3], as explained
in Ref. [32]. In what follows we use β = 0.05, which is of
the similar order of magnitude as in Ref. [35], where the
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FIG. 2. (a) Profile of the drop with β = 0.05 and horizontal size
W ≈ 48.5, vibrated with amplitude a = 0.1. Domain size is 2L =
24π . (b) Temporal evolution of the harmonic waves on the surface
of the drop over one period of the vibration T = π . The arrows
indicate the propagating and standing waves. (c) Excess Laplace
pressure pe = −
∂xxh(x, t ) + 
π−1

∫ t+π

t ∂xxh(x, t ) dt for the drop
in (a). The dashed line in (c) is obtained by fitting the function
∼(x − x0)e(x−x0 )/b.

disjoining pressure model Eq. (2) was validated for liquid
drops spreading on solid surfaces.

For the sake of simplicity, we consider a one-dimensional
version of Eqs. (8) with the drop profile h(x, t ) and fluid flux
q(x, t ). Following Ref. [32], we numerically solve Eqs. (8) in
a periodic domain x ∈ [−L, L] using a semi-implicit spectral
method with the time step 	t ≈ 10−3 and the spatial dis-
cretization step 	x of the order of β. The initial condition
is given by a stationary drop, which is obtained by solving
−
∂xxh + Gh + H h−3[1 − (β/h)3] = C, where the constant
C controls the volume of the drop. The system size 2L and the
horizontal width of the pancake shaped drop W are chosen sig-
nificantly larger than the Faraday wavelength λF = 2π , i.e.,
2L,W � 2π . Additionally, in order to avoid self-interactions
due to periodic boundaries, we require 2L − W � 2π .

For ethanol drop with parameters as in Fig. 1, vibrated at
20 Hz, we obtain 
 = 0.3, G = 0.7, and γ = 0.018. In the
dimensionless units, the drop with the horizontal width W ≈
48.5, which is vibrated at a = 0.1 is shown in Fig. 2(a). It rests
on the precursor film of thickness β = 0.05, and the domain
length is 2L = 24π . At a = 0.1 the amplitude of harmonic
waves excited on the drop surface is two orders of magnitude
smaller than the drop height.

We note that currently available computational power lim-
its the values of the precursor film parameter to β ∼ 10−2–
10−1. Indeed, to guarantee the stability of the numerical
scheme with the spatial discretization step 	x that is of the
order of β [35], N = 103–104 equidistant discretization points
in the domain of the length 2L = 24π are required. Since our
aim is to detect possible bifurcations of the vibrated drop, the
Eqs. (8) must be integrated over a sufficiently large interval of
time, at least much larger than the vibration period equal to
π time units. We integrate Eqs. (8) with the spatial resolution
of N = 5000 over 2000 vibration periods, which yields the
average simulation time of ≈20 min for one set of parame-
ters on a 3.3-GHz Intel workstation. We remark that at this
resolution, the numerical simulation of the two-dimensional

053106-4



HARMONIC AND SUBHARMONIC WAVES ON THE SURFACE … PHYSICAL REVIEW E 100, 053106 (2019)

Eqs. (8) would require unaffordable computer resources and
prohibitively long simulation time.

A. Harmonic waves

The response of a pancake-shaped drop to external vibra-
tion is qualitatively different from the response of an infinitely
extended flat film because of the presence of the oscillating
meniscus at the drop edge. Thus, at infinitesimally small
vibration amplitudes a � 1, the linear response of the drop is
always harmonic with the meniscus, oscillating at the forcing
frequency �. In Fig. 2(a), we show the profile of a weakly
vibrated one-dimensional drop at a = 0.1. The amplitude
of the harmonic waves on the drop surface remains of the
order of 10−2. The temporal evolution of the waves over one
vibration period T = π is shown in Fig. 2(b). It is important
to emphasize that these waves are not simple standing waves
excited at the left and right edges of the drop. Instead, we see
that close to the drop edges, the waves propagate toward the
drop center, as indicated by the arrows in Fig. 2(b). However,
for the symmetric oscillations, the single wave in the center of
the drop is a indeed a standing wave.

The mechanism of the harmonic waves excitation can be
understood by studying the Laplace pressure generated by the
meniscus. More specifically, we compute the excess Laplace
pressure pe(x, t ), determined as the difference between the
time-dependent pressure −
∂xxh(x, t ) and the time-averaged
pressure −
T −1

∫ t+T
t ∂xxh(x, t ) dt , where we average over

one oscillation period T = π . Figure 2(c) shows a snapshot
of pe around the left edge of the drop from Fig. 2(a). The
time-dependent pe(t ) can be obtained by multiplying the
function in Fig. 2(c) by the factor cos (2t + φ), where φ is
a phase shift between the forcing cos 2t and the meniscus
oscillations. Note that the function pe(x, t ) has two maxima:
The left maximum excites surface waves in the precursor film,
but the right maximum excites harmonic waves in the drop.
Let x = ±x0 be the positions of the left and the right edges
of the drop. In the following we focus on the maximum of
the function pe(x) responsible for the oscillations of the drop.
At any moment of time, the total excess pressure, generated
by the left and the right oscillating drop edges, can be well
approximated by

pe = aF cos (2t + φ)[(x − x0)e(x−x0 )/b − (x + x0)e−(x+x0 )/b],

(13)

where b is of the order of the meniscus width and F is some
scaling factor that describes the strength of the response.

As a next step, we derive an effective evolution equation
for the symmetric small-amplitude surface deformations of
the drop. We extend the pressure term in the dimensionless
version of Eqs. (8) by pe from Eq. (13) and restrict all possible
solutions to the interval within the drop, i.e., x ∈ [−x0, x0].
Linearizing Eqs. (8) in the limit of weak vibration (a �
1) about the trivial steady state h = 1 and q = 0, for the
deformation of the drop surface h̃ � 1 we obtain

∂tt h̃ + γ ∂t h̃ + {

∂4

x − G[1 + a cos(2t )]∂2
x

}
h̃ − ∂xx pe = 0.

(14)

We are looking for symmetric oscillations of the drop and
consider only such perturbations of the trivial steady state
that are 2x0 periodic. Under these assumptions we apply the
discrete Fourier transforms h̃(x, t ) = ∑∞

k=1 ĥk cos(πkx/x0)
and reduce Eq. (14) to a nonhomogeneous damped Mathieu
equation for the amplitudes ĥk , where ∂xx pe plays the role of
an external drive

∂tt ĥk + γ ∂t ĥk +
{




(
πk

x0

)4

+ G[1 + a cos(2t )]

(
πk

x0

)2
}

ĥk

= a fk cos (2t + φ), (15)

with fk given by the cos-Fourier transform of the even func-
tion ∂xx[(x − x0)e(x−x0 )/b − (x + x0)e−(x+x0 )/b].

It is noteworthy that the additional driving term
a fk cos (2t + φ) in Eq. (15) does not change the stability of
its solution [39]. Therefore, in the linear regime, the Fara-
day instability threshold for the waves on the surface of a
pancake-shaped drop remains unchanged as compared with
an infinitely extended flat film. However, this conclusion only
applies approximately in the limit of a large drop volume,
when the nonlinear effects at the meniscus have little effect
on the dynamics of waves at the center of the drop. Generally,
in finite volume drops, the onset of the Faraday instability is
associated with a period-doubling or a torus bifurcation point.
The critical value of the vibration amplitude, at which the
Faraday waves are excited, depends on the drop volume [32].

B. Linear response and small-amplitude expansion

For vibrational amplitudes a well below the Faraday
threshold in Fig. 1, the response of the drop can be deter-
mined from Eq. (15) analytically. We assume a � 1 and seek
the solution in the form ĥk = a[ĥ(0) + aĥ(1) + a2ĥ(2) + . . . ],
where the primary response ĥ(0) is anticipated linear in a. At
the order a1 we obtain

∂tt ĥ
(0) + γ ∂t ĥ

(0) + ω2ĥ0 = fk cos (2t + φ), (16)

with ω2 = [
( πk
x0

)
4 + G( πk

x0
)
2
]. Equation (16) is an equation

of a periodically forced damped harmonic oscillator with
natural frequency ω so that its long-time solution is given by

ĥ(0) = fk cos (2t + ψ )√
(4 − ω2)2 + 4γ 2

, (17)

where ψ = φ − arctan [2γ /(ω2 − 4)]. The evolution of the
deformation of the drop surface, calculated from Eq. (17),
over one vibration period is shown in Fig. 3.

The linear response theory correctly predicts the visible
wavelength of the surface deformation. Thus, the dominant
wavelength λ = 2x0/k ≈ 3.85 in Fig. 3 corresponds to the
resonant peak in Eq. (17), i.e., the integer k is so selected
that the term [ω2(k) − 4]2 has a minimal possible value. For
comparison, the visible wavelength in Fig. 2(b) is λ ≈ 3.9.
In addition, Eq. (17) correctly describes the main features of
the wave dynamics close to the drop center [compare with
Fig. 2(b)].

At the next order a2, we have

∂tt ĥ
(1) + γ ∂t ĥ

(1) + ω2ĥ(1)

− f (1)(e2it + e−2it )(e2it+iψ + e−2it−iψ ) = 0, (18)
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FIG. 3. Temporal evolution of the deformation of the drop sur-
face, computed from Eq. (17) over one vibration period T = π with
parameters as in Fig. 2.

with f (1) = fkGk2

4
√

(4−ω2 )2+4γ 2
. The long-time solution of Eq. (18)

is

ĥ(1) = 2 f (1) cos ψ

ω2
+ 2 f (1) cos (4t + ψ1)√

(16 − ω2)2 + 16γ 2
, (19)

with ψ1 = ψ − arctan [4γ /(ω2 − 16)].
According to Eq. (19), the response of the drop at order a2

contains the second harmonic signal cos 4t and a constant shift
2 f (1) cos ψ

ω2 . We remark that Eq. (19) explains the presence of
the superharmonic ∼cos 4t component in the response of drop
driven by surface acoustic waves [20]. Thus, the appearance of
this component is a linear effect, associated with the deviation
of the temporal response function from the simple sin-shaped
function of time.

IV. ONSET OF THE FARADAY WAVES
AND THE MIXED STATE

To study nonlinear drop response, we employ the following
naive continuation method. Eqs. (8) are solved numerically
for gradually varying (increasing or decreasing) values of the

vibration amplitude a: an = n	, (n = 0, 1, 2, 3, . . . ), where
the step 	 is fixed. For each n Eqs. (8) are integrated over the
time interval, equivalent to 1000 vibration cycles. The initial
conditions for the nth run are taken as the solution from the
previous (n − 1)th run. To artificially recreate the common
experimental conditions, we add a small-amplitude white
noise ξ (x, t ), with 〈ξ (x, t )ξ (x′, t ′)〉 = Dδ(x − x′)δ(t − t ′) to
the second equation in Eqs. (8), where D denotes the noise
strength D ∼ 10−4. The deformation δh(t ) of the drop surface
at x = 0 and its power spectrum S f are used to characterize
the temporal response. The spatial Fourier transformation of
the drop height is averaged over 1000 vibration cycles to
obtain the average spatial spectrum Sk = T −1

∫ T
0 |ĥt (k)|2 dt ,

where ĥt (k) stands for the discrete Fourier transform of the
field h(x, t ) taken from the interval x ∈ [−L/2, L/2]. We
present the response of a fixed-volume ethanol drop as in
Fig. 2 vibrated at different frequencies in the range between
f = 20 Hz and f = 28 Hz.

A. Drop size to Faraday wavelength ratio

The average amplitude of δh(t ) in the units of the drop
height h0 is shown as a function of a in Fig. 4 for a fixed-
volume ethanol drop vibrated at f = 20 Hz. For a < 0.23,
the response amplitude increases linearly with a. In accord
with the results of the previous section, at small vibration
amplitudes the response is harmonic, as evidenced by the
temporal spectrum S f that has a major peak at the driving
frequency 2π f = 2 and the second smaller peak at the second
harmonic 2π f = 4 [label (1)]. The spatial spectrum shows the
dominance of a single mode with the wave vector k ≈ 1.7.
At a certain critical amplitude a = 0.23, the drop undergoes
a subcritical period-doubling bifurcation, as confirmed by a
jump of the response amplitude and by the appearance of the
first subharmonic component 2π f = 1 in the power spectrum
[label (2)]. The drop enters a new mixed highly irregular
(chaotic) state, characterized by the broad band temporal
spectrum [label (3)]. The spatial power spectrum in the mixed
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FIG. 4. Average response amplitude of the ethanol drop from Fig. 2, vibrated at f = 20 Hz, as a function of a. The amplitude a is gradually
increased with the step 	 = 0.005. The harmonic waves lose their stability via a subcritical period-doubling bifurcation (pd) at a = 0.23. The
insets labeled as (1), (2), and (3) show the temporal and spatial spectra Sf and Sk in the logarithmic scale for the selected values of a indicated
by the arrows.

053106-6



HARMONIC AND SUBHARMONIC WAVES ON THE SURFACE … PHYSICAL REVIEW E 100, 053106 (2019)

0 0.05 0.1 0.15 0.2
a

0

0.1

0.2
am

pl
it

ud
e

0 1 2 3 4
2πf

0 1 2 3 4
2πf

0 1 2 3 4
2πf

0 1 2 3 4
k

0 1 2 3 4
k

0 1 2 3 4
k

(1)

(2)

(3)

(1)

(2)

(3)

(pd)

(tr)

S
f

S
f

S
f

S
k

S
k

S
k

FIG. 5. Average response amplitude of the ethanol drop, vibrated at f = 21 Hz, as a function of a. Continuation by gradually increasing a
with step 	 = 0.005. Harmonic waves lose their stability via supercritical period-doubling bifurcation (pd) at a = 0.08. Modulation instability
sets in via a torus bifurcation (tr) at a = 0.15. Insets labeled (1), (2), and (3) show the temporal and spatial spectra Sf and Sk in the logarithmic
scale for selected values of a, as indicated by arrows.

state is dominated by the Faraday waves with the wave vector
k = 1.

Significantly, the characteristics of the drop response are
highly sensitive to the relationship between the Faraday wave-
length λF and the horizontal size of the drop W . To better
fit the experimental conditions, where the drop volume is
fixed, we vary the vibrational frequency f and thus change
the wavelength of the Faraday waves in the dimensional units.
Accordingly, the dimensionless parameters 
, G, and H vary
with f . Simultaneously, we vary W in such a way that the
dimensional horizontal size of the drop is kept fixed. Thus
increasing the vibration frequency from f = 20 Hz to f =
21 Hz, which corresponds to ≈4% shorter Faraday waves,
we observe a dramatic change in the bifurcation scenario, as
shown in Fig. 5. Contrary to Fig. 4, the primary bifurcation
of the harmonic waves is a supercritical period-doubling
bifurcation that occurs at a significantly smaller amplitude

a = 0.08. The newly born mixed state has a high degree of the
temporal order, as characterized by the sharp subharmonic and
harmonic peaks in the temporal spectrum [label (2)]. Similarly
to Fig. 4, the mixed state is dominated by the Faraday wave
vector k = 1, as shown by the spatial spectrum [label (2)].

At around a = 0.15 the mixed state undergoes a secondary
bifurcation, which corresponds to the modulation instability
of the wave amplitude. From the point of view of the dynam-
ical systems theory, this instability corresponds to the torus
bifurcation (point tr), as confirmed by the appearance of a
small frequency peak in the temporal spectrum [label (3)].

By scanning the other values f we find that at f = 28 Hz,
the primary instability of the harmonic waves is most likely
a torus bifurcation, as shown in Fig. 6. When a is gradually
increased with the step 	 = 0.0015, the harmonic waves
follow the “asterisk” branch and lose their stability at around
a = 0.092 [label (sn,tr)]. The response amplitude jumps
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FIG. 6. Average response amplitude of the ethanol drop, vibrated at f = 28 Hz, as a function of a. Gradually increasing (asterisk) and
gradually decreasing (circle) a with step 	 = 0.0015. sn and tr correspond to the saddle-node and torus bifurcations, respectively. The insets
labeled (1), (2), (3), and (4) show the temporal and spatial spectra Sf and Sk in the logarithmic scale for the selected values of a indicated by
the dashed lines.
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FIG. 7. Frequency-amplitude phase diagram of the harmonic (h) and subharmonic (sh) responses for a fixed volume ethanol drop. The
response is subharmonic in the shaded area. The boundary between the harmonic and subharmonic regions is obtained by gradually increasing
the vibration amplitude a by step 0.01 (size of the error bars) when the frequency f is kept fixed.

significantly and any detectable subharmonic peak in the
temporal spectrum is absent [label (1)], which points toward
either a torus or a saddle-node bifurcation. The new state cor-
responds to the modulated Faraday waves, which is confirmed
by the presence of the frequency sidebands in the temporal
spectrum [label (2)]. Spatial spectrum of the mixed state has a
strong peak at k = 1 [label (2,3)]. Further increase of a leads
to the onset of a chaotic temporal response at around a = 0.12
[label (4)].

When the vibration amplitude a is gradually decreased
from a = 0.12 with the step 	 = 0.0015, the response am-
plitude follows the “circle” branch that stretches to a = 0.07.
At a = 0.087 [label (tr)], the modulated Faraday waves are
replaced by the nonmodulated standing waves via a reversed
torus bifurcation, as confirmed by the temporal spectrum
[label (2)]. Interestingly, however, the spatial signature of the
modulated and standing waves is very similar, as shown by
the spatial spectrum [label (2,3)]. For a < 0.07 [label (sn)],
the branch of the standing nonmodulated Faraday waves does
not exist and the drop response is harmonic. The subcriticality
of bifurcations gives rise to the hysteresis loop, as indicated by
the thick blue arrows in Fig. 6. In the range of a between a =
0.07 and a = 0.092, multiple responses are possible—either
small-amplitude harmonic waves with dominant wave vector
k = 1.7 or standing or modulated Faraday waves of larger
amplitude with the dominant wave vector k = 1.

A chaotic response is observed at large amplitudes a >

0.12 and this is characterized by the broad band temporal
spectrum [label (4)]. The broadening of spectral peaks in case
of the Faraday waves excited in liquid films has been the
focus of several experimental studies in the past [6,7]. In the
cited papers, the appearance of the triangular peaks was linked
to the modulation of the amplitudes of the Faraday waves
that occurs on a much longer timescale than the vibration
period. Our model confirms those experimental findings and
explains the observed spectra from the point of view of the
bifurcation theory. In particular, the amplitude modulation of
the Faraday waves results from a torus bifurcation and the

spectral broadening is most likely to be due to the destruction
of the invariant torus via the collision with a homoclinic orbit.

High sensitivity of the drop response to the ratio between
Faraday wavelength and the horizontal drop size is visualized
in Fig. 7, where we plot the boundary between the harmonic
and the subharmonic responses in the (a, f ) plane for a fixed
volume ethanol drop. The boundary is obtained by gradually
increasing the vibration amplitude a, when the frequency f
is kept fixed. For comparison, when changing the frequency
from f = 20 Hz to f = 25 Hz, the Faraday wavelength de-
creases by 20%. Such a high sensitivity toward the frequency
f can be explained by a simple geometric commensurability
condition. Namely, if the horizontal drop size is an integer
multiple of the half of the Faraday wavelength λF /2 = π , then
subharmonic Faraday waves are more easily excited on the
drop surface. Indeed, at f = 19.5 Hz approximately 15 half
wavelengths λF /2 (in dimensionless units) fit onto the surface
of the drop. This corresponds to the tip of the first tongue
in Fig. 7. The tips of the second, third, and fourth tongues
correspond to f ≈ 21 Hz, f ≈ 22.5 Hz, and f ≈ 24.5 Hz,
when approximately 16, 17, and 18 half-wavelengths λF /2 fit
onto the surface of the drop, respectively.

B. Changing the viscosity

We predict that in highly viscous fluids, in which the
viscous boundary layer

√
2μ/(ρ�) is comparable with the

drop height h0, the modulation instability of the subharmonic
Faraday waves is pushed toward larger values of the vibration
amplitude. In this case the primary instability of the harmonic
waves is dominated by the period-doubling bifurcation and the
modulation sidebands are not found in the temporal spectrum.
This regime is characterized by the dimensionless damping
parameter γ = 6μ/(ρh2

0�) of the order of 10−1–100. Thus,
when μ is increased, the torus bifurcation point (tr) on the
subharmonic branch occurs at progressively larger values of
the vibration amplitude a, as shown in Fig. 8 for a liquid that is
three times (3μ) and six times (6μ) more viscous than ethanol.
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FIG. 8. Increasing the viscosity. Dashed line: Part of the subhar-
monic branch between the sadle-node (sn) and the torus (tr) bifurca-
tion points for three different values of the viscosity: μ, 3μ, and 6μ,
where μ is the viscosity of the ethanol. The vibration frequency is
f = 28 (Hz) and other parameters as in Fig. 6. The arrows indicate
points of transitions from the harmonic (solid line) to subharmonic
(dashed line), when a is gradually increased or decreased.

Vertical arrows in Fig. 8 indicate the hysteresis region, i.e.,
the points of transition from the harmonic to subharmonic
regimes (or backward), when a is gradually increased (or
decreased). For comparison, the part of the subharmonic
branch for the ethanol from Fig. 6 between the saddle node
and the torus bifurcation points is added to Fig. 8. Similarly
to a liquid film, the critical vibration amplitude that marks the
onset of the Faraday waves increases as the viscosity of the
drop is increased. At large values of μ, the primary bifurcation
of the harmonic waves is a subcritical period-doubling bifur-
cation, as indicated by the significant jump in the response
amplitude. The region of multistability, where subharmonic
and harmonic responses coexist, significantly narrows as μ

is increased sixfold. It is plausible to assume that further
increase of μ will result in a supercritical period-doubling
bifurcation of the harmonic waves.

The critical role of the viscosity in the onset of the mod-
ulation instability was recognized in the early works on the
weakly nonlinear theory of the Faraday waves in cylindrical
containers [4]. Nonlinear waves on the surface of inviscid
fluids can be described using the Lagrangian formalism that
leads to a Hamiltonian system for slowly varying amplitude
of the waves. The simplest possible quadratic nonlinearity
in the Lagrangian equations of motion gives rise to periodic
solutions for the slowly varying amplitude, which explains
the modulation instability of the Faraday waves. However,
an arbitrary weak linear damping completely changes the
phase space of the Hamiltonian system by destroying the
periodic orbits. Therefore, in the weakly nonlinear regime,
the modulation instability, which is associated with the torus
bifurcation point on the subharmonic branch, does not exist.
Our numerical results demonstrate the importance of strong
nonlinearities for the onset of the modulation instability in
viscous fluids. In agreement with weakly nonlinear theories,
our model shows that in highly viscous fluids, the modulation
of the Faraday waves does not occur at weak vibration.

V. EXPERIMENTAL RESULTS

In this section, we experimentally demonstrate that the
primary response of a liquid drop to low-amplitude vertical

FIG. 9. Schematic of the experimental setup. A subwoofer cov-
ered by a thin Teflon plate is used as the source of vertical vi-
bration. The sinusoidal vibration signal of frequency f = 70 Hz is
synthesizes with a digital signal generator and amplified with an
audio amplifier. The response of the liquid drop sitting on top of
the Teflon plate is measured by using a continuous wave red laser
diode and a photodetector. The detected signals are visualized with
an oscilloscope and sent to a laptop for postprocessing.

vibrations is harmonic at the frequency of the forcing, but an
increase in the vibration amplitude results in the excitation
of half-frequency subharmonic surface Faraday waves. In the
first set of measurements, we investigate the response of a
low-viscosity ethanol drop to demonstrate that an increase
in the vibration amplitude first leads to the onset of Faraday
waves and then results in sharp amplitude-modulation side-
bands observed in the frequency spectra due to a secondary
bifurcation. In the second set of measurements, we study the
response of a high-viscosity canola oil drop. (The viscosity
of canola oil is approximately 50 times that of ethanol.) We
observe the onset of Faraday waves at much higher vibration
amplitudes as compared with the ethanol drop and we confirm
that in the case of high viscosity of the constituent liquid the
frequency spectra have well-defined peaks with no signs of
amplitude modulation.

To measure the temporal response of liquid drops subjected
to vertical vibration, we developed a setup (Fig. 9) consist-
ing of a noncollimated red laser diode (Besram Technology,
China; 650 nm wavelength and 1 mW power) and a photode-
tector (Adafruit, USA). The intensity of light reflected from
the liquid is modulated due to the vertical vibration of the
drop and the onset of Faraday waves on the liquid surface.
We record these signals with Audacity software and Fourier-
transform them with Octave software to obtain frequency
spectra of surface deformation.

As a source of vertical vibration, we use a subwoofer
(Yamaha SW-P330, Japan, 85 W, 30- to 200-Hz frequency
response) covered by an opaque Teflon plate. The subwoofer
is driven by a pure sinusoidal signal of frequency f = 70 Hz
generated by a digital signal generator. The operation at
this particular frequency provides a viable opportunity for
qualitative comparison of theoretical and experimental results,
also allowing us to efficiently control the shape of the vibrated
drops and reduce noise in experimental traces. We verified
that the addition of the plate does not change the frequency
response of the subwoofer [40]. At low vibration amplitudes,
we could optically detect weak, not perceivable to human ear
signals with the twice AC mains frequency (100 Hz), which
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FIG. 10. (a) Experimental average response of the ethanol drop subjected to vertical vibration at 70 Hz frequency plotted as a function of
the vibration amplitude. The inset shows the power spectra obtained by Fourier-transforming the measured time-domain signals. The labels
in parenthesis correlate the spectra to the experimental points in the main panel. (b) Experimental average response of the canola oil drop
subjected to vertical vibration at 70 Hz frequency plotted as a function of the vibration amplitude. Note the difference between the maximum
vibration amplitude in (a) and (b). Also note the presence of the modulation sidebands (the spectrum label 7 for the ethanol drop) and their
absence in the spectra of the canola oil drop. The shaded regions in the main panels correspond to the regime of chaotic oscillations resulting
in strong diffuse scattering leading to a decrease in the optical intensity of the detected signal.

were removed from experimental spectra as part of routine
post-processing.

Purified canola oil and 95% v/v ethanol were purchased
from Coles, Australia. The viscosity of canola oil equals ap-
proximately 0.057 Pa s (∼47 times the viscosity of ethanol).
Drops with an approximately 2-mm thickness were created on
top of the Teflon plate by using a syringe. In accord with the
exact linear theory [31], at the vertical vibration frequency of
70 Hz the Faraday wavelength for 2-mm-thick canola oil and
ethanol films is 6.1 and 5.7 mm, respectively. Thus, the size
of the drops was chosen to be approximately 10× larger than
the predicted wavelengths, also avoiding any contact between
the drops and the edges of the Teflon plate. The static contact
angle α0 of a pancake shaped drop with height h0 can be found

from ρgh2
0

2σ
= 1 − cos α0. With h0 ≈ 2 mm, we obtain α0 ≈ 73◦

for the ethanol drop and α0 = 66.5◦ for the canola oil drop
with density 920 kg/m3 and surface tension 0.03 N/m.

In agreement with the theoretical picture in Fig. 5, in
Fig. 10(a) we observe that at low vibration amplitudes the
spectral response of the ethanol drop is dominated by the
peaks at the vibration frequency 2π f = 2 and its second
harmonic 2π f = 4 (2π f = 2 corresponds to f = 70 Hz).
The harmonic waves lose their stability via supercritical
period-doubling bifurcation as evidenced by the appearance
of the peaks 2π f = 1 and 2π f = 3. Significantly, our
measurements show the onset of the modulation instability
after the generation of subharmonic peaks, observed as sharp
modulation sidebands around the peaks in the frequency
spectra label (7).

When the vibration amplitude is further increased, we
observe that the amplitude modulation results in considerable
broadening of the spectral peaks, which assume a typical
triangular shape previously reported for liquid films subjected
to vibration [6,7]. Finally, at an even higher amplitude, the

drop response becomes noisy, which is explained by the
transition to a chaotic behavior predicted by our theory.

In measurements of the canola oil drop [Fig. 10(b)], we ob-
serve the period-doubling bifuraction point at a significantly
higher vibration amplitude as compared with the ethanol
droplet, which agrees with the theoretical result in Fig. 8.
Significantly, our measurements reproduce the theoretically
prediction of no amplitude modulation. Indeed, one can see
the appearance of the subharmonic peaks at 2π f = 1 and
2π f = 3 without any trace of sidebands around the peaks.

FIG. 11. Closeups of the subharmonic peak at 2π f = 1 corre-
sponding to f = 35 Hz in the experiment. The modulation sidebands
can be seen in the spectrum of the ethanol drop (dashed line), but they
are absent in the spectrum of the canola oil drop (solid line).
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The difference between the spectra with the traces of
modulation sidebands (ethanol) and without them (canola oil)
can be better observed in Fig. 11, which shows a closeup of
the subharmonic peaks at 2π f = 1 corresponding to 35 Hz in
the framework of our experiment. The frequency resolution of
the spectra is approximately 0.1 Hz. One can see that the peak
for the canola oil drop has a well-defined lineshape but that for
the ethanol drop appears to consist of subpeaks and also has
two side peaks offset by approximately ±5 Hz. In agreement
with the previous works [6,7], as the vibration amplitude is
increased, these subpeaks contribute to the evolution of the
narrow main peaks into broad triangular spectral features,
which can be seen in the inset in Fig. 10(a).

VI. CONCLUSION

We have investigated, experimentally and theoretically,
the response of a flattened pancake-shaped liquid drop to
external vibrations at the frequencies much higher than the
frequency of the volumetric oscillations. We have showed that
in this regime harmonic oscillations of the meniscus at the
contact line generate time-periodic excess Laplace pressure
that excites capillary ripples on the surface of the drop. When
the vibration amplitude is small, the amplitude of the ripples
remains small compared with the drop height, which allows
us to linearize the hydrodynamic equations about the steady
flat liquid-gas interface and derive a driven damped Mathieu
equation for the surface wave amplitudes. By expanding the
surface deformation into a power series of the small driving
amplitude an (n = 1, 2, . . . ), we derived a closed analytical
expression for the harmonic (linear ∼a1) and superharmonic
(quadratic ∼a2) responses. In the second order ∼a2, we find
a time-independent response component associated with the
change in the average drop height. The latter, in conjunction
with the conservation of volume, gives rise to horizontal
elongation of the drop.

We numerically solve the fully nonlinear reduced-model
equations to reveal complex primary and secondary instabil-
ities of the harmonic waves developing when the vibration
amplitude gradually increases. From the dynamical system
theory it is known that any time-periodic solution may lose
its stability via three different bifurcations: period doubling,
torus, or saddle node. By fine-tuning the driving frequency or
changing the viscosity of the fluid, in our study we establish
that all three possibilities are possible for harmonic waves.

In the case of the supercitical period-doubling bifurcation,
a sharp subharmonic peak appears in power spectrum of
the temporal response of the drop. On the contrary, a torus
bifurcation gives rise to modulation sidebands around the
primary harmonic peak and spectral broadening. This finding

is confirmed by our experimental results for ethanol and
canola oil drops subjected to 70-Hz vibrations, where we
observed supercritical period-doubling bifurcation for more
viscous canola oil and predominantly torus bifurcation for less
viscous ethanol.

Our results should find practical applications in the emer-
gent research directions of liquid optomechanics [41–46] and
hybrid metamaterial structures [47–49]. Thus far, optome-
chanical structures have mostly been implemented by using
the solid-state technology [50] because modern electronic,
photonic, and phononic devices and circuits are based on
solid-state platforms. However, liquid-state optomechanical
systems may have unique and practically useful character-
istics that cannot be achieved in a solid-state configuration
without the need of using high-power excitation signals. For
example, this is the case of giant acoustic nonlinearities
observed in gas bubbles and liquid droplets [45,51,52] and a
family of complex and intriguing nonlinear effects observed
in hydrodynamics, turbulence, and atmosphere science—the
Akhmediev breathers [53]. Although large and increasing the-
oretical effort has been made to recreate and utilize these non-
linear phenomena in solid-state configurations [47,48,54–58],
considerable stiffness of solid-state structures requires im-
practicably high powers to access the nonlinearity. This is in
stark contrast with fluids whose softness [59] allows accessing
their nonlinear properties with low-power signals produced
and controlled by modern photonics devices such as optical
fibers and integrated-circuit resonators [41–46,49].

Our results can also find applications in the emergent field
of acoustic frequency comb generation [60] and their appli-
cation in underwater distance measurements [61]. Similarly
to an optical frequency comb, an acoustic frequency comb is
a spectrum consisting of a series of discrete, equally spaced
elements that have a well-defined phase relationship between
each other (for a review see, e.g., Ref. [45]). Optical frequency
combs have typically been produced by mode-locked lasers
or exploiting nonlinear optical effects in optical fibers and
nonlinear photonic microresonators. Similarly, in Ref. [60]
nonlinear acoustic effects in a solid-state device were used to
generate a spectrum consisting of equally spaced and phase
coherent comb lines. However, the effect observed in this
present work can be used to generate frequency combs in a
liquid-state system and potential in underwater settings, which
should benefit marine sciences, underwater positioning, and
navigation [61].
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