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Lagrangian coherent sets in turbulent Rayleigh-Bénard convection
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Coherent circulation rolls and their relevance for the turbulent heat transfer in a two-dimensional Rayleigh-
Bénard convection model are analyzed. The flow is in a closed cell of aspect ratio four at a Rayleigh
number Ra = 106 and at a Prandtl number Pr = 10. Three different Lagrangian analysis techniques based
on graph Laplacians (distance spectral trajectory clustering, time-averaged diffusion maps, and finite-element
based dynamic Laplacian discretization) are used to monitor the turbulent fields along trajectories of massless
Lagrangian particles in the evolving turbulent convection flow. The three methods are compared to each other
and the obtained coherent sets are related to results from an analysis in the Eulerian frame of reference. We
show that the results of these methods agree with each other and that Lagrangian and Eulerian coherent sets
form basically a disjoint union of the flow domain. Additionally, a windowed time averaging of variable interval
length is performed to study the degree of coherence as a function of this additional coarse graining which
removes small-scale fluctuations that cause trajectories to disperse quickly. Finally, the coherent set framework
is extended to study heat transport.
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I. INTRODUCTION

Thermal turbulent convection acts as one essential driving
mechanism in many turbulent flows in nature spanning a
wide range of examples starting from stellar interiors [1] via
planetary cores [2] to atmospheric motion [3] and transport
dynamics in lakes and ponds [4]. An idealized model of
thermal convection is Rayleigh-Bénard convection (RBC), in
which a fluid layer placed between two solid horizontal plates
is uniformly heated from below and cooled from above [5].
This particular setting contains already many of the properties
which can be observed in natural flows. One is the formation
of large-scale coherent patterns when RBC is investigated in
horizontally extended domains [6–11]. These coherent sets,
which have been detected in the Eulerian frame of reference,
are termed turbulent superstructures as the characteristic hor-
izontal scale extends the height of the convection layer. In
thermal convection flows, they consist of convection rolls
and cells that may, however, be concealed in instantaneous
velocity fields by turbulent fluctuations. Large-scale circu-
lations in Rayleigh-Bénard convection exist also in smaller
domains or cells and have been analyzed, for example, by
proper orthogonal decomposition (POD) [12–14] (see also the
Appendix of Verma [15] for POD in RBC). In the Eulerian
frame, large-scale patterns show up prominently either after
time averaging or as the primary POD modes, for both tem-
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perature and velocity fields. This is illustrated in Fig. 1 where
two coherent circulation rolls are present with narrow regions
of upwelling hot and downwelling cold fluid.

At the core of the data-driven analysis in the Lagrangian
frame of reference is the concept of a coherent set [16–19],
a region in the fluid volume that only weakly mixes with
its surrounding and which often stays regularly shaped (non-
filamented) under the evolution by the flow. Such regions
can be determined in two ways, by set-oriented [20,21] or
manifold-based methods (see [18,22] for recent reviews of
both concepts). The manifold-based approach comprises La-
grangian coherent structures (LCS), i.e., minimal curves in
two dimensions and surfaces in the three-dimensional case
that enclose coherent sets [23]. This framework was extended
recently to include weak diffusion across the manifold [24].

Coherent sets were originally introduced based on trans-
fer operators [16,17]. These are linear operators that evolve
densities under the action of the flow. Coherent sets can be
identified from the leading singular functions of this operator.
More recently, in Ref. [25] they have been characterized
as sets which possess a minimal boundary-to-volume ratio
for the entire flow duration. Different approaches have been
introduced recently that make use of spatiotemporal clustering
algorithms applied to Lagrangian trajectory data [26–31].
These algorithms aim at identifying coherent sets as groups of
trajectories that remain close to each other in the time interval
under investigation.

In this work, we will focus on the latter of these Lagrangian
approaches. The three methods that we are going to apply
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characterize coherence via regularized linear operators that
are directly approximated on the basis of the Lagrangian
trajectory data in the convection flow. These are the (i) transfer
operator which is regularized by a diffusion kernel [26], the
(ii) graph Laplacian operator that characterizes a network of
Lagrangian trajectories in the flow [27], and the (iii) dynamic
Laplacian which characterizes sets with minimal averaged
boundary-to-volume ratio [25,32] or, equivalently, almost in-
variant sets of a time-dependent heat flow [19]. In all cases,
gaps in the discrete eigenvalue spectrum of the operator under
consideration give an indication of the number of coherent
sets. As will be seen, all three Lagrangian methods detect
the same core regions of the large-scale circulation rolls as
the coherent sets in which fluid particles remain together for
the longest time. With progressing time these coherent sets
get increasingly smaller in their spatial extent as expected for
turbulent flows.

A second aspect of this work is therefore to extend these
Lagrangian concepts and to perform the analysis on data
which are averaged in time over a window of variable length.
Similar to the Eulerian studies which were mentioned at the
beginning of this introduction, we want to investigate coher-
ence as a function of this additional coarse graining which
removes small-scale fluctuations in the flow that typically
cause a fast separation of Lagrangian trajectories that are
initially close together.

A final aspect of this work is to adapt the presented analysis
directly to the transfer of heat. The presented Lagrangian
methods can then be used to investigate heat coherence in
RBC.

Here, we study RBC in a two-dimensional closed box of
aspect ratio four. Note that the large- and small-scale quanti-
ties show similar scalings in two- and three-dimensional RBC
[34–36] for large Prandtl numbers. Therefore, very-long-time
temporal evolution of the convective flow configurations has
been studied in two-dimensional settings [37,38]. The objec-
tive of this work is to take such a simple two-dimensional
turbulent flow at a moderate Rayleigh number and to demon-
strate and compare the Lagrangian concepts and ideas.

In Sec. II we introduce the numerical model and the data
set. Section III gives a further motivation for coherence. The
Lagrangian methods which we will compare are introduced
in Sec. IV and applied to the convection data in Sec. V. Heat
coherence is discussed in Sec. VI and we conclude in Sec. VII.

II. RAYLEIGH-BÉNARD CONVECTION FLOW

Conservation of mass, momentum, and internal energy
lead to equations which govern the dynamics of RBC. In the
Boussinesq approximation [5] they are given in a nondimen-
sional form by

∂u
∂t

+ u · ∇u = −∇p + θez +
√

Pr

Ra
∇2u, (1)

∂θ

∂t
+ u · ∇θ = uz + 1√

PrRa
∇2θ, (2)

∇ · u = 0, (3)

where u = (ux, uz ), θ , and p are the velocity, temperature
deviation, and pressure fluctuation fields, respectively. Note

that the temperature fluctuation from the linear conductive
profile is related to the total temperature field T as

T (x, z, t ) = Tbottom − �T

H
z + θ (x, z, t ), (4)

where Tbottom is the temperature at the bottom plate. Equa-
tion (4) is given here in physical units. Equations (1)–(3) were
nondimensionalized using the height of the simulation domain
H of as the characteristic length scale, the free-fall velocity
u f = √

αg�T H as the characteristic velocity, and the temper-
ature difference �T between the top and bottom plates as the
characteristic temperature. The main governing parameters of
RBC are the Rayleigh number Ra and the Prandtl number Pr.
The Rayleigh number signifies the strength of thermal driving
force compared to dissipative forces, and the Prandtl number
is the ratio of the kinematic viscosity and thermal diffusivity
of the fluid. They are defined as

Ra = αg�T H3

νκ
, (5)

Pr = ν

κ
, (6)

where α, ν, κ are the thermal expansion coefficient, the kine-
matic viscosity, and the thermal diffusivity of the fluid, respec-
tively. The acceleration due to gravity g points downward.

We assume that the fields ux, uz, θ ∈ H1(� × [0, τ ]) with
� = [0, Lx] × [0, H] and total integration time τ . Here, H1 is
the Sobolev space of square integrable functions with square
integrable derivatives. Equations (1)–(3) are solved using
a pseudospectral solver TARANG [39] in a two-dimensional
box of aspect ratio 
 = Lx/H = 4. Stress-free (or free-slip)
boundary conditions for the velocity field are employed at all
the walls. This implies that the corresponding normal velocity
component and the normal derivative of the tangential velocity
component vanish to zero, respectively. For the temperature
field, isothermal (adiabatic) boundary conditions are applied
in the vertical (horizontal) direction. To satisfy these boundary
conditions, the temperature fluctuation and velocity compo-
nents are expanded in sine and cosine basis functions. This
results to

ux(x, z, t ) =
∑
kx,kz

4ûx(kx, kz, t ) sin(kxx) cos(kzz), (7)

uz(x, z, t ) =
∑
kx,kz

4ûz(kx, kz, t ) cos(kxx) sin(kzz), (8)

θ (x, z, t ) =
∑
kx,kz

4θ̂ (kx, kz, t ) cos(kxx) sin(kzz), (9)

where k = (kx, kz ) is the wave vector [38] with kx = mπ/Lx

and kz = nπ/H ; m, n being integers. We perform direct nu-
merical simulation for Pr = 10, Ra = 106, and 
 = 4 using
513 × 129 uniformly spaced grid points. The time advance-
ment is done using fourth-order Runge-Kutta method (RK4),
and the fields are dealiased using the 2/3 rule. We refer to
[38–40] for more details on the numerical simulations.

The presented analyses require Lagrangian particle tracks
which are evaluated together with the turbulent flow. Each
individual tracer particle i is advected in the velocity field
corresponding to

dxi

dt
= u(xi, t ) . (10)
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FIG. 1. Two-dimensional RBC benchmark flow with Rayleigh
number Ra = 106 and Prandtl number Pr = 10. Top: instantaneous
flow configuration exhibiting a pair of counter-rotating circulation
rolls. Temperature contours are shown as colors and the velocity field
is indicated by arrows. Bottom: time-averaged flow configuration.
Averaging is performed for the total duration of the time integration
which is 500 free-fall time units.

We simulate i = 1 . . . N particle trajectories with N = 5000.
Time integration is done again by the RK4 method. The
interpolation of the velocity field on the particle position
applies cubic splines.

We start our simulation with random noise for velocity
and temperature fields, u and θ , as the initial condition and
continue until a statistically steady state after 2000 free-fall
times t f is reached. Here, t f = H/u f . The time-averaged flow
structure exhibits a pair of counter-rotating circulation rolls
as shown in the bottom panel of Fig. 1. Hot fluid rises in the
central region whereas cold fluid falls near the sidewalls. The
velocity and temperature fields at all the grid points are written
out every 0.1 t f .

III. LAGRANGIAN COHERENCE IN A TURBULENT FLOW

In the dynamical systems perspective, we consider the
turbulent convection flow as a mapping in the state or phase
space � ⊂ R2. Let

�t
t0 : x(t0) �→ x(t ) = �t

t0 (x(t0), t0) (11)

denote the flow map, which takes fluid particles from their
initial location x0 = x(t0) at time t0 to their spatial location
x(t ) at time t in correspondence with the velocity field u of
the RBC flow. This mapping is given by the differential equa-
tions (10) such that �t

t0 (x(t0), t0) solves the corresponding
initial value problem. The advecting flow is simultaneously
determined by solving the Boussinesq equations for the RBC
flow. The phase space � is equipped with a reference measure
μ and a sequence of nonsingular time-dependent flow maps
�t0+�t

t0 , . . . ,�t0+n�t
t0+(n−1)�t for n time steps �t . We construct a

single flow map via a successive application of flow maps
over smaller time steps �t , namely, as � = �t0+�t

t0 ◦ · · · ◦
�t0+n�t

t0+(n−1)�t .
An overarching goal is to detect and locate slow mixing dy-

namical structures. These structures should be macroscopic in
size and by “slow mixing” we have in mind a geometric mix-
ing rate that is slower than 1/� where � is the largest positive
Lyapunov exponent that measures the exponential separation

FIG. 2. Finite-time Lyapunov exponent field computed in for-
ward time over 20t f and 200t f in the top and bottom panels,
respectively. Large values are indicated by yellow. Superimposed
are particles (white dots) at initial positions (t = 2000t f ) which
belong to two coherent sets as identified by the method described
in Sec. IV A (see also Figs. 4 and 7).

of initially infinitesimally distant neighboring particles. Thus,
such slow mixing cannot be explained by local stretching,
but is instead due to the way in which the dynamics acts
globally. Following [25], we wish to partition the state space
� = A ∪ AC into a disjoint union of A and its complement
AC at initial time and � = B ∪ BC at final time such that we
optimize the coherence ratio which can be thought of as

ρ(A,B) = μ(A ∩ �−1(B))
μ(A)

+ μ(AC ∩ �−1(BC ))
μ(AC )

, (12)

and that quantifies how much of A ends up in B after applying
the flow map � (augmented by a small random perturbation,
to be precise) with respect to the reference volume of A and
similarly for AC and BC . In a nutshell, Eq. (12) quantifies in
our example the area content of the subset that stays connected
from a Lagrangian point of view.

We seek for an optimal 2-partition into slow mixing (or
coherent) sets and the remainder which becomes rapidly well
mixed under the action of convective turbulence. Coherent
means now that these sets are almost invariant under the
combined forward-backward dynamics of the flow map �

(including a small amount of diffusion for regularization).
The exact version of (12) and the connection to the transfer
operator P and its singular values or functions can be found
in [17].

Central to manifold-based concepts of coherence are LCS
[23]. These are material surfaces that extremize a certain
stretching or shearing quantity, such as measured by finite-
time Lyapunov exponents (FTLEs) [41]. Ridges in the FTLE
field from a forward time computation highlight repelling
LCS. In Fig. 2 we show the forward time FTLE fields for
the two different time windows considered in Sec. V C.
While for the short time interval (top) isolated ridges can
be observed, this is no longer the case for the long time
interval (bottom). This makes it difficult to unambiguously
define coherent sets from the FTLE ridges (see also [28] for
related observations) and, therefore, in this work, we focus
on set-based approaches. In Fig. 2 we also show the results
of a set-based computation (in this case using the minimum
distance spectral trajectory clustering method introduced in
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Sec. IV A), which identifies coherent sets as the core regions
of the large-scale circulation rolls that appear to be charac-
terized by low FTLE values. We come back to this point in
Sec. V C.

IV. GRAPH LAPLACIAN-BASED COHERENT
STRUCTURE DETECTION

All algorithms to be introduced work with the following
set of Lagrangian data. Let the positions of N particles xi

at T + 1 time instances tk be given, i.e., the trajectory data
consist of

{
xi(tk ) ∈ Rd |i ∈ {1, . . . , N}, k ∈ {0, . . . , T }} ⊂ Rd , (13)

where xi(tk+1) = �
tk+1
tk xi(tk ), for i ∈ {1, . . . , N} and k =

0, . . . , T − 1. Trajectories in a coherent set will stay close
to each other over a long time in contrast to trajectories not
belonging to this specific coherent set. Diverging trajectories
indicate filamentation of a set which has a large diffusive
outward transport with respect to the dynamics. Based on
this notion, the algorithms evaluate the ε neighborhood of
the trajectories using distinct models of the diffusion pro-
cess. If possible, this is followed by the construction of
a rate matrix Q, which will be introduced in the follow-
ing sections. The solution of an eigenvalue problem yields
eigenvalues λ� which satisfy 0 = λ1 � λ2 � · · · � λn. The
eigenvectors corresponding to the dominant eigenvalues (i.e.,
close to zero) are used to cluster the trajectory data into
coherent sets.

A. Distance spectral trajectory clustering

The idea of the network-based analysis, published in [27],
is to interpret each Lagrangian trajectory {xi(tk )}k as node
of a network consisting of N nodes. A link between two
nodes {xi(tk )}k and {x j (tk )}k is created if and only if the
minimum distance of the two trajectories for at least one
time instance tk is smaller than a prespecified cutoff radius ε.
Thereby, network measures as, e.g., the node degree or local
clustering coefficient, can be used to distinguish coherent
sets from incoherent flow [42–44]. In order to partition the
network into independent sets, we use a version of the nor-
malized cut approach [45], which is based on spectral graph
theory. This approach aims at maximizing the intracluster
connectivity and simultaneously minimizing the intercluster
connectivity. An approximate solution of the normalized cut
problem can be achieved solving the generalized eigenvalue
problem [45]

Ly = λDy, (14)

where L = D − A is the non-normalized graph Laplacian, D
is the degree matrix, and A is the adjacency matrix. Here, we
vary the approach in the way that we use L′ = A − D and, for
the sake of direct comparability with the second method, we

Algorithm 1 Minimum distance spectral trajectory clustering.

1: Define adjacency matrix

Ai j =
⎧⎨
⎩

1, ‖xi(tk ) − x j (tk )‖ � ε

for at least one k ∈ {0, . . . , T } and i �= j
0, otherwise.

2: Define degree matrix

Di j =
{∑

j′ Ai j′ , i = j
0, otherwise.

3: Define normalized Laplacian Qnw = D−1(A − D).
4: Partition trajectories based on dominant eigenvectors of Qnw.

state (14) in the equivalent form1

Qnwy = λy, where Qnw = D−1L′. (15)

Note that the eigenvalues of (14) and (15) differ only in
their signs. The multiplicity m of the first eigenvalue λ1 = 0
equals the number of connected components in the network.
We construct the network such that the zero eigenvalue is
simple. Then, the number of eigenvalues λ2, . . . λm close to
0 determines the number of weakly linked subgraphs. The
eigenvectors corresponding to these eigenvalues are used to
extract m clusters. In this paper, this postprocessing is done by
the k-means algorithm [46]. The corresponding pseudocode is
given in Algorithm 1.

We note that the adjacency matrix in Algorithm 1 could
be constructed as a weighted matrix instead of the current
binary one. One possibility is to measure the average distance
between two trajectories

d (xi, x j ) = 1

T + 1

T∑
k=0

‖xi(tk ) − x j (tk )‖, (16)

and set Ai j = d (xi, x j )−1, i �= j, as was suggested in [31].
In general, relaxing the binary structure of A by introducing
weights is a refinement of the dynamical information con-
tained in A, and is used in the method discussed next.

B. Time-averaged diffusion maps

The theory of diffusion maps introduced by Coifman and
Lafon in [47] has been successfully applied to a variety of
nonlinear dimensionality reduction problems. In Ref. [26] the
framework of diffusion maps is used to analyze transport in
dynamical systems and to find coherent sets solely based on
possibly sparse or incomplete Lagrangian trajectory data. The
idea is to introduce a diffusion process on the data points and

1Assuming D has no zeros on the diagonal, i.e., every trajectory
“meets” another at least once. If not, that is there is some i with
Dii = 0, we can either delete the trajectory from the set completely,
or if we want to keep it as an independent entity not connected to
any other, we can set the ith row of Qnw equal to the ith row of the
identity matrix. The latter step produces a cluster containing only the
ith trajectory.
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detect points that can be reached more easily from one another
by the diffusion process. This is done via the eigenvectors
of this diffusion process (or operator) which provide intrinsic
coordinates of the data set.

The time-averaged diffusion map algorithm from [26]
(called “space-time diffusion map” therein) proceeds as fol-
lows. Given the trajectory data as in (13), the algorithm looks
for tight bundles of trajectories. To achieve this, a diffusion
map matrix Ptk is constructed at every time instance tk by row
normalizing a similarity matrix Ktk . This matrix is constructed
using a rotation invariant kernel which is given by

kδ (x, y) = exp

(
−‖x − y‖2

δ

)
1[0,r] , (17)

with the characteristic function 1[0,r] introducing a cutoff
at some radius r. Hence, the similarity matrix (Ktk )i j =
kδ (xi(tk ), x j (tk )) is only dependent on the Euclidean distances
‖xi(tk ) − x j (tk )‖ in R2 between the point pairs xi(tk ), x j (tk ).
The parameter δ can be seen as the strength (or duration) of
the diffusion, and characterizes what will be considered close;
hence, its square root is a length scale of spatial resolution. In
practice, δ together with the kernel function will determine a
cutoff radius r, beyond which the similarity is negligibly small
(here r = √

2δ). This is similar to ε in Sec. IV A, and allows
for efficient numerical computation. Now, Ptk corresponds to
a random walk (Markov chain) constructed on all existing
data points (or particle positions) at tk with two points getting
a higher jump probability the closer they are. Using time
averaging,

Pdm = 1

T + 1

T∑
k=0

Ptk , (18)

we obtain the space-time diffusion matrix Pdm which de-
scribes a Markov chain on all trajectories. We note that aver-
aging the matrices Ptk yields different results to using diffusion
maps with the averaged distances d (xi, x j ) from above, and
has a different interpretation (cf. [26]).

Again, for the reason of comparability, we will work with
the rate matrix

Qdm = 1

δ
(Pdm − I ), (19)

where I denotes the identity matrix. By construction, the
eigenvalues λ� of Qdm satisfy 0 = λ1 � λ2 � · · · � λn. Just
as in Sec. IV A, the dominant eigenvectors of Qdm are now
used to cluster the trajectory data into coherent sets.

We remark that the algorithm, as introduced here in
Algorithm 2, corresponds to a particular choice of scaling in
diffusion maps, the so-called α = 0 case [26,47]. Originally
in Ref. [26] a different scaling was used. We refer to that work
for the details, and note only that for uniformly distributed
data there is no practical difference. With the correct scaling,
it is shown in Ref. [26, Theorem 3 and Eq. (21)] that if
the number of trajectories goes to infinity, Qdm converges to
the so-called dynamic Laplacian [19,25,48] whose eigenvec-
tors characterize Lagrangian coherent sets. This makes the
time-averaged diffusion-map method a consistent data-based
approach for finding coherent sets.

Algorithm 2 Diffusion-map based analysis of Lagrangian data.

1: Define kernel kδ (x, y) = exp (−‖x − y‖2/δ)1[0,r](‖x − y‖)
with cutoff radius r.

2: Define similarity matrices
Ktk ,i j = kδ (xi(tk ), x j (tk )).

3: Define Markov matrices

Ptk = D−1
tk

Ktk ,

with diagonal degree matrices Dtk ,ii = ∑
j′ Ktk ,i j′ .

4: Define time-averaged diffusion-map matrix

Pdm = 1
T +1

∑T
k=0 Ptk ,

and corresponding time-averaged diffusion-map
Laplacian Qdm = 1

δ
(Pdm − I ).

5: Partition trajectories based on dominant eigenvectors of Pdm

(which are the same as those of Qdm).

C. Discrete dynamic Laplacian

A third approach to the detection of Lagrangian coherent
sets from sparse and possibly incomplete Lagrangian tra-
jectory data has been developed in [32]. It is based on the
geometric idea [25] that Lagrangian coherent sets can be
characterized by a small boundary-to-volume ratio: Whenever
the length of the boundary of some advecting set �t

t0 (A),
A ⊂ �, is small in relation to its area consistently for all times
t , diffusive transport of some passive scalar over its boundary
(induced by small random perturbations to �t

t0 ) will be small.
Consequently, the coherence ratio (12) of the pair A,�t

t0 (A)
will be large even in the presence of small perturbations
to �t

t0 .
Equivalently (cf. [19]), we can characterize a Lagrangian

coherent set as a material set which is almost invariant under
the flow of the Lagrangian diffusion equation [49] for some
diffusive scalar quantity S. In Lagrangian coordinates, this
equation is given by [19]

∂S

∂t
= κ̃L�t S, (20)

with �t S = ∇ · (D(x, t )∇S) and the dimensionless κ̃L  1.
Here, the advection by the flow map that deforms a material
set has been encoded in a Lagrangian eddy diffusivity (i.e., the
inverse Cauchy-Green strain tensor) which is given by

D(x, t ) = D�t
t0 (x)−1D�t

t0 (x)−�, (21)

where D�t
t0 is the Jacobian of the flow map.

In order to compute coherent sets via this approach, we
first need to remove the time dependence from the diffusion
operator �t . This can be achieved by time averaging, i.e., by
considering the operator

�̄ = 1

T + 1

T∑
k=0

�tk , (22)

called the dynamic Laplacian [25].
In a second step, one considers the eigenproblem �̄v =

λv with appropriate boundary conditions (here, we have used
Neumann boundary conditions). Lagrangian coherent sets are
then given by sublevel sets of the eigenvectors at the leading
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Algorithm 3 Dynamic Laplacian based analysis of Lagrangian
data.

1: Choose a finite element (e.g., the piecewise linear
triangular element).
2: for k = 0, . . . , T do
3: Construct a mesh of {xi(tk ), i = 1, . . . , N}.
4: Compute Kk end do.
5: Compute K̄ = 1

T +1

∑T
k=0 Kk and M.

6: Partition trajectories based on the dominant eigenvectors
of (K̄, M ).

eigenvalues of �̄, i.e., those closest to 0 (cf. [20,25,50] for
more details).

The dynamic Laplacian �̄ in this eigenproblem can be dis-
cretized by standard finite-element methods (FEM), leading
to the generalized eigenproblem K̄v = λMv with eigenvalues
0 = λ1 � λ2 � · · · � λn. The stiffness matrix K̄ is the aver-
age K̄ = 1

T +1

∑T
k=0 Kk of the stiffness matrices at each time

tk:

Kk
i j = −

∫
�

〈∇ϕk
i ,∇ϕk

j

〉
dx. (23)

Here, the functions ϕk
i are the finite-element basis functions

on a triangulation of the data points xi(tk ). For the mass matrix
M, it suffices to compute

Mi j =
∫

�

ϕ0
i ϕ

0
j dx (24)

only at the initial time t0.
A typical finite element in step 1 of Algorithm 3 is the

linear triangular Lagrange element, i.e., the mesh in step 3
consists of triangles and the basis functions are the piecewise
linear nodal basis functions. This computational mesh can be
constructed as the Delaunay triangulation of the data points
{xi(tk ), i = 1, . . . , N} at each time step. Whenever the data
set has a very irregular hull, an α shape will be more appro-
priate. Typically, α is then chosen minimal such that the trian-
gulation is connected (cf. alphashape in MATLAB). We refer
to Ref. [32] and to the documentation of the packages FEMDL
(MATLAB) and CoherentStructures.jl (JULIA), which are
available from GITHUB, for more details and examples.

The triangulation induces a network of trajectories for each
time step. There is an interpretation of this discretization of
the dynamic Laplacian from a graph Laplacian perspective,
detailed in the Appendix, Sec. A 1.

Finally, we want to state that there is no direct link to some
rate matrix Q as in the other two approaches since the inverse
of M will be in general not sparse.

V. COMPARISON OF DIFFERENT LAGRANGIAN
METHODS

In order to compare the methods introduced above, we
choose different perspectives. We compare the approaches
first on a theoretical level (Sec. V A) and regarding their
structure (Sec. V B). Finally, we apply all these three methods
to the same trajectory data set introduced in Sec. II and
compare their results (Sec. V C).

A. Theoretical level

We start by noting that Qnw and Qdm are so-called rate
matrices. A rate matrix Q has the properties

∑
j Qi j = 0

for all i and Qi j � 0 for i �= j. It defines a time-continuous
Markov chain in the following sense. The process being in
state i at current time, (i) will stay in i for a random amount
of time τ , where τ is an exponentially distributed random
variable with rate −Qii,2 and (ii) then will jump to the next
state j randomly (and independently of τ ) with probability
Qi j/|Qii|. Thus, the larger the absolute value of Qii, the faster
the jump occurs on average. The quantity 1/|Qii| is called the
(average/expected) holding time of state i.

We refer to the Appendix, Sec. A 2, for further technical
details, and only note here briefly that the jump processes
Qnw and Qdm introduce jumps of mean length O(ε) and
O(

√
δ), respectively, and this distance governs the finest

scales they can resolve. Coherent sets below these scales can
not be detected. The FEM-based discretization of the dynamic
Laplacian has no explicit scale parameter, however, the aver-
age diameter of the triangulation can implicitly be viewed as
such.

B. Structure

The descriptions in Sec. IV suggest that the algorithms
construct similar objects and have partially even similar steps.
All three algorithms are by their very nature frame inde-
pendent (as they only use mutual distances of trajectories),
fast, and construct sparse matrices that encode the space-time
behavior. They require the following three parameters as user
input:

(1) A subset � ⊂ {0, . . . , T } of all time instances at dis-
posal. Not every coherent set might be present for the entire
observation range of a fully nonautonomous flow, thus a
natural choice is to restrict the time interval of consideration to
� = {k0, . . . , k1}, where 0 � k0 < k1 � T . Also, if the sam-
pling time step maxk |tk − tk−1| is small compared to typical
dynamic timescales, the data can be subsampled with respect
to time without essentially altering the results.

(2) Proximity parameters δ and ε (not for the FEM ap-
proach). These govern the minimal spatial scales on which the
methods can detect coherence. In the FEM method this scale
will implicitly be defined by the size of the elements resulting
from the triangulation. For uniformly distributed Lagrangian
particles, the diameter of the resulting triangulation can be
interpreted as the implicit closeness parameter.

(3) The number of clusters. Gaps in the spectrum of Qdm,
Qnw, or (K̄, M ) can indicate natural choices for the number
of clusters. Some arguments for this approach are collected in
[51].

All methods discussed here are highly suitable for sparse
and incomplete data (see [26], in particular Sec. V therein,
[27,32]).

2A random variable is exponentially distributed with rate ρ, if
the probability that τ > t for any t > 0 is e−ρt . Equivalently, the
probability density of τ is given by fτ (t ) = ρ−1e−ρt .
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FIG. 3. Eigenvalues of 2ε−1Qnw (circles), Qdm (crosses), and
(K̄, M ) (diamonds). The leading 10 eigenvalues of the matrices of
each approach for the short time interval setting are shown.

C. Numerical method

In the following, we discuss how the three methods com-
pare to each other when applied to the turbulent convection
flow data introduced in Sec. II for times t > 2000t f . In view to
the Lagrangian coherence, we will look at a short time interval
of T = 200 steps and a long time interval of T = 2000 steps
with 0.1t f per step. We thus start at t = 2000.0t f and end
at τ = 2020.0t f and τ = 2200.0t f , respectively. These time
intervals are chosen since the average circulation (or eddy
turnover) time of one roll was found to be t ≈ 20t f , calculated
using the maximum circumference of the roll covering half of
the box and the root mean square velocity (see [11] for more
details). Thus, the shorter (longer) time interval approximately
corresponds to 1 circulation (10 circulations). We initialize
N = 5000 uniformly distributed particles in order to analyze
mass transport. The particles are advected using the snapshot
files of the velocity field and for comparability all three
algorithms are applied to the same trajectory data set.

At this point, we would like to seize the opportunity to ex-
plain some options for the choice of the similarity parameters
δ and ε. Some general criteria for the choice of δ and ε are
(i) sparsity of Qdm and Qnw to achieve, for example, 5%
nonzero entries, (ii) a stable spectrum which implies that
for a series of δ, ε the dominant spectrum of Qdm or Qnw

does not vary qualitatively, thus conserving relative distances
and gaps of eigenvalues, (iii) edge density for the graph- or
network-based approaches [52].

Aside from those technical constraints, there are physical
reasons that account for the turbulent convection flow under
consideration. For Rayleigh-Bénard convection that is con-
sidered here, we use the Nusselt number Nu, a dimensionless
number that quantifies the global turbulent heat transfer across
the plane, and the expected nondimensional radius of a con-
vection roll rroll to obtain bounds for both cutoff scales:

δT = 1

2Nu
< ε <

rroll

2
. (25)

We recall here that ε = √
2δ. The lower bound in (25) is

determined by the mean thickness of the thermal bound-
ary layer δT = 0.028 for the present Nusselt number of

FIG. 4. Clustering with respect to the second and fifth eigen-
vectors of Qnw(top) and of Qdm (center) and the second and third
eigenvectors of (K̄, M ) (bottom). Particles in different coherent sets
at time t = 2010t f are colored according to k-means clustering.

Nu = 17.7. Recall that all length scales are expressed in units
of height H . The viscous boundary layer thickness can be de-
termined for stress-free boundary conditions by a method that
has been suggested by Petschel et al. [53]. They determined
a so-called dissipation layer thickness from the intersection
points (close to the bottom and top walls) of the line- and
time-averaged profile of the kinetic energy dissipation rate
with its plane mean. The analysis for the present flow gives
a viscous boundary layer thickness of δv ≈ 0.039 which is
slightly larger than the thermal boundary layer thickness.

The dynamics further restricts the choice of both closeness
parameters. In the short time interval, the trajectories cover
only one circulation and very few Lagrangian particles will
switch from the left roll to the right roll or vice versa (see
Fig. 1). Thus, we have to take a small cutoff parameter in
order to capture relevant dynamical structures. For the long
time interval, the spectra of eigenvalues are typically not
stable in case of a small closeness parameter. To satisfy these
restrictions for both methods, we get bounds on ε for the short
and long time intervals of

ε ∈
{

[0.03, 0.07] : τ = 2020t f ,

[0.085, 0.25] : τ = 2200t f .
(26)

As we will see further below, our choices satisfy δT < δv < ε.
In the following, we want to visualize the differences and

similarities of the results of the three algorithms. In general,
the coherent sets are expected to be larger for the network-
based analysis compared to the time-averaged diffusion-map
method. The reason for this behavior is that the network-based
approach does not take into account how close trajectories
pass by (as long as it is closer than the threshold ε) and how
long they reside in the vicinity of each other, thus having a less
pronounced and hence larger “dynamic neighborhood.” As the
strength of the diffusion decreases exponentially with increas-
ing distance between particles diffusion, the transition from
coherent structure to incoherent flow is more easily detected
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FIG. 5. Particles colored according to eigenvectors of Qnw (a),
(b), Qdm (c), (d), and (K̄, M ) (e), (f) in the normalized range [−1, 1].
Negative (positive) values are indicated by dark (bright) contours.
The second and fifth (respectively third) eigenvectors at t = 2010t f .

for diffusion maps. Consequently, the definition of coherence
is more strict in the diffusion-map method compared to the
network-based method and this will lead to smaller coherent
sets.

1. Short time interval up to τ = 2020t f

For the particular parameter choices δ = 0.002 and ε =
0.0632, we now show the results for the short time span in
Figs. 3–5. For visualization purposes we plot the eigenvalues
of 2ε−1Qnw.

The second eigenvector gives a separation of the left and
right circulation rolls. The fifth eigenvector (respectively third
for the FEM approach) gives a separation of the gyre cores
and the background. We omit the plots for the third and
fourth eigenvectors of Qnw and Qdm since they correspond to
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n

Qdm

Qnw
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FIG. 6. Eigenvalues of 2ε−1Qnw (circles), Qdm (crosses), and
(K̄, M ) (diamonds). Leading 10 eigenvalues of the relevant matrices
of each approach for the long time interval setting.

subpartitions of the left and the right rolls only. They basically
split each roll into halves, i.e., bottom and top or left and
right for the third or fourth eigenvector, respectively. This
occurrence can be explained in different ways. These (third
and fourth) eigenvalues can be considered as higher multiplic-
ities of the second eigenvalue interacting with the numerics.
Furthermore, these subpartitions are still valid coherent sets
which can be explained as follows. Within the selected time
span, the main motion is the rotation. However, even though
most particles complete one rotation and the rotational speed
varies with radius, this difference is not large enough to
effectively separate particles from the inner (core) regions and
the outer (background) regions. Therefore, the subpartitions of
the circulation rolls are more coherent than the gyre cores. As
we will see later for the longer time span, these subpartitions
do not occur, implying that they are then less coherent than
the gyre cores.

2. Long time interval up to τ = 2200t f

In the following, we visualize the results for the particular
parameter choices of δ = 0.005 and ε = 0.1 in Figures 6–8.
Again, for visualization purposes we plot the eigenvalues of
2ε−1Qnw. We still get the separation of the left and the right
sides from the second eigenvector and the separation of the
gyre cores and the background from the third eigenvector.
We also note that the spectral gap is more prominent in the
eigenvalue spectrum of Qdm compared to Qnw. This could be
advantageous in case of an unknown number of coherent sets.

3. Comparison of the three methods

Figure 9 compares the results by highlighting the trajec-
tories that have been assigned differently by the network-
based and diffusion-map method. This is done with a sym-
metrical difference of coherent sets Anw and Adm, given by
(Anw \ Adm ) ∪ (Adm \ Anw). For simplicity, we only plot the
symmetric differences for the Qnw and Qdm results. Further-
more, we observe a correlation between the distances between
consecutive eigenvalues (see Fig. 6).

In the short time setting the coherent sets resulting from
the FEM method are comparable in size and shape to the
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FIG. 7. Clustering with respect to the second eigenvector of
Qnw (top), Qdm (center), and (K̄, M ) (bottom). Particles in different
coherent sets at time t = 2100t f are colored according to k-means
clustering.

ones detected by the other two methods. For the long time
interval, however, they are significantly smaller. This might
be explained by the original construction of the dynamic
Laplacian via dynamic isoperimetry in Ref. [25]: the method
detects sets which keep a small boundary-to-volume ratio over
the entire time interval of the flow evolution. It is thus a stricter
criterion than the ones in the other two approaches.

Figure 10 displays the magnitude of the time-averaged
velocity field. Small values can be identified in the elliptic
centers of the counter-rotating rolls, the hyperbolic regions in
the center of the top and bottom plates where Lagrangian par-
ticle pairs separate, and the four corners. The elliptic centers
are the regions where the particles stay closely together for the
longest time.

4. Lagrangian particle advection in time-averaged flow

In the Eulerian frame of reference, temporal averaging has
to be performed in order to reveal the coherent large-scale
patterns in the flow clearly [11]. In the following, we adapt
these ideas to the present Lagrangian analysis. We therefore
carry out a time averaging in the following sense:

x̂i(tk̂ ) = 1

TW

k̂+TW −1∑
j=k̂

xi(t j ), (27)

where the number of time steps TW depends on the chosen
window size �t in free-fall time units. The time-averaged
trajectories {x̂i(tk̂ )}k̂ are assembled such that they represent
the same time interval of length 200t f , i.e., k̂ depends on
�t . Here, we apply the minimum distance spectral trajectory
clustering method (Sec. IV A) to the time-averaged trajecto-
ries. Equivalent results can be achieved by applying the time-
averaged diffusion-map method. The degree of coherence of
the independent sets, interpreted as the size of the spectral
gap, is improved by the time averaging. Figure 11 shows
the eigenvalues for the original setting, i.e., with no time

FIG. 8. Particles colored according to eigenvectors of Qnw (a),
(b), Qdm (c), (d), and (K̄, M ) (e), (f) in the normalized range [−1, 1].
Negative (positive) values are indicated by dark (bright) contours.
The specific eigenvector is indicated at the top of each panel. The
first nontrivial eigenvectors at t = 2100t f .

FIG. 9. Symmetrical difference of the clusters obtained from Qnw

and Qdm at t = 2010t f (top) and at t = 2100t f (bottom).
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FIG. 10. Magnitude of the time-averaged advecting velocity field
in the plane as a filled contour plot. The averaging time is for 2000
t f . The largest magnitudes are bright contours, the smallest ones are
dark contours.

averaging, and for time-averaged trajectories with window
sizes �t = 5t f and 14t f (which correspond with TW = 50 and
140, respectively). For �t = 5t f , a prominent gap is visible
between the third and fourth eigenvalues. This corresponds
to three almost decoupled sets, i.e., dynamically independent
flow regions, which are the two cores of the convection rolls
and the background. With increasing window size transitions
from one side of the domain to the other side, which oc-
cur rarely for individual trajectories in the original setting,
are removed and the Lagrangian time-averaged trajectories
{x̂i(tk̂ )}k̂ mostly remain in the initial flow region. Thereby, a
segmentation into inner and outer cores is formed on both
sides of the domain, corresponding to four almost decoupled
sets. The spectral gap is shifted to appear between the fourth
and fifth eigenvalues. This segmentation of the time-averaged
trajectories is visualized in Fig. 12. The transition from three
to four almost decoupled sets occurs around a window size of
�t = 10t f . We can thus conclude that an additional averaging
enhances the long-term coherence of the sets significantly
even for the present two-dimensional case for which the small-
scale dispersion by turbulence remains moderate.

VI. HEAT COHERENCE IN CONVECTION FLOW

A. Temperature from a passive scalar perspective

The dynamical structure of heat transport can be analyzed
from different perspectives. Although temperature is not a
passive scalar, but a prognostic variable, once the evolution
of the full system is known (i.e., the velocity u and total

FIG. 11. Effect of time averaging in the Lagrangian analysis.
Leading 10 eigenvalues of Qnw of the original trajectories and time-
averaged trajectories with window sizes �t = 5t f and 14t f for a time
interval of 200.0t f .

FIG. 12. Comparison of trajectories for the original and time-
averaged Lagrangian analysis. Top: trajectories of six random par-
ticles for a time interval of 200.0t f . Middle (bottom): six time-
averaged trajectories for �t = 5t f (�t = 14t f ).

temperature T fields are computed), we can view heat as
a passive scalar with evolution governed by the advection-
diffusion equation [see also Eq. (2)]

∂T

∂t
= 1√

PrRa
∇2T − ∇ · (uT ) =: −∇ · �, (28)

with boundary conditions that we have defined in Sec. II.
Here, � denotes the total dimensionless heat flux vector and
the average 〈�z〉x,t = Nu/

√
RaPr. The profile T0 = 1 − z is

the dimensionless linear equilibrium temperature profile [see
also Eq. (4)]. Furthermore, 
D and 
N are parts of the do-
main boundary, where prescribed constant temperature (i.e.,
Dirichlet conditon on 
D) and insulating wall (i.e., Neumann
condition on 
N ) boundary conditions are applied. To recall,
an insulated side wall implies that the normal derivative
vanishes, ∂T

∂n = 0.
This suggests that coherence with respect to heat could

be analyzed by the approach from Sec. III. The situation is
more delicate, however, as the identification of “heat pack-
ages” with particles has to be done properly. One issue is,
for instance, that heat is not a conserved quantity and can
enter and exit at the top and bottom boundaries 
D. Thus,
the boundary conditions in (28) have to be incorporated in
the analysis. We start by briefly discussing a popular line of
approaches that is however inappropriate for heat-coherence
investigations.

In the so-called “heatline” approaches [33,54–57], the
temperature field is considered as a concentration field driven
by some velocity field uH. In order to get the correct flux,
� = uHT has to hold, giving

uH(x, t ) = u(x, t ) − 1√
PrRa

∇T (x, t )

T (x, t )
. (29)

Note that the system (28) is translation invariant in the fol-
lowing sense: For any constant Tc ∈ R and given solution
T of (28), the translated field T ′ = T + Tc solves (28) if
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the initial and Dirichlet boundary conditions are translated
accordingly, i.e., T ′


 = T
 + Tc and T ′
0 = T0 + Tc. This means,

intuitively, that the evolution does not change even if we
express temperature with respect to an arbitrary reference
value.

In contrast, the “heat velocity” field uH changes under
translation of the temperature field, giving completely dif-
ferent “heat trajectories.” Nevertheless, by construction, the
global temperature field T is advected correctly by uH. This
means that the usefulness of the “heat velocity field” is
restricted to considerations involving the global temperature
distribution, but internal fluctuations of heat and the inter-
nal transport of heat are biased by the choice of reference
temperature.

It should be remarked at this point that in [33,58] this prob-
lem is alleviated by splitting convective and conductive contri-
butions of heat transport, where the translational invariance is
taken up completely by the conductive part. To the remaining
(convective) flux a velocity field uconv = �conv/T conv can be
assigned, which then describes the convective heat transfer in
a Lagrangian manner. However, as we would like to describe
structures governing the entire heat transport (and not just its
convective part), we take a different route in the following.

B. Randomly evolving heat packages and induced transport

The microscopic evolution of heat can be described by
advection and stochastic fluctuations. Let us consider the
stochastic differential equation

ẋ(t ) = u(x(t ), t ) + 4

√
4

PrRa
η(t ), (30)

where x(t ) denotes the random position of a particle driven
by the drift u and by white noise η (i.e., Cov[η(t ), η(s)] =
δ(t − s), where δ denotes the Dirac delta distribution). The
probability distribution p(x, t ) of x(t ) satisfies the Fokker-
Planck equation

∂ p

∂t
= 1√

PrRa
∇2 p − ∇ · (up). (31)

If we replace p by T , this is identical with the evolution
equation in (28). Thus, scaling T to have integral one (setting
the total heat to be unity), we can express the evolution of
heat as the evolution of the probability distribution of an
ensemble of particles, evolving mutually independently with
their motions governed by (30). This ensemble has initial
distribution T0. Single particles can thus be viewed as “heat
packages,” each carrying one unit of heat.

We will illustrate some adaptations necessary according to
the boundary conditions in the Rayleigh-Bénard convection
problem. Neumann zero boundary conditions naturally trans-
late into reflecting particles at the side walls 
N . Furthermore,
we have T = 0 at the top and T = 1 for the temperature in
dimensionless units. These conditions simply translate into
absorbing every trajectory hitting the top lid, and reinjecting
a new one at a random position at the bottom lid. Trajectories
are reflected once they try to exit at the bottom lid. Note that
the dynamical equation (30) is independent of the choice of a
reference temperature, which is well aligned with the intuition
that the dynamics of single heat packages should not depend

FIG. 13. Short-term heat-coherence analysis in two-dimensional
Rayleigh-Bénard flow. Second eigenvector (top) and third eigenvec-
tor (bottom) are shown. Negative (positive) values are indicated by
dark (bright) colors. Eigenvectors of Qdm at the initial time.

on the reference temperature. The total heat transport depends
on the reference temperature through the initial distribution
T0. The absorption and reinjection of trajectories at the bound-
aries result in some trajectories with a shorter life span than
the considered total integration time since they leave before
the end or are seeded later.

Combining [26, Theorem 3] with [59, Sec. 4.1] shows that
eigenvectors of the newly obtained matrix Pdm are relaxed
solutions of the problem [cf. (12)]

max
A

T (A → A)

T (A)
+ T (AC → AC )

T (AC )
, (32)

where A ⊂ {1, . . . , N} is a subset of all trajectories (including
trajectories seeded later), AC is its complement, T (A) is the
total heat content of the set A (as every particle is a heat
package with one unit of heat, this is the cardinality of A),
and T (A → B) is the heat moving from set A to set B
under the heat dynamics. Thus, T (A → A) describes the heat
remaining in A. Solutions of (32) attempt to partition the
domain into two subdomains between which there is as little
heat exchange as possible, while the normalization by T (A)
and T (AC ) avoids highly unbalanced partitions where one of
the sets contains almost all of the heat.

While the problem (32) is clearly not invariant under
translation with respect to a reference temperature, in certain
cases it can be argued that it would give highly consistent
solutions for any reference value. Let us assume that both
T (A) ≈ T (AC ), and that the trajectories in A and AC cover
approximately the same area in physical space. Then, problem
(32) and the problem minA{T (A → AC ) + T (AC → A)}

FIG. 14. Same as Fig. 13, but for the final time of the short time
interval.
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FIG. 15. Temperature contour grayscale plot in relation to the
heat-coherence evaluation. Initial slice (top) at t = 2000t f and final
slice (bottom) at t = 2010t f . Dimensionless temperature varies be-
tween 0 (bright) and 1(dark).

have approximately the same solutions, while the latter de-
scribes total heat exchange between the two subdomains.
Now, the physically relevant quantity is the net heat flow,
which is the difference of T (A → AC ) and T (AC → A), and
this is almost invariant under changing the reference measure,
if the spatial domains occupied by A and AC are almost of the
same size, because the contributions due to translation by a
reference value cancel out.

C. Heat coherence in two-dimensional
Rayleigh-Bénard convection

In the following, this methodology is applied to the present
two-dimensional Rayleigh-Bénard system. We conduct the
analysis for the diffusion-map method (Sec. IV B) only since
the other two methods gave similar results as we saw in
Sec. V. We first look again at a small time interval which
means here T = 100 steps which corresponds to a time in-
terval of 10t f . If we look at the initial and the final time slices
(see Figs. 13 and 14, respectively) we can see a separation of
the right and left sides of the domain. Furthermore, the color
of the particles that leave the domain fast and particles that
enter the domain late is green, which implies that they have
a zero value in the eigenvector. These Lagrangian particles
correspond to thermal plumes as seen in the temperature field
snapshot in Fig. 15. The algorithm identifies them as less
relevant for the overall dynamics due to their short life span,
which in turn implies that they are highly relevant for the ef-
fective heat transport from the bottom to the top. We now look
at a longer sequence of T = 2000 steps which corresponds to
a time span of 200t f . The second eigenvector (see Fig. 16,
top panel) reveals now that the cores of the convection rolls
are the most coherent features for the temperature evolution.
This implies that there is almost no effective heat transport
through the cores aside from diffusion which will become
increasingly subdominant as the Rayleigh number grows. It
is important to note that even though the most heat-coherent
sets do not contribute to vertical heat transport in this example,
other cases may arise as well. If there would be big bubbles
of hot fluid moving (slowly, compared to the considered time
span) from the bottom to the top, the algorithm would identify
them as heat coherent.

FIG. 16. Long-term heat-coherence analysis in two-dimensional
Rayleigh-Bénard flow. Second eigenvector (top) and third eigenvec-
tor (top) are shown. Negative (positive) values are indicated by dark
(bright) colors.

VII. CONCLUSION

The main objectives of this work were to discuss coher-
ence in a simple two-dimensional turbulent convection flow
from a Lagrangian point of view and to relate it to the
more frequently used perspective of the Eulerian frame of
reference. We therefore compared three different Lagrangian
approaches: (i) minimum distance spectral-clustering based,
(ii) diffusion-map based, and (iii) dynamic Laplacian based
analysis of Lagrangian data. We find that all three methods
identify similar coherent sets, the core regions of the two
convection rolls in our example flow. These are the areas in
which neighboring Lagrangian particles would remain close
to each other for the longest time before dispersion by small-
scale turbulence would tear them apart from each other. Our
analysis shows that these regions are the complementary to
those which would be highlighted in a time-averaging proce-
dure in the Eulerian frame of reference, namely, the ridges
of hot upwelling and cold downwelling fluid between these
two circulation rolls. However, the notion of coherence is
less strict in the minimum distance spectral-clustering based
analysis compared to the diffusion-map based analysis and it
varies with interval length for the dynamic Laplacian based
analysis.

Furthermore, we introduced the concept of time averaging
in the Lagrangian frame and demonstrated that, similar to the
Eulerian case, coherence of structures is improved.

Finally, we discussed the concept of heat coherence in
the present setting. We therefore suggested an approach to
analyze the transport of nonpassive scalar quantities including
boundary sources and sinks utilizing the theory of coherent
sets. We find that effective heat transport only occurs outside
the cores.

How do the present Lagrangian and the (standard) Eule-
rian description compare to each other? In RBC flows, the
prominent structures are flow circulations between the top
and bottom plates in connection with rising hot or falling
cold thermal plumes. The Eulerian picture in Fig. 1 reveals
a space-filling coherent pattern with a characteristic length
λ (which is here simply the horizontal extension of a pair
of counter-rotating rolls) and a characteristic timescale τ

which is proportional to the typical turnover time inside a roll
[11]. The Eulerian analysis highlights the regions of the flow
that contribute most to the convective heat transfer, namely,
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the hot upwellings and the cold downwellings between the
counter-rotating rolls. Lagrangian methods are connected to
the material transport by the evolving flow. As shown in
this work, all Lagrangian methods detect the core regions of
the large-scale circulation rolls as the coherent sets in which
fluid particles remain together for the longest time. Thus,
they reveal regions that form the spatial complement to the
Eulerian ones, those that contribute least to the turbulent heat
transfer. One major advantage of the discussed Lagrangian
analysis methods is their objectivity, i.e., coordinate-frame
independence (see, e.g., [23]) that helps to identify barriers
to the turbulent transport in the flow. Lagrangian methods
provide complementary powerful tools to reduce the dynam-
ics to that of a few relevant degrees of freedom. They may
not only be applicable in numerical simulations, but also for
the growing number of experimental techniques that provide
Lagrangian particle tracks, e.g., [60–62].

The present example was a two-dimensional flow at a
moderate Rayleigh number in a working fluid with a large
Prandtl number. Such a setup is an appropriate starting point
for Lagrangian studies as the temperature field obeys a small
diffusivity and the magnitude of turbulent velocity fluctua-
tions remains small. The Reynolds number which quantifies
the turbulent momentum transfer is Re ≈ 96 in our case. As a
part of the future work, we will extend the mathematical foun-
dations of the present Lagrangian framework to temporally
averaged turbulence fields and apply these techniques in three-
dimensional settings for extended flows. This is necessary to
compensate for the enhanced turbulent dispersion which is
always probed by Lagrangian methods and which increases
as Rayleigh numbers are increased or Prandtl numbers are
decreased. These efforts are partly under way and will be
reported elsewhere.
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APPENDIX: ADDITIONAL MATERIAL

1. Interpretation in terms of graph Laplacians

The stiffness matrices Kk are symmetric and have zero row
and column sums [32]. Its diagonal entries are positive and
the off-diagonal entries nonpositive in certain important cases
(and also in all numerical experiments). Because of this, for
the graph Gk with nodes X k and edges defined by the edges of
the triangulation, we can write Kk = �k − W k , where

W k
i j =

{−Kk
i j, i �= j

0, i = j

are the weights assigned to edges (i, j), and �k
ii = Kk

ii is a
diagonal matrix with the ith diagonal element equal to the

degree of node i in Gk , namely, �k
ii = −∑

j Kk
i j . Thus, we

can view Kk as an (unnormalized) graph Laplacian.
Note that the entry Kk

i j will decrease in magnitude as
the distance between the associated data points xi(tk ), x j (tk )
increases until the Delaunay edge (i, j) no longer exists in Gk .

When we solve the eigenproblem K̄v = λMv, we normal-
ize by the symmetric, non-negative mass matrix M, i.e., based
on local area or volume elements that neighboring data points
enclose. This normalization is different to the standard graph
Laplacian normalization (which is based on node degree
only): M is not diagonal and the small number of off-diagonal
entries of M coincide with the off-diagonal entries of K0

and correspond to arcs (i, j) that are in the graph G0. In
fact, normalizing by the mass matrix automatically handles
nonuniformly distributed data because if initial points x0

i , x0
j

are far apart, the value of Mi j will be commensurately larger.
Note further that since a triangulation is used here, there is

no free parameter (like the cutoff radius) to choose and that
the method can always yield a decomposition of the entire
domain � (more precisely, the convex hull of the data points)
into coherent sets.

2. Comparison of methods based on the
rate-matrix interpretation

From the point of view of rate matrices in Sec. V A, on
the one hand, Qnw defines a process where every state has
holding time 1 (because Qnw

ii = 1), and the process has equal
probabilities 1/Dii to jump to any of its “neighbors,” where i
and j are neighbors if Ai j = 1. We observe that the proximity
parameter ε can also be interpreted as diffusion strength (dif-
fusion coefficient), as the holding times of the Markov process
are all one, and the “jumps” cover an ε neighborhood in space.
This can be seen from noting that a Brownian diffusion c Bt of
strength c has standard deviation

√
Var[c Bt ] = c

√
t , i.e., if it

has strength c = ε, then it produces ε mean deviation in unit
time. Thus, in a first order approximation, we could interpret
Qnw as a diffusion on trajectories with strength ε.

On the other hand, Qdm defines a random walk where the
ith state has holding time

δ

1 − 1
T

∑
k

1∑
j Ktk ,i j

, (A1)

which follows from the construction noting that Ktk ,ii = 1.
We observe immediately that the scale parameter δ features
directly as a timescale. As the “range” of the kernel3 and thus
the mean jump distance is O(

√
δ), a similar consideration as

above shows that Qdm can be interpreted as a diffusion of
strength 1. Returning to (A1), we see that the holding time
grows very large if the trajectory i has only few and distant
neighbors (i.e., it is unlikely to jump over to trajectories that
are not alike), and approaches δ from above if the trajectory
has many close neighbors. The jump probabilities are readily
encoded in the entries of Pdm, and due to the construction

3The cutoff radius r is defined by kδ (x, y) = h(ρ2/δ) < ϑ for
all ‖x − y‖ = ρ > r, with some small threshold parameter ϑ . This
directly yields r = const × √

δ.
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involving the similarity matrix, it is more likely that the pro-
cess jumps to a neighbor which is closer on average (in time).

To summarize this theoretical comparison of the methods
from Secs. IV A and IV B, both use spectral clustering with
matrices that are interpretable as rate matrices of certain
Markov jump processes on the trajectories. By this, those
trajectories belong to the same coherent set which are likely to
be reached from one another, opposed to unlikely transitions
from other trajectories. This behavior is often referred to as
metastability or almost invariance, and its connection to the
dominant eigenmodes of the process’ jump matrix is well ana-
lyzed [63–68]. The difference in the methods considered here
relies in characteristics of the associated Markov processes:

The network-based process jumps to its neighbors with equal
probabilities (thus utilizing only a binary information about
distances, whether they are smaller or larger than ε), while
the diffusion-map based process prefers to jump to closer
neighbors (thus utilizing a more refined distance information).
While the proximity parameter ε can be viewed as strength of
the Markov process (diffusion) generated on the trajectories
by Qnw, the strength of the analogous diffusion generated by
Qdm is always one. As these diffusion processes are discrete in
space (because of jumping between a finite set of trajectories),
their mean jump distance governs the finest scales they can
resolve: O(ε) and O(

√
δ). Coherent sets below these scales

can not be detected.
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