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Stability of a jet moving in a rectangular microchannel
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We study numerically the basic flow and linear stability of a capillary jet confined in a rectangular
microchannel. We consider both the case where the interface does not touch the solid surfaces and that in which
the jet adheres to them with a contact angle slightly smaller than 180◦. Given an arbitrary set of values of the
governing parameters, the fully developed (parallel) two-dimensional basic flow is calculated and then the growth
rate of the dominant perturbation mode is determined as a function of the wave number. The flow is linearly
stable if that growth rate is negative for all the wave numbers considered. We show that when the coflowing
stream viscosity is sufficiently small in terms of that of the jet, there is an interval of the flow rate ratio Q for
which the jet adheres to the walls or not depending on whether the flow is established by decreasing or increasing
the value of Q. When the distance between the interface and the channel wall is of the order of the jet radius,
the jet is unconditionally unstable. However, for sufficiently small interface-to-wall distances, the viscous stress
can dominate the capillary pressure and fully stabilize the flow. Our results suggest that the capillary modes are
suppressed and the flow becomes stable when the jet adheres to the channel walls. The combination of the above
results indicates that, under certain parametric conditions, stable or unstable jets can be formed depending on
whether the experimenter sets the flow rate ratio by decreasing or increasing progressively the jet flow rate while
keeping constant that of the outer stream. Our theoretical predictions for the stablity of a coflow in a rectangular
channel are consistent with previous experimental results [Humphry et al., Phys. Rev. E 79, 056310 (2009)].
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I. INTRODUCTION

The stability of confined capillary jets is of great interest at
both fundamental and practical levels, especially in channels
with noncircular cross sections, which are commonly used
in microfluidics [1]. For instance, technologies like those in-
volving high-throughput screening of chemical and biological
processes critically rely on the controlled drop formation and
manipulation. In addition, stable coflows are more efficient
than confined droplet flows to transport fluids over long
distances due to the reduction of friction. The confinement
of the liquid thread is expected to play a relevant role in the
jet breakup both during the growth of the small-amplitude
perturbations triggering the process and during the final non-
linear phase of the breakup. An interesting example of this
is the droplet-to-string transition taking place in concentrated
polymer blends flowing between parallel surfaces when the
size of the droplets becomes comparable to the gap width
between those surfaces [2].

The capillary instability of a fluid thread has been known
for a long time [3]. The pioneering works conducted by
Plateau [4] and Rayleigh [5] for jets moving in a passive

ambient were generalized by Tomotika [6] for fluid threads
surrounded by coflowing viscous streams much wider than
those threads. Most theoretical works on the stability of
confined capillary jets have considered the circular geometry.
Hickox [7] studied analytically the stability of the pressure-
driven jet in a tube for infinitely small wave numbers. The flow
was found to be unstable under axisymmetric perturbations
in all the cases considered [7]. Guillot et al. [8] analyzed
the convective-to-absolute instability transition in this config-
uration for low Reynolds numbers. The flow was unstable,
and the dripping and jetting experimental realizations approx-
imately corresponded to convective and absolute instability,
respectively. Neglecting the angular dependence of the pertur-
bations, Guillot et al. [9] examined the linear stability of a jet
in a rectangular channel and found that absolute instability
was enhanced by the channel corners. Janssen et al. [10]
studied numerically the growth of small-amplitude varicose
perturbations in jets flowing between parallel surfaces. Con-
finement did not completely stabilize the jet in any of the cases
considered.

There are very few configurations where the capillary
instability in cylindrical jets can be completely suppressed.
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FIG. 1. The two possible configurations depending on whether the jet touches the solid surfaces or not: the nonadhering (a) and the adhering
(b) configuration.

The temporal linear stability analysis shows that an external
shear flow [11] or the existence of a solid core [12] can
produce this effect. When the jet adheres to a solid surface,
it forms a rivulet. Rivulets with anchored triple contact lines
and contact angles less than 90◦ can be stabilized by the solid
surface [13]. This fact suggests that jets flowing between two
parallel surfaces may become stable if they manage to adhere
to those surfaces. Using the same approach as that of Hickox
[7], Kashid et al. [14] found certain parameter conditions for
which a jet confined in a circular tube becomes stable under
perturbations with infinitely small wave numbers. In principle,
this implies that the capillary instability is completely sup-
pressed under those conditions because the damping of per-
turbations for vanishing wave number is typically a sufficient
condition for stability.

Experiments have systematically shown that jets coflowing
with other liquids in wide channels [15] or in cylindrical
capillaries [16] are unconditionally unstable, the question is
whether the nature of that instability is absolute or convec-
tive [17]. Cubaud and Mason [18] examined the evolution
of threads surrounded by less viscous immiscible liquids in
square microchannels. The threads broke up into droplets due
to the capillary instability in all the cases considered. The
experimental analysis of Geschiere et al. [19] suggests that
confinement can slow down the growth of capillary pertur-
bations but their complete suppression requires the contact
between the jet and at least one of the channel walls.

There have also been experimental realizations where a
confined jet seems to remain stable over time and length
scales much larger than those characterizing the configuration.
Humphry et al. [20] and de Saint Vincent et al. [21] studied
experimentally the stability of a liquid jet coflowing with an
immiscible liquid current inside a microfluidic channel whose
width was considerably larger than its height. Hydrodynamic
instabilities were not observed throughout the channel when
the inner liquid width was comparable to or larger than the
channel height. In the experiments conducted by Son et al.
[22], polymeric threads moving between parallel surfaces
adopted noncylindrical shapes and were found to be stable
for sufficiently small values of the ratio between the channel
height and the thread diameter. The step-emulsification in a
shallow microchannel shows that the jet can remain stable
until it reaches the reservoir, although the small distance
between the jet inlet and that reservoir does not allow one to
determine whether the former is stable [23].

Despite its relevance, the hydrodynamic linear stability
analysis of a liquid capillary jet in a rectangular microchannel
has not been carried out yet, probably due to the difficulties
associated with the spatial dependence of the base flow over
the microchannel cross section. Apparently, the fundamental
question of whether the channel can completely suppress the
capillary perturbations in a fully developed (parallel) flow has
been addressed only by Hickox [7] and Kashid et al. [14] for
infinitely small wave numbers, who came to different conclu-
sions. On the other hand, experiments cannot give a definitive
answer to that question because (i) the fully developed flow
condition cannot be easily achieved, (ii) perturbations with
very small growth rates are very difficult to detect, and (iii)
wetting phenomena cannot be completely ruled out. In fact,
submicrometer films can form between a liquid jet and the
channel wall when the diameter of the former exceeds the
height of the later [24]. The existence of those films or, on
the contrary, the adhesion of the jet to the channel cannot be
ensured with the image acquisition systems typically used in
experiments.

In this work, we will conduct the temporal linear stabil-
ity analysis of the fully developed flow produced when a
pressure-driven jet coflows with a liquid stream in a rectan-
gular microchannel, considering both the nonadhesion and
adhesion configurations in which the jet does not touch and
slips over the channel wall, respectively. The base flow and its
eigenmodes will be calculated numerically for arbitrary values
of the governing parameters.

II. BASE FLOW AND LINEAR STABILITY ANALYSIS

A. Formulation of the problem

Consider an infinite jet of radius R, density ρ1, and vis-
cosity μ1 moving inside a rectangular channel of width 2w

and height 2h [Case (a) of Fig. 1]. The jet coflows with an
outer liquid stream of density ρ2 and viscosity μ2. The surface
tension of the interface between the two liquids is σ . Because
of the jet’s submillimeter size, gravity effects are neglected.
The flow rates of the inner and outer phases are Q1 = A1W1

and Q2 = (4wh − A1)W2, respectively, where A1 is the jet
cross-sectional area, and W1 and W2 are the mean velocities
in the jet and the outer phase, respectively. We will suppose
that the unperturbed flow is fully developed, i.e., parallel to
the channel axis and driven by a constant pressure gradient
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FIG. 2. Sketch of a cross section of the configuration (b) of
Fig. 1. R is the radius of curvature of the interface.

P̂ . Under these conditions, the interface curvature must be
constant. Otherwise, the pressure would not be uniform over
the jet and outer stream cross sections, and the velocity field
would have nonzero components along that plane. In other
words, the existence of a noncircular jet in a rectangular
microchannel is not compatible with the condition of fully
developed flow.

For large-enough values of the flow rate ratio Q ≡ Q1/Q2,
the jet touches and adheres to the upper and lower channel
walls [Case (b) of Fig. 1]. In this case, the liquid-liquid
interface forms a contact angle θc with the wall at a distance
d from the vertical symmetry plane (Fig. 2). We will restrict
ourselves to θc � π/2 because the inner phase does not wet
the channel walls in most microfluidic experiments. As in the
nonadhesion configuration, we will assume fully developed
flow with a constant interface radius of curvature R. As
discussed by Dussan [25], the unpertubed contact angle θc

takes a value within the interval bounded by the receding
and advancing contact angles characterizing a real surface.

The triple contact line is pinned to the solid surface for
contact angles in that interval. Linear perturbations produce
infinitesimal variations around θc. Therefore, the triple contact
line remains still during the evolution of those perturbations as
long as there is a finite difference between the receding and
advancing contact angles, independently of how small that
difference could be. For this reason, we will adopt the triple
conctant line anchorage condition in our analysis.

We selected a coordinate system with the z axis parallel
to the jet and the origin located at the center of the channel
(Fig. 2). When the jet does not touch the channel walls,
the velocity v( j)(r; t ) = U ( j)(r, θ, z; t )er + V ( j)(r, θ, z; t )eθ +
W ( j)(r, θ, z; t )ez and pressure P( j)(r, θ, z; t ) fields are de-
scribed in terms of the cylindrical coordinate system
(er, eθ , ez). Hereafter, the superscripts j = 1 and 2 refer to
the jet and coflowing stream domains, respectively. In the
adhering configuration, the problem is formulated in terms of
a Cartesian coordinate system, which is more convenient for
numerical purposes. For the sake of brevity, in the next section
we write the equations only in the cylindrical coordinate sys-
tem. The interface location is given by the function F (θ, z; t ),
which measures the distance between a surface element and
the z axis (Fig. 2).

B. Governing equations

In what follows, all the quantities are made dimensionless
using h, W1, and ρ1W 2

1 as the characteristic length, veloc-
ity, and pressure, respectively. Consequently, we define the
channel aspect ratio ω ≡ w/h, the density and viscosity ratios
ρ ≡ ρ2/ρ1, μ ≡ μ2/μ1, the Reynolds and Weber numbers
Re ≡ ρ1W1h/μ1 and We ≡ ρ1W 2

1 h/σ , the dimensionless ra-
dius R ≡ R/h, and triple contact line position δ ≡ d/h.

The velocity and pressure fields are calculated from of the
(incompressible) Navier-Stokes equations
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where �i j is the Kronecker delta and the subscripts denote the
partial derivative with respect to the corresponding variable.
Equations (1)–(4) are integrated considering the kinematic
compatibility condition

Ft − U ( j) + Fθ

F
V ( j) + FzW

( j) = 0, (5)

and the equilibrium of both normal and tangential stresses,

P(1) + n · τ (1) · n = P(2) + n · τ (2) · n + We−1∇ · n, (6)

t1 · τ (1) · n = t1 · τ (2) · n, (7)

t2 · τ (1) · n = t2 · τ (2) · n, (8)

at the interface position r = F (θ, z; t ). Here τ (1) = Re−1ε(1)

and τ (2) = μRe−1ε(2) stand for the viscous stress tensor eval-
uated at the jet and coflowing stream sides of the interface,
respectively, while ε(1) and ε(2) are the corresponding values
of the strain rate tensor. In addition, n, t1, and t2 are the normal
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and two orthogonal tangential unit vectors with respect to the
interface, respectively.

In the adhering configuration, the triple contact lines re-
main fixed during the evolution of the linear pertubations
analyzed in this work, which implies that F (θ, z; t ) = (1 +
δ2)1/2 for θ = ± arctan(δ−1) and any value of z and t . Finally,
nonslip and symmetry boundary conditions are prescribed
at the two solid surfaces and the planes θ = 0 and π/2,
respectively.

As can be seen, the solution {v( j)(r; t ), P( j)(r; t ), F (θ, z; t )}
of the governing equations is obtained in terms of the dimen-
sionless parameters {ω, ρ, μ, Re, We}, and the position δ of
the triple contact line in the adhesion case. The formulation of
the problem is closed by imposing the dimensionless volume
of the inner phase. This volume is univocally determined
by R and {θc, δ} in the nonadhesion and adhesion cases,
respectively. The flow rate ratio Q ≡ Q1/Q2 is a function of
the above parameters.

C. Basic flow

The basic solution of the problem described above is the
parallel flow given by the expressions v0

( j) = W ( j)
0 (r, θ )ez and

P( j)
0 (z) = P̂( j)

0 − Pz, where P̂(1)
0 = 1/(RWe) and P̂(2)

0 = 0 are
the pressures at the section z = 0 on the inner and outer
sides of the interface, respectively, and P ≡ P̂/(ρ1W 2

1 ) is the
dimensionless pressure gradient. The interface contour F0(θ )
is given by the functions F0(θ ) = R and

F0(θ ) = [1 − δ2 − 2δ tan θc + (δ + tan θc)2 cos2 θ ]1/2

+ (δ + tan θc) cos θ (9)

in the nonadhesion and adhesion cases, respectively. The
functions W ( j)

0 (r, θ ) verify the Poisson equations
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for the jet and coflowing stream domains. Both the velocity
and tangential stresses are continuous functions across the
interface, i.e.,
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where a = √
1 + b2, b = −F ′

0/F0, and the prime denotes the
derivative with respect to θ . Finally, the nonslip boundary
condition is prescribed at the solid walls, while the velocity
is a symmetric function with respect to the planes θ = 0 and
π/2.

Once the inner phase volume has been prescribed through
either R or {θc, δ}, the product PRe in Eq. (10) can be
calculated as a function of the aspect and viscosity ratios
ω and μ exclusively. Specifically, the value of PRe is that
leading to an average inner velocity equal to unity. It must be
noted that the Weber number only affects the jump of pressure
across the interface due to the surface tension, and, therefore,
it does not affect the velocity field. In sum, the basic flow can
be determined from the numerical integration of the above

equations as a function of {ω,μ, [R or (θc, δ)]} exclusively.
The flow rate ratio Q is a function of those parameters.

One may gain insight into the system behavior by consid-
ering the limiting case R → 1, where the cylindrical interface
almost touches the solid wall. In this situation, the limits
μ → 0 and μ → ∞ deserve special attention. For μ → 0
[and W (2)

0 (r, θ ) finite], Eq. (10) for j = 2 yields −PRe →
0. Substituting this result into Eq. (10) for j = 1 leads to
W (1)

0 (r, θ ) → 1, which indicates that the jet tends to move as
a solid body when its viscosity is much higher than that of
the outer phase. Assume that this limit is reached in the way
−PRe → Cμ, where C is a function of the aspect ratio ω.
Considering again Eq. (10) for j = 2, one concludes that the
outer velocity field corresponds to a Poiseuille-Couette flow
driven by both the effective pressure gradient C(ω) and the
drag exerted by the inner jet, which moves as a solid body in
this limit. In this scenario, one expects the flow rate ratio Q to
become a function of the aspect ratio ω exclusively. However,
a jet approaching the wall while moving as a solid body would
make the viscous stress diverge in the gap enclosed by the jet
and the wall because the outer stream velocity would have to
evolve from 1 at the interface to 0 at the solid wall within
a vanishing distance. For this reason, the jet velocity in the
vicinity of the wall must decrease as R → 1, no matter how
large the inner viscosity is. This effect makes Q decrease in the
limit R → 1 for any finite value of μ. We will describe this
effect in more detail from the numerical solution in Sec. III A.
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For μ → ∞ [and W (1)
0 (r, θ ) finite], Eq. (13) together with

the nonslip boundary condition at the solid wall yield
W (2)

0 (r, θ ) → 0, which indicates that the outer phase behaves
a solid wall at rest. In this case, the inner velocity field tends
to the cylindrical Poiseuille flow powered by the pressure
gradient −PRe = 8, where we have taken into account that
the average inner velocity equals unity. Substituting this result
into Eq. (10) for j = 2 leads to W (2)

0 (r, θ ) ∝ μ−1, which
implies that Q → f (ω)μ in this limit. The validity of this
asymptotic analysis will be confirmed by the numerical simu-
lations.

D. Temporal linear stability analysis

In order to study the stability of the basic flow described
in the previous section, we consider the infinitesimal pertur-
bations defined by the following expression:⎡⎢⎢⎢⎣
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where k and 	 = 	r + i	i are the axial (real) wave number
and frequency, respectively. The unit vector normal to the
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interface is perturbed accordingly:

n = n0 + ñ, ñ = n∗ exp [i(kz − 	t )],

n∗ =
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where n0 is the unit vector perpendicular to the unperturbed
interface shape.

If one introduces Eq. (14) into the incompressible Navier-
Stokes equations (1)–(4), and neglects nonlinear terms, then
the result is
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0 ], ∇̂2 = ∂2/∂r2 + r−1∂/∂r − k2 + r−2∂2/∂θ2.

Equations (16)–(19) must be solved subject to the following boundary conditions. At the unperturbed interface position
r = F0(θ ), the kinematic compatibility condition verifies
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The anchorage f = 0 and nonslip u( j) = v( j) = w( j) = 0
boundary conditions are imposed at the solid walls and the
triple contact lines, respectively.

The solution of the temporal linear stability anal-
ysis is obtained in terms of the set of parameters
{ω, ρ,μ, Re, We, [R or (θc, δ)]}. As can be observed, the
density ratio, as well as the Reynolds and Weber numbers,
come into play essentially due to the fluid particle acceler-
ation and capillary pressure variation arising in the pertur-
bation. To carry out the stability analysis, the basic flow is
calculated by solving the Poisson equations (10) with the
corresponding boundary conditions. This solution is used
in the linearized problem to get a homogeneous system of
equations whose solvability condition leads to the dispersion
relation D(k,	) = 0. The solutions of this relation for a given
wave number k are the eigenfrequencies of the corresponding

modes. There are infinite modes for a given choice of the
governing parameters. The dominant mode is that with the
largest value of 	i. If the dominant growth rate is positive
for some value of k, then the system is linearly unstable.

Both the basic flow and linear perturbations are calculated
numerically. To reduce the computing time, we only consider
a quarter of the channel section and impose symmetry condi-
tions on the horizontal and vertical midplanes. Therefore, in-
stabilities that do not exhibit this symmetry are not taken into
account. The jet and coflowing stream domains are mapped
onto fixed quadrangular domains through a coordinate trans-
formation. The equations are discretized in the radial direction
by expanding the fields in terms of truncated Chebyshev series
[26]. The angular derivatives were calculated with fourth-
order central finite differences using uniformly distributed
points. Both the fluid domain mapping and the spectral
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FIG. 3. Details of the grid used in one of the cases considered in
this work.

discretization accumulate the grid points in the vicinity of
the free surface and solid walls, where larger gradients of the
hydrodynamic fields are expected. This discretization method
allows one to get very accurate results with a reduced number
of grid points. More details of the numerical method can be
found in Ref. [27]. We verified that neither the basic flow
nor its eigenmodes significantly changed when the number
of grid points was considerably increased. Specifically, when
the number of grid points was doubled in the nonadhering
configuration, the variation of the growth rate was smaller
than 1% in most cases. This variation increased up to values
slightly smaller than 7% for 10−5 � 	i � 10−3. When the
number of grid points was multiplied by a factor 1.5 in the
adhering configuration, the variation of the growth rate was
smaller than 5% in most cases. Figure 3 shows the grid used
to analyze one of the cases considered in this work.

III. RESULTS

A. The basic flow

In this section, we study the basic flow in both the
nonadhering and adhering configurations. In the latter case,
and given the large dimension of the parameter space, we
will restrict ourselves to nonwetting conditions (θc � 180◦)
commonly observed in experimental realizations. Following
Humphry et al. [20], we will consider in Figs. 4–6 a large

FIG. 4. Velocity isocontours for the nonadhesion case with R =
0.99 (upper graph) and the adhesion configuration with δ = 0.01
and θc = 179.99◦ (lower graph). The red circle corresponds to the
interface. In both cases, the aspect and viscosity ratios are ω = 20
and μ = 0.08.

value of the aspect ratio ω. Figure 4 shows the velocity
isocontours for both a nonadhesion case and an adhesion
configuration. Given the large value of the jet viscosity as
compared with that of the outer stream, the jet acts like a
solid wall splitting the channel into two parts. In each of
those two parts, the velocity field corresponds approximately
to the Poiseuille flow in a rectangular channel because the jet
velocity is much smaller than that of the coflowing current.
When the jet touches the wall, the velocity decreases next to
the wall and at the interface around y = 0.

Figure 5 shows the dependence of the flow rate ratio Q with
respect to the jet radius R and the triple contact line position δ

in the nonadhering and adhering configurations, respectively.
We consider a moderately large value of μ in Fig. 5(a). In
this case, one observes the expected simple behavior: The flow
rate ratio Q increases monotonously with R and δ due to the
increase of the jet cross-sectional area. The transition from the
adhesion to the nonadhesion configuration takes place at
the critical flow rate ratio Q∗.

In Fig. 5(b), we analyze what occurs for a small value of the
viscosity ratio μ. The left side of the figure shows the viscosity
effect anticipated in the asymptotic analysis for R → 1 and
μ → 0 (see Sec. II C). The jet moves approximately like a
solid body because its viscosity is much higher than that of
the outer phase. The flow rate ratio Q increases with R for
R < 0.85 due to the increase of the jet cross-sectional area.
For R > 0.85, viscous stresses in the thin fluid layer located
between the jet and the wall blow up because the outer stream
velocity has to evolve from 1 at the interface to 0 at the
wall within a vanishing distance. These stresses manage to
curb the jet in that region in spite of its large viscosity. As
a consequence, the inner flow rate (and therefore Q) slightly
decreases as R increases even though the jet cross-sectional
area continues increasing. We denote by Qmax the maximum
flow rate ratio that can be reached in the nonadhering config-
uration. The flow rate Qmax can be exceeded in the adhering
configuration for sufficiently large values of the triple contact
line position δ. The value Q∗ is the critical flow rate ratio
for which the jet adheres to the wall, i.e., for which the jet
becomes tangent to the wall (R = 1). Interestingly, two jet
radii are compatible with the prescribed value of Q in the
interval between Q∗ and Qmax, which prevents one from using
Q as a control parameter in a strict sense. In the adhesion
configuration, one observes a similar effect to that described
above for the free evolving jet. As δ decreases, the inner
flow rate decreases down to its minimum value Qmin due to
the reduction of the jet cross-sectional area. However, the
friction force exerted by the wall on the inner phase decreases
with δ. For δ < 0.1, the second effect overcomes the first,
and the flow rate transported by the jet slightly increases
as δ decreases. The triple contact line position becomes a
multivalued function of the flow rate ratio for small values
of δ, and, therefore, Q cannot be used as a control parameter
in this case either. We finally conclude that

(a) For Q < Qmin, the jet cannot touch the channel walls
(b) For Q > Qmax, the jet necessarily adheres to those

walls
(c) For Qmin < Q < Qmax, the system may adopt a state or

another depending on whether the basic flow was reached by
decreasing or increasing Q (hysteresis effect).
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QQ

Q

FIG. 5. Flow rate ratio Q as a function of the jet radius R for the nonadhesion case (a) and the triple contact line position δ for the adhesion
configuration (b). In the latter case, θc = 179.99◦. The viscosity ratios are μ = 0.5 (a) and 0.08 (b). In both cases, the aspect ratio is ω = 20.

To better explain the nonmonotonous behavior of the
curves Q(R) and Q(δ) observed for small values of μ

[Fig. 5(b)], we plot in Fig. 6 the velocity profiles along the
horizontal and vertical symmetry planes for the viscosity and
aspect ratios considered in Fig. 5(b). These profiles have been
made dimensionless using the characteristic velocity W1c =
P̂h2/μ1. In this way, one can analyze the effect of increasing
the jet cross-sectional area while keeping the magnitude of
the driving force. Figure 6(a) shows the results for the non-
adhering case with R = 0.9 and 0.99. As can be observed,
the jet velocity profile significantly decreases when R slightly
increases due to the sharp increase of the viscous stresses in
the gap between the jet and the wall channel. The percentage
reduction of the outer stream velocity is much smaller (the
velocity profile hardly changes for x � 5), and, therefore, the
flow rate ratio Q = Q1/Q2 decreases despite the increase of
the jet cross-sectional area. A similar phenomenon occurs
when the jet adheres to the channel wall [Fig. 6(b)] and δ

increases from 0.1 to 0.01.

Figure 7 shows the “phase diagram” of the fluid system
analyzed in this work. The curves Q∗(ω,μ) of the transitional
flow rate ratio have been obtained by setting R = 0.99995
for the nonadhesion case. We have verified that the results
practically coincide with those calculated by setting δ =
0.0001 in the adhesion configuration. As predicted by the
asymptotic analysis (see Sec. II C), Q∗ → f (ω)μ for large-
enough values of μ. The figure also shows the maximum
and minimum flow rate ratios, Qmax(ω,μ) and Qmin(ω,μ),
for the nonadhesion and adhesion cases, respectively. These
curves merge with those of the transitional flow rate ra-
tio, Q∗(ω,μ), for sufficiently large values of μ. The in-
terval length Qmax − Qmin increases as the channel aspect
ratio increases and the viscosity ratio decreases. The curves
Qmax(ω,μ) correspond to the simple scenario expected where
the viscosity effects described above (Fig. 5) are not con-
sidered. In this case, Qmax becomes independent from μ in
the limit μ → 0, as predicted by the asymptotic analysis in
Sec. II C.
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0 1 2y

W
(j)
/W
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x
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10
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0.1W
(j)
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x
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FIG. 6. Velocity profiles along the x and y axes both inside the jet (black solid lines) and in the outer stream (blue dashed lines). The graphs
(a) and (b) correspond to nonadhering and adhering configurations, respectively. The viscosity and aspect ratios are μ = 0.08 and ω = 20,
respectively. In graph (b), θc = 179.99◦.
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FIG. 7. Phase diagram of the fluid system analyzed in this
work. The solid lines are the boundaries Q∗(ω,μ) separating the
nonadhering and adhering configurations. The dotted and dashed
lines correspond to the maximum and minimum flow rate ratios,
Qmax(ω,μ) and Qmin(ω,μ), for the nonadhesion and adhesion cases,
respectively. The labels indicate the values of ω. The results were
obtained for θc = 179.99◦.

As mentioned above, the jet cannot touch the channel walls
for Q < Qmin(ω,μ), while it necessarily adheres to them for
Q > Qmax(ω,μ) (see Fig. 5). The results presented in the next
section indicate that the jet is linearly stable if it touches the
channel walls. Therefore, Q > Qmax(ω,μ) is a sufficient con-
dition for the linear stability of confined jets. In addition, our
results will show that cylindrical jets are generally unstable,
although they may stabilize as the interface approaches the
wall.

B. Linear stability

1. Non-adhering configuration

In this section, we analyze the stability of the nonadhering
configuration, where the jet does not touch the channel. For
sufficiently large distances between the interface and the chan-
nel walls, the jet is expected to be unstable for small-enough
wave numbers. As the jet-to-channel distance decreases, a thin
liquid layer is trapped between the wall and the interface. The
viscous stresses arising in that layer during the growth of the
perturbation are expected to stabilize the fluid configuration.
For this reason, we will focus on the most interesting case
in which the jet almost touches the channel wall (R = 0.99).
Figure 8 shows the dependence of the growth rate 	i of the
dominant perturbation on the Weber number for a fixed value
of the Reynolds number. As the Weber number increases,
the jet Ohnesorge number Oh = We1/2/Re increases, and the
viscous force becomes more important as compared with
both inertial and the capillary forces. As a consequence, the
flow stabilizes, i.e., the range of unstable wave numbers, the
maximum growth rate and the corresponding wave number
decrease. The curves for the smaller Weber numbers indicate
that the growth rate scales as k2 for k → 0. This asymptotic
law is reached for smaller values of k as the Weber number in-
creases. For a fixed value of k, 	i does not exhibit a monotonic
dependence with respect to the Weber number. Viscosity does

10-5 10-4 10-3 10-2 10-1 100
10-7

10-5

10-3

10-1

101

100

Ωi

10
1

0.1
0.01

k

We=0.001

FIG. 8. Growth rate 	i of the dominant mode as function of the
wave number k for different values of We. The values of the rest
of governing parameters are {ω = 20, ρ = 1, μ = 0.32, Re = 0.1,
R = 0.99}.

not manage to completely suppress the capillary instability
even for the largest (smallest) Weber number (surface tension)
value considered.

Figure 9 shows similar behavior to that described above.
The dominant growth rate decreases as the Reynolds number
decreases for a fixed value of the Weber number due to
the stabilizing role played by the jet viscosity. Interestingly,
the range of unstable wave numbers does not monotonically
decrease as the Reynolds number decreases, which means that
viscosity can destabilize certain capillary modes despite its
dissipative character. For instance, perturbations with k � 0.1
become unstable when the Reynolds number decreases from
100 to 10. This means that instability arises for these wave
numbers if both the jet and outer stream viscosities increase by
a factor of 10. This counterintuitive behavior resembles what

10-5 10-4 10-3 10-2 10-1 100
10-7

10-5

10-3

10-1

101

0.01

Ωi

0.1
1
10

k

Re=100

FIG. 9. Growth rate 	i of the dominant mode as function of the
wave number k for different values of Re. The values of the rest of
governing parameters are {ω = 20, ρ = 1, μ = 0.32, We = 10, R =
0.99}.
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Ωi

1.0
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0.45

k

μ=0.32

FIG. 10. Growth rate 	i of the dominant mode as function of
the wave number k for different values of μ. The values of the rest
of governing parameters are {ω = 20, ρ = 1, Re = 0.1, We = 0.01,
R = 0.99}.

happens in gaseous rivulets coflowing with liquid streams in
microchannels [13].

A natural question is whether the capillary instability can
be completely suppressed by viscous stresses in the nonad-
hering case, which implies 	i < 0 for all wave numbers.
As mentioned above, the wave number corresponding to
the maximum growth rate decreases as the system stabi-
lizes. Therefore, that question reduces to determining whether
∂	i/∂k|k=0 becomes negative in some regions of the pa-
rameter space. Unfortunately, our numerical approach cannot
directly address this problem. We can only infer the value
of ∂	i/∂k|k=0 from a discrete set of 	i values calculated
for small k. We have explored the parameter space and have
found conditions under which the jet seems to be stable under
infinitesimal perturbations. For instance, the results in Fig. 10
suggest that the jet fully stabilizes for some value of the
viscosity ratio μ between 0.5 and 0.64. The viscous stress in
the liquid layer trapped between the jet and the channel wall
manages to eliminate the capillary instability for large-enough

0.0 0.2 0.4 0.6 0.8 1.0

-0.01

0.00

0.01

0.02

0.03

2

0.01

Ωi

0.1
1

k

Re=3

FIG. 11. Growth rate 	i of the dominant mode as function of
the wave number k for different values of Re. The values of the rest
of governing parameters are {ω = 20, ρ = 1, μ = 0.51, We = 0.1,
R = 0.99}.
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-0.005

0.000

0.005

0.010
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1

0.1

k

We=0.05

FIG. 12. Growth rate 	i of the dominant mode as function of the
wave number k for different values of We. The values of the rest of
governing parameters are {ω = 20, ρ = 1, μ = 0.51, Re = 1, R =
0.99}.

outer stream viscosities. As mentioned above, we only plot the
growth rate of the dominant mode for a given choice of the
governing parameters. The discontinuity of ∂	i/∂k for μ = 1
corresponds to a crossover of different modes. In other words,
it corresponds to a value of k for which the dominant mode
changes.

The capillary instability is also eliminated if the Reynolds
number is decreased while keeping constant the viscosity
ratio (Fig. 11); in other words, if the two viscosities take
large-enough values. Specifically, the results shown in Fig. 11
indicate that all the small-amplitude perturbations are damped
by viscosity for Reynolds numbers smaller than some value
between 0.1 and 1. As mentioned above, viscosity dominates
surface tension for large-enough Ohnesorge numbers. There-
fore, one can expect the jet to become stable under capillary
perturbations for sufficiently large values of that dimension-
less parameter. This effect is also observed in Fig. 12, which
shows the complete suppression of the capillary instability
when the Weber number is increased while keeping the
Reynolds number constant.

i

k

FIG. 13. Growth rate 	i of the dominant mode as function of the
wave number k for different values of R. The values of the rest of
governing parameters are {ω = 20, ρ = 1, μ = 1, Re = 0.1, We =
0.01}.
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k

FIG. 14. Growth rate 	i of the dominant mode as function of the
wave number k for different values of We. The values of the rest
of governing parameters are {ω = 20, ρ = 1, μ = 0.32, Re = 0.1,
δ = 0.21, θc = 170◦}.

The critical influence of the jet-to-wall distance on the sys-
tem stability is shown in Fig. 13. The range of unstable wave
numbers, the maximum growth rate and the corresponding
wave number decrease as the gap between the jet and the
channel becomes thinner. Apparently, there is a value in the in-
terval 0.94 < R < 0.95 beyond which the capillary instability
is fully suppressed. As mentioned above, the discontinuity of
∂	i/∂k for R = 0.99 corresponds to a crossover of different
modes.

The major conclusion of the analysis presented in this
section is that rectangular channels can fully eliminate the
capillary linear instability of liquid jets coflowing with liquid
streams for sufficiently small jet-to-wall distances and large-
enough Ohnesorge number values. This effect is enhanced
when the outer-to-inner viscosity ratio increases. Stabilization
can be reached even for moderately small Ohnesorge numbers
and viscosity ratios. For instance, Figs. 10–13 show stability
for values of those parameters of order unity. In principle,
it could be possible to form liquid jets that travel along a
microfluidic channel, as long as it wishes, without breaking up
into droplets. Humphry et al. [20] conducted experiments that
showed this possibility. Hickox [7] obtained a similar result
for jets confined in circular ducts.

i

k

FIG. 15. Growth rate 	i of the dominant mode as function of
the wave number k for different values of Re. The values of the rest
of governing parameters are {ω = 20, ρ = 1, μ = 0.32, We = 10,
δ = 0.21, θc = 170◦}.

2. Adhering configuration

In this section, we study the stability of jets slipping over
the channel walls. As occurs with rivulets, the contact between
the jet and the wall must hinder the growth of capillary
perturbations due to both the reduction of the interface area
and the increase of viscous dissipation because of the friction
between the jet and the wall. For this reason, we search for
critical conditions by focusing our study on relatively small
values of the contact length δ and large values of the contact
angle θc. Figures 14 and 15 show the growth rates calcu-
lated for different Weber and Reynolds numbers, respectively.
As can be observed, all the cases analyzed are stable. The
analysis of the rest of the cases considered led to the same
conclusion, which suggests that the adhesion of the jet to the
wall completely suppresses the growth of capillary modes.
Of course, we cannot categorically state that adhesion is a
sufficient condition for stability. Given the large dimension of
the parameter space, there could be conditions leading to the
destabilization of an adhering jet.

The cases analyzed in Figs. 14 and 15 correspond to the
same flow rate ratio Q = 0.29 as that considered in Figs. 8

TABLE I. Results for the experimental realizations shown in Figs. 4 and 5 of Ref. [20]. The column “Observation” indicates the
experimental observation (Stable = stable jet, Unstable = jet breaking into drops downstream). The column Q∗ corresponds to the critical
flow rate above which the jet adheres to the wall for the experimental values of ω and μ. The column “Result” indicates the result of the linear
stability analysis.

Figure ω μ Q Observation Q∗ R Re We Result

4a-h1 19.4 5.3 0.2 Stable 0.126 Adhesion — — Stable
4b-h1 19.4 5.3 0.4 Stable 0.126 Adhesion — — Stable
4a-h2 8.1 5.3 0.2 Unstable 0.334 0.85 0.253 0.00151 Unstable
4b-h2 8.1 5.3 0.4 Stable 0.334 Adhesion — — Stable
5a-W1 8 5.3 0.2 Dripping 0.341 0.84 0.111 0.001 Unstable
5b-W1 8 5.3 0.4 Stable 0.341 Adhesion — — Stable
5c-W1 8 5.3 0.8 Stable 0.341 Adhesion — — Stable
5a-W2 4 5.3 0.2 Dripping 0.845 0.620 0.204 0.00339 Unstable
5b-W2 4 5.3 0.4 Dripping 0.845 0.789 0.253 0.00516 Unstable
5c-W2 4 5.3 0.8 Stable 0.845 0.983 0.326 0.00859 Stable
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and 9. As mentioned in the previous section, the nonadhering
configuration or the adhering one is established depending
on whether that flow rate ratio is reached by increasing or
decreasing the jet flow rate, respectively. As can be observed,
the fact that the jet touches the wall stabilizes the basic
flow for all the Reynolds and Weber numbers considered.
Therefore, either stable or unstable experimental realizations
can be produced depending on how the flow rate ratio is
imposed.

The magnitude of the damping factor in Fig. 14 generally
increases as the Weber number decreases for the range of wave
numbers considered. This implies that the surface tension
plays a stabilizing role in the evolution of most dominant
modes, as occurs in the bending oscillations of jets [28].
Figure 15 shows the complex dependence of the dominant
mode damping factor on the Reynolds number (the jet vis-
cosity). The magnitude of the damping factor either increases
or decreases as the viscosity increases depending on both the
wave number and the Reynolds number.

IV. COMPARISON WITH EXPERIMENTS

In this section, we analyze the experimental results pre-
sented by Humphry et al. [20] in terms of our stability
analysis. In that work, the authors claimed that noncylindrical
jets were observed in many experiments, which would imply
that the flow was not fully developed (parallel) in those
realizations. It is also possible that the jet adhered to the
wall in some cases, something difficult to determine from the
images acquired in the experiments. Table I shows the results
for the cases considered in Figs. 4 and 5 of Ref. [20]. In these
cases, the data necessary to carry out the numerical study is
available. Specifically, we calculate the value of R as that
leading to the experimental value of the flow rate ratio. In
addition, the Reynolds and Weber numbers are estimated by
assuming ρ1 = ρ2 = 103 kg/m3.

As can be observed, the experimental configuration be-
came stable when the flow rate ratio was increased. Either
dripping or unstable jetting gave rise to stable jetting for
sufficiently large values of Q. If one leaves aside the question
of whether the jet touches the channel wall or not, there is
complete agreement between the outcome in the experiments

i

k

FIG. 16. Growth rate 	i of the dominant mode as function of the
wave number k for the cases 5a-W2, 5b-W2, and 5c-W2 in Table I.

and the predictions of the linear stability analysis. According
to our calculations, the last case of the table corresponds
to a jet stabilized by the channel wall without touching it.
Figure 16 shows the dominant growth rate for the cases
5a-W2, 5b-W2, and 5c-W2. As can be observed, viscous
stresses manage to stabilize the jet for Q = 0.8 (R = 0.983)
even though the jet does not touch the wall in this case.
Stabilization is achieved for a Weber number of the order of
10−2, which reveals the strong effect of confinement on the
evolution of small-amplitude perturbations.

V. CONCLUSIONS

We analyzed the base flow and linear stability of a jet
flowing in a rectangular microchannel both when the jet does
not touch the solid surfaces and when it adheres to them
with contact angles slightly smaller than 180◦. For small
values of the viscosity ratio μ, there is a range of the flow
rate ratio, Qmin � Q � Qmax, for which the jet moves freely
or adheres to the channel walls depending on whether the
flow was established by increasing or decreasing the value
of Q. The difference Qmax − Qmin increases as the viscosity
ratio decreases and the channel aspect ratio increases. Viscous
stresses in the thin layer enclosed by the channel wall and
the interface can completely stabilize the jet for sufficiently
high viscosities or low-enough surface tensions. When the
jet adheres to the channel walls, the growth of the dominant
capillary mode is fully supressed and the flow becomes sta-
ble. These results allow us to conclude that, under certain
parameter conditions, linearly stable or unstable experimental
realizations can be produced depending on how the flow rate
ratio is established. Specifically, stable jets can be obtained if
the experimenter reduces progressively the jet flow rate while
keeping constant that of the outer stream, while instability
arises in the opposite case.

Our work mainly addresses the question of whether all
infinitesimal perturbations naturally arising in a capillary jet
can be damped out by confining it in a microchannel. This
question cannot be easily addressed experimentally for sev-
eral reasons. Perturbations growing at very slow rates are
very difficult to detect. The critical conditions correspond to
very small distances between the interface and the channel
wall. Determining whether the jet touches the wall or not
under those conditions is not an easy task. When a pertur-
bation grows, its amplitude may become comparable with the
interface-to-wall distance at the early stage of the perturbation
growth, which implies that finite-amplitude effects may come
into play when the perturbation is hardly detectable. These
effects may stabilize the system, which would make linearly
unstable jets appear as stable ones.

Our results are consistent with the experiments conducted
by Humphry et al. [20], who produced jets that steadily
flowed across channels without breaking up into droplets. If
one leaves aside the question of whether the jet touches the
channel wall or not, then there is complete agreement between
the outcome in the experiments considered and the predictions
of our linear stability analysis.

Based on our results, one is tempted to propose the Ohne-
sorge number Õh = μ2(ρ1σR)−1/2 as the critical parameter
to determine whether a confined jet is linearly stable or not.

053104-11



CABEZAS, HERRADA, AND MONTANERO PHYSICAL REVIEW E 100, 053104 (2019)

Sepecifically, stability can be reached for sufficiently large
values of that parameter. The critical Ohnesorge number
Õhc(ω,R, ρ, μ, Re, We) could be calculated by using the
long wave approximation to determine the parameter condi-
tions for which ∂	i/∂k|k=0 becomes negative, and, therefore,
the system becomes stable.
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