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Determination of energy flux rate in homogeneous ferrohydrodynamic turbulence
using two-point statistics
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Under the influence of an external magnetic field H, the suspended ferromagnetic particles of a laminar
ferrofluid flow try to be oriented along H through a relaxation mechanism. Turbulence affects the interaction
between the magnetization of each suspended particle and the external field thereby leading to a large relaxation
time and hence a slow relaxation process. This can be obtained by replacing viscous drag force with turbulent
drag force in Brownian motion. We show that the total energy is an inviscid invariant in turbulent ferrofluids.
Using two-point statistics we formulate an exact relation in the inertial zone of incompressible ferrofluid
turbulence. This exact relation gives an accurate measure of the energy dissipation rate in a turbulent ferrofluid.
We also show that (u × ω), (M × H), (M · ∇)H, and (ω × M) play the major role in energy cascading in
turbulent ferrofluids.
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I. INTRODUCTION

A ferrofluid is a suspension of solid magnetic particles
(magnetite) in dielectric liquids (e.g., water, oil, organic
solvent), often called the carrier fluid. The diameter of the
suspended particles are of the order of 10 nm and hence each
particle contains roughly one single magnetic domain [1].
These magnetic particles are free to move and rotate in the
carrier medium. Due to their very small size, the particles
interact with each other when subject to a magnetic field.
However, because of the Brownian motion, they do not settle
under the influence of the external magnetic field. The fer-
rofluid particles are usually coated with surfactants, which are
long-chained molecules having a polar head and a nonpolar
tail or vice versa (e.g., oleic acid and tetramethylammonium
hydroxide). This coating prevents the particles from (i) im-
mediate agglomeration among themselves by producing steric
hinderance and (ii) being extracted from the fluid, when the
external field is sufficiently strong. This surfactant partially
overcomes the attractive Van der Waals and magnetic forces
between the particles with electrostatic repulsion [2]. When an
external magnetic field is applied, the magnetic moments of
these ferromagnetic particles, which are assumed to be fixed
with each particle, immediately try to be oriented along the
field direction. When the field is removed, these magnetic mo-
ments quickly randomize leading to a zero net magnetization
[3,4]. This property, along with the fact that ferrofluids pos-
sess magnetic susceptibilities (≈0.5) almost three orders of
magnitude larger than the common paramagnetic salt, classify
the ferrofluids as superparamagnetic fluids [1]. Owing to their
high controllability by external magnetic fields and convective
effects in microgravity environments, ferrofluids find a broad
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range of applications starting from hermetic seals in pumps,
rotary seals of computer hard drives to the loudspeakers to
extract heat from voice coils [1,5,6]. Ferrofluids are also
considered as effective carriers of concentrated medications
to specific location in the body [7].

In this article, we mainly investigate the comportment of
a ferrofluid flow in the external magnetic field (H) gradient
when H is steady, i.e., time independent. Upon the applica-
tion of steady H, the particle magnetic moments (which are
supposed to be rigidly fixed to each particle) start getting
oriented along it thereby giving an equilibrium state in a
characteristic time τ , called the relaxation time [2]. In the
equilibrium state all the particles get settled and oriented along
H (note that this orientation is achieved only on average due to
the presence of thermal fluctuation [8]). In order to achieve a
sustaining ferrofluid flow, the process of agglomeration of the
particles needs to be slow. As we discuss in Sec. II, this can be
achieved through the generation of turbulence in a ferrofluid
flow. Turbulence modifies the nature of the viscous drag and
increases the relaxation time of particles to settle. In addition,
the interaction between the ferrofluid and H considerably in-
fluences the properties of turbulence. Although a large number
of studies [9–12] have been accomplished for the laminar
Poiseuille flow of ferrofluids and more particularly the drag
reduction in the presence of rotating and oscillating magnetic
fields, only a few works have been done to study the turbu-
lence in such fluids. Some of them are dedicated to the study
of the effects of pressure drop in the pipe flow of ferrofluids
[13,14] whereas some investigate systematically the onset of
turbulence in Taylor-Couette ferrofluid flow which takes place
at Reynolds numbers at least ten times lower than those of the
other fluids [15].

The study of completely developed homogeneous turbu-
lence in ferrofluidic flows was carried out, for the first time, by
Schumacher et al. [1]. Starting from the very basic equations
of ferrofluids, using the one-point Reynolds decomposition
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method, the authors derived the expression for average dissi-
pation rate of the translational kinetic energy of the fluid, the
rotational kinetic energy of the suspended ferrofluid particles,
and the internal energy. They also identified the terms which
represent the conversion of one type of energy into the other.
The analytical expressions were then numerically calculated
using direct numerical simulation (DNS). The external field
H was assumed to be steady throughout. The effect of a
spatially uniform but oscillating H on homogeneous ferrofluid
turbulence was studied later by the same authors [16] and an
increased rate of energy loss was reported. The study also
showed a direct dependence of turbulent properties on the
oscillation frequency of the external magnetic field and the
choice of magnetization equation. The properties of ferrohy-
drodynamic turbulence in a channel flow under both steady
and oscillating magnetic fields were also studied using DNS
and the results were found to match satisfactorily with the
k − ε model of turbulence adapted to ferrofluids [17].

Despite these extensive studies, to our knowledge, no exact
relation has been derived for homogeneous ferrofluid turbu-
lence using two-point statistics. Exact relations are crucial as
they can directly express the average energy dissipation rate
in terms of two-point fluctuations which corresponds to the
quantities as a function of the length scale. The first exact
relation for incompressible hydrodynamic turbulence was de-
rived by Kolmogorov [18]. Later such exact relations were
derived for incompressible magnetohydrodynamics [19,20]
and also for various types of compressible turbulence [21–23].
Very recently Banerjee and Galtier [24,25] have proposed an
alternative method of derivation of the exact relations. This
method is found to have several advantages and the final
exact relation becomes more compact than the previous ones.
This method was successfully generalized for compressible
turbulence of both neutral and plasma fluids [26].

Following [25,26], in this paper, we derive an exact relation
corresponding to the total energy conservation in the so-
called inertial zone of incompressible ferrofluid turbulence.
The paper is organized as follows. The governing equations
of dynamics are presented in Sec. II. In Sec. III, the total
energy conservation is shown, and Sec. IV contains the de-
tailed derivation of an exact relation using two-point statistics.
Finally in Sec. V, we summarize the results and conclude.

II. BASIC EQUATIONS OF DYNAMICS

The basic equations of dynamics for ferrofluids consist
of the linear momentum equation of the fluid, the internal
angular momentum equation of the suspended ferromagnetic
particles, and the magnetization equation. The governing
equation for linear momentum evolution is derived from the
theory of structured continua [1,3] and can be written as in
the following:

ρ

[
∂u
∂t

+ (u · ∇)u
]

= −∇p + μ∇2u + μ0(M · ∇)H

− ζ∇ × (� − 2ω) + fu, (1)

where ρ is the density of ferrofluid, u the fluid velocity, p
the dynamic pressure, μ the dynamic viscosity, ζ the vortex
viscosity, μ0(M · ∇)H the magnetic body force, μ0 the free

space permeability, M the magnetization vector, H the steady
external magnetic field, ∇ × u = � the vorticity of the fluid,
ω the local ferrofluid rotation rate, and fu the stationary large
scale force. The evolution equation of the internal angular
momentum, which is the total angular momentum minus the
moment of the total linear momentum [3], is given by

ρI

[
∂ω

∂t
+ (u · ∇)ω

]
= η∇2ω + μ0(M × H) + 2ζ (� − 2ω),

(2)

where I is the moment of inertia of ferrofluid particle, η is the
spin viscosity, and μ0(M × H) represents the magnetic body
couple force. In addition to these two equations, we assume
incompressibility which gives ∇ · u = 0. Again Maxwell’s
equations for ferrofluid with no current are written as

∇ × H = 0, ∇ · B = 0; (3)

and the relation between M, H, and B is

B = μ0(H + M). (4)

Now in order to close the system of equations, one needs to
know the evolution equation for M, often called the magne-
tization equation. Including the effect of the magnetic body
couple force in Debye theory [27], for the first time, Shliomis
derived the a magnetization equation for ferrofluids [4], which
can be written as

∂M
∂t

+ (u · ∇)M = ω × M − 1

τ
(M − M0), (5)

where τ is the relaxation time, ω × M represents the rate
of change in magnetization due to rotation of magnetic
particles, and 1

τ
(M − M0) represents the change in mag-

netization towards an equilibrium magnetization (M0) via
relaxation. This equilibrium magnetization is given by

M0 = MsL(ξ )
H
H

, (6)

where

L(ξ ) = coth(ξ ) − 1

ξ
and ξ = μ0mH

kBT
, (7)

and Ms and m are the magnitudes of saturation magnetization
and magnetic moment of a single particle. Several other
magnetization equations were derived later using the Fokker-
Planck equation [8], irreversible thermodynamics [28,29], and
also using general principles without considering the angular
momentum of the suspended ferrofluid particles [30]. All
these models are different from each other (see [31,32]),
and it can be interesting to study their effects in ferrofluid
turbulence. However, in this paper, as a first step, we use
Eq. (5).

III. INVISCID INVARIANCE OF TOTAL ENERGY
IN TURBULENT FERROFLUIDS

A turbulent state is characterized by the scale invariant flux
rate of an inviscid invariant of the flow. An exact relation
of turbulence relates that flux rate to the statistical moments
of two-point increments of various flow and relevant electro-
magnetic fields, often called the structure functions. In this
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section we discuss, in detail, the conservation of total energy
in a turbulent ferrofluidic flow in the limit of infinitely large
Reynolds numbers where the viscosity is negligibly small. For
the current system, the total energy has three components: the
translational kinetic energy of the fluid, the rotational kinetic
energy of the suspended particles, and the internal energy
due to the work done by the ferromagnetic particles under
the influence of the external field. The evolution equation for
translational kinetic energy can be obtained from Eq. (1) as

∂

∂t

(
u2

2

)
+ ∇ ·

(
u2

2
u
)

= −∇ · (pu) + νu · ∇2u

+ 2ζu · (∇ × ω) − ζu · (∇ × �)

+μ0u · (M · ∇)H + u · fu, (8)

and similarly the evolution equation for rotational kinetic
energy is obtained from (2) as

I
∂

∂t

(
ω2

2

)
+ ∇ ·

(
I
ω2

2
u
)

= ηω · ∇2ω + 2ζω · (� − 2ω)

+μ0ω · (M × H), (9)

where we have used the relation ω(u · ∇)ω = u · ∇(ω2/2).
Integrating Eqs. (8) and (9) over the entire volume and adding,
we get

∂

∂t

(∫
u2

2
+ I

ω2

2

)
dV

= −
∫

∇ ·
(

u2

2
+ I

ω2

2
+ p

)
u dV

− ζ

∫
[u · ∇ × (� − 2ω) − 2ω · (� − 2ω)]dV

+
∫ [

νu · ∇2u + ηω · ∇2ω
]
dV

+μ0

∫
[u · (M · ∇)H + ω · (M × H)]dV . (10)

For inviscid limit μ → 0, Schumacher et al. (2003) [14]
estimated that ζ/μ = 0.5 and η = 2 × 10−15 kg m s−1, so
one can reasonably set ζ = 0 and η = 0. By using the Gauss
divergence equation (10), we get

∂

∂t

(∫
u2

2
+ I

ω2

2

)
dV = μ0

∫
u · (M · ∇)HdV

+μ0

∫
ω · (M × H)dV. (11)

Since the external magnetic field is steady, e.g., time inde-
pendent, we have ∂H/∂t = 0. The rate of work done of the
ferrofluid particles due to their orientation towards the state of
minimum potential energy will therefore be [2]

d

dt

∫
W dV

= ∂

∂t

∫
W dV = −

∫
H · ∂B

∂t
dV = −μ0

∫
H · ∂M

∂t
dV

= −μ0

∫
H ·

(
−(u · ∇)M + ω × M − 1

τ
(M − M0)

)
dV

= μ0

∫
∇ · [M(u · H)]dV − μ0

∫
u · (M · ∇)HdV

−μ0

∫
∇ · [(u × M) × H]dV

−μ0

∫
H · (ω × M)dV + μ0

τ

∫
[H · (M − M0)]dV

= −μ0

∫
u · (M · ∇)HdV − μ0

∫
H · (ω × M)dV

+ μ0

τ

∫
[H · (M − M0)]dV , (12)

where the relation H · (u · ∇)M = ∇ · [M(u · H)] − u · (M ·
∇)H − ∇ · [(u × M) × H] is used. The evolution equation
for the total energy, in the inviscid limit, is thus given by

∂

∂t

(∫
u2

2
+ I

ω2

2

)
dV − ∂

∂t

∫
W dV

= ∂

∂t

(∫
u2

2
+ I

ω2

2
− μ0H · M

)
dV

= −μ0

τ

∫
H · (M − M0)dV. (13)

In general M �= M0. Therefore, for the total energy to be
an inviscid invariant, we should have τ → ∞ when μ →
0. The magnetization of a colloidal ferrofluid particle can
relax through particle rotation (Brownian relaxation) or by the
rotation of the magnetization vector due to thermal fluctuation
inside the particle (Néel relaxation) [2]. In the current study,
we only consider a dilute solution of ferrofluid particles of size
greater than 10 nm and assume that the particle magnetic mo-
ment is not varying much with thermal fluctuation. As a result,
the Néel mechanism is practically blocked and the effective
relaxation time is determined by the Brownian relaxation time
τB [1,4,33]. For a laminar flow where the drag force is mainly
coming from viscous drag F v = 6πμru [34], with r being the
radius of the particle, the Brownian relaxation time becomes

τ v
B = 3

Vpμ

kBT
≈ τ, (14)

where Vp is the hydrodynamic volume of the magnetic particle
and kBT is the thermal energy. In the limit μ → 0, hence we
have τ → 0 which, in turn leads to a state of near equilib-
rium with M → M0, thereby rendering the right-hand side of
Eq. (13) a nonzero finite value. This indicates a finite energy
leakage of the ferrofluid flow in the laminar limit. Surprisingly
previous studies of turbulent ferrofluids [1,14] used viscous
Brownian time τ v

B for their study. This problem is addressed
in the current work by simply replacing the viscous drag by
turbulent drag force which is given by [34,35]

Ft = 1
2ρu2Cd A, (15)

where Cd is the drag coefficient which is more or less constant
at high Reynolds number and A is the cross-sectional area.
The Einstein equation for Brownian relaxation time is then
modified as

τ t
B = ρ�2uCd A

4kBT
. (16)
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Here relaxation time (τ ≈ τ t
B) is directly proportional to the

velocity, which is very high for very large Reynolds number.
So in turbulent regime, τ becomes very large and 1

τ
becomes

negligibly small. As a result the relaxation process becomes
very slow and hence M will be tending to M0 slowly. This
renders (M − M0) a moderate finite value and makes the ratio
M−M0

τ
negligibly small. Then the right-hand term of Eq. (13)

becomes negligibly small and the resulting magnetization
equation becomes:

∂M
∂t

+ (u · ∇ )M = ω × M (17)

and guaranteeing the inviscid invariance of the total energy in
a turbulent regime as

∂

∂t

∫ (
u2

2
+ I

ω2

2
− μ0H · M

)
dV = 0. (18)

IV. DERIVATION OF EXACT RELATION

It is important to note that μ0(H · M) is not the work done
by the magnetic field. Since here the magnetic field H is time
independent, the time rate of the magnetic energy density is
equal (as shown above) to the time rate of μ0(H · M). Because
in the derivation of the exact relation, one is particularly inter-
ested in the time rate of the two-point correlation functions
of the inviscid invariants, the two-point symmetric correlation
function of energy [25] for the current case can be written as

R = RE + R′
E

2

= 1

2
〈u · u′ + Iω · ω′ − μ0(H · M′ + H′ · M)〉, (19)

where unprimed and primed quantities represent the variables
at the point x and x′(≡ x + r) respectively. The evolution
equation of the correlation function by using the basic equa-
tions of dynamics [25] is

∂R
∂t

= 1

2

∂

∂t
〈u · u′ + Iω · ω′ − μ0(H · M′ + H′ · M)〉

= 1

2
〈(u × �) · u′ + (u′ × �′) · u − I (u · ∇)ω · ω′ − I (u′ · ∇′)ω′ · ω〉

+ 1

2
μ0〈(M × H) · ω′ + (M′ × H′) · ω − H′ · (ω × M) − H · (ω′ × M′) + u · (M′ · ∇′)H′〉

+ 1

2
μ0〈u′ · (M · ∇)H + H′ · (u · ∇)M + H · (u′ · ∇′)M′〉 + Du + Dζ + Dw + Fu, (20)

where Du, Dw represent kinematic viscous dissipation, Dζ represents vortex dissipation, and Fu represents the forcing
contribution, and are given below:

Du = ν

2
〈u · ∇′2u′ + u′ · ∇2u〉, (21)

Dζ = −ζ

2
〈u′ · ∇ × �r + u · ∇′ × �′

r − 2(ω′ · �r + ω · �′
r )〉, (22)

Dw = η

2
〈ω′ · ∇2ω + ω · ∇′2ω′〉, (23)

Fu = 1

2
〈u · f ′

u + u′ · fu〉, (24)

where �r = � − 2ω. For incompressible and statistical homogeneous systems we can show the relations 〈∇ · ( u2

2 u′)〉 =
〈∇′ · ( u2

2 u′)〉 = 0 and 〈u′ · ∇p〉 = 〈∇ · (pu′)〉 = 〈∇′ · (pu′)〉 = 0. Using statistical homogeneity, one can prove that

〈(u × �) · u′ + (u′ × �′) · u〉 = −〈δ(u × �) · δu〉, (25)

〈M × H) · ω′ + (M′ × H′) · ω − H′ · (ω × M) − H · (ω′ × M′)〉
= 〈δH · δ(ω × M)〉 − 〈δω · δ(M × H)〉, and (26)

〈−(u · ∇)ω · ω′ − (u′ · ∇′)ω′ · ω〉 = 〈δω · δ((u · ∇)ω)〉, (27)

where for any field ψ, δψ ≡ ψ′ − ψ, and by the incompressibility condition, we have 〈ω · (u · ∇)ω〉 = 〈u · ∇( ω2

2 )〉 =
〈∇ · ( ω2

2 u)〉 = 〈∇′ · ( ω2

2 u)〉 = 0. Again we can show

〈δu · δ((M · ∇)H)〉 = 〈(u′ − u) · [(M′ · ∇′)H′ − (M · ∇)H]〉
= 〈u′ · (M′ · ∇′)H′ − u · (M′ · ∇′)H′ − u′ · (M · ∇)H + u · (M · ∇)H〉, and (28)

〈δH · δ((u · ∇)M)〉 = 〈(H′ − H) · [(u′ · ∇′)M′ − (u · ∇)M]〉
= 〈H′ · (u′ · ∇′)M′ − H · (u′ · ∇′)M′ − H′ · (u · ∇)M + H · (u · ∇)M〉

053105-4



DETERMINATION OF ENERGY FLUX RATE IN … PHYSICAL REVIEW E 100, 053105 (2019)

= 〈∇′ · [(M′ · H′)u′] − M′ · (u′ · ∇′)H′ − H · (u′ · ∇′)M′ − H′ · (u · ∇)M〉
+ 〈∇ · [(M · H)u] − M · (u · ∇)H〉. (29)

Adding Eqs. (28) and (29), one can get

〈δu · δ((M · ∇)H) + δH · δ((u · ∇)M)〉
= 〈−u · (M′ · ∇′)H′ − u′ · (M · ∇)H〉

+ 〈−H · (u′ · ∇′)M′ − H′ · (u · ∇)M + u′ · (M′ · ∇′)H′ − M′ · (u′ · ∇′)H + u · (M · ∇)H〉
+ 〈−M · (u · ∇)H + ∇′ · [(M′ · H′)u′] + ∇ · [(M · H)u]〉

= 〈−u · (M′ · ∇′)H′ − u′ · (M · ∇)H − H · (u′ · ∇′)M′ − H′ · (u · ∇)M + ∇ · [(M · H)u]〉
+ 〈∇′ · [(M′ · H′)u′] + (M × u) · (∇ × H) + (M′ × u′) · (∇′ × H′)〉

= 〈−u · (M′ · ∇′)H′ − u′ · (M · ∇)H − H · (u′ · ∇′)M′ − H′ · (u · ∇)M〉, (30)

where we have used the following identities:

∇ · [(M · H)u] = M · (u · ∇)H + H · (u · ∇)M, (31)

〈∇ · [(M · H)u]〉 = −∇l · 〈(M · H)u〉 = 〈∇′ · [(M · H)u]〉 = 0, and (32)

u · (M · ∇)H − M · (u · ∇)H = (M × u) · (∇ × H) = 0. (33)

Combining Eqs. (25), (26), (27), and (30) and putting them together in Eq. (20), we get

∂R
∂t

= 1

2
〈−δ(u × �) · δu + Iδω · δ((u · ∇)ω) + μ0[δH · δ(ω × M) − δω · δ(M × H)]〉

− 1

2
μ0〈δu · δ((M · ∇)H) + δH · δ((u · ∇)M)〉 + Dw + Dζ + Du + Fu. (34)

For the statistical stationary state ∂t (RE + R′
E ) = 0 and for the inertial range we can neglect the effect of dissipation and we

finally derive the following exact relation:

2ε = 〈δ(u × �) · δu − Iδω · δ((u · ∇)ω) + μ0[δu · δ((M · ∇)H) + δH · δ((u · ∇)M)

− δH · δ(ω × M) + δω · δ(M × H)]〉, (35)

where ε = Fu, is the mean energy flux rate. Note that the
cascading energy is injected through a large scale forcing fu

which has a larger correlation length than the length scales in-
side the inertial zone and the correlation length of correspond-
ing velocities. Therefore, within the scale range of the inertial
zone, using statistical homogeneity, one can approximately
write ε(r) = Fu = 〈u · f ′

u + u′ · fu〉/2 ≈ 〈u · fu + u′ · f ′
u〉/2 =

〈u · fu〉 = ε(0), which is the one-point energy flux rate (see
[36,37]). Equation (35) is the central result of this paper.
This expresses the average flux rate of total energy (ε) for
completely developed turbulence in an incompressible fer-
rofluid in terms of two-point increments of different fluid and
electromagnetic field variables.

V. DISCUSSION

A. Different limits

In the following, we shall check some known limits using
the above exact relation:

(1) For zero external magnetic field, i.e., H = 0, the exact
relation (35) reduces to

〈δ(u × �) · δu − Iδω · δ((u · ∇)ω)〉, (36)

which shows that in the absence of a magnetic field, the
ferrofluid behaves like a neutral fluid with suspended particles

having internal rotational degrees of freedom. Note that this
rotational degrees of freedom brings forth internal angular
momentum by virtue of the external magnetic field and the
fluid vorticity. For the case with H = 0, the only contribution
to ω comes from the fluid vorticity. If in addition, the moment
of inertia I is also very small then the term Iδω · δ((u · ∇)ω) is
negligible, so Eq. (36) becomes ε = 1

2 〈δ(u × �) · δu〉, which
is identical to the alternative form of exact relation for incom-
pressible hydrodynamic turbulence as derived by Banerjee
and Galtier [25].

(2) For M = 0, we have exactly the same case and Eq.(35)
also reduces to Eq. (36).

(3) When magnetic moments of particles align towards the
external magnetic field, one can write M ∝ H or M = αH,
here α is a proportionality variable, then M × H = 0. If α is
constant, then 〈δu · δ((M · ∇)H)〉 = 0. Hence in Eq. (35) only
terms δ(u × �) · δu, δω · δ((u · ∇)ω), δH · δ((u · ∇)M), and
δH · δ(ω × M) survive, of which the last two terms represent
the settling of the magnetic particles.

B. Other features and perspective

We see that the M × H, M × ω, and the Lamb vector
� × u play the key roles in energy cascading. For different
types of aligned flow states, some or all of them can vanish.
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For example, for Beltrami flows where the fluid velocity
u and fluid vorticity � are collinear, the contribution of
δ(u × �) in Eq. (35) goes away and the same will apply
for other aligned cases where M ‖ H, which means that the
total magnetization vector is aligned to the external magnetic
field and also for M ‖ � where the individual particle spin
direction is aligned to the total magnetization. It is therefore
clear that with each type of alignment, there is a partial
suppression of the turbulent contribution to the energy flux
rate. Future work can be proposed to derive this type of exact
relation for other types of magnetization equations, using a

time-varying external magnetic field and adding compress-
ibility to the ferrofluid. This type of relation can be verified
using properly designed laboratory experiment or numerical
simulations.
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