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Intermediate asymptotics on dynamical impact of solid sphere on militextured surface
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Complex phenomena incorporating several physical properties are abundant while they are occasionally
revealing the variation of power-law behavior depending on the scale. In the present work, the global scaling
behavior of the dynamical impact of a solid sphere onto an elastic surface is described. Its fundamental
dimensionless function was successfully obtained by applying dimensional analysis combined with a solution
by energy conservation complementally. It demonstrates that its power-law behavior is given by the competition
between two power-law relations representing inertial and elastic properties respectively, which is strengthened
by the scale size of the sphere. These factors are successfully summarized by the newly defined dimensionless
parameters, which give two intermediate asymptotics in a different scale range. These power-law behaviors given
by the theoretical model were compared with experimental results, showing good agreement. This study supplies
the insights to dimensional analysis and self-similarity in general.
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I. INTRODUCTION

In the field of the mechanics of continua, including rhe-
ology, microfluidics, and fluid mechanics, phenomena incor-
porating several physical properties are frequently observed.
Viscoelasticity exhibits both fluidity and solidity, while a
dimensionless number called the Deborah number, De = τ/T
[1], which is defined as the ratio of relaxation time of materials
τ and observation time T , qualifies the property. De � 1
qualifies the material as a fluid, while De � 1 leads to the
qualification as a solid [2]. Here note that dimensionless
numbers represent the proportion between properties or forces
which govern the phenomena (e.g., the Reynolds number is
the ratio between the inertial force and viscous force). In
these two cases, the homogeneous physical property can be
assumed in each, and the problems generally turn out to be
simple. However, the intermediate-scale range reveals char-
acteristic behavior (e.g., viscoelasticity for De ∼ 1), in which
two physical properties are fundamentally mixed, which turns
out to complicated problems that are occasionally difficult
to be formalized and conquered even though they are quite
attractive and important for the mechanics of continua.

On the other hand, these phenomena can be understood
as intermediate asymptotics [3,4], which are defined as an
asymptotic representation of a function valid in a certain
range of independent variables. They are occasionally found
as a simple power-law relation through dimensional analysis
when some dimensionless parameters are considered to be
negligible. More or less all the theories can be considered as
intermediate asymptotics, which are valid in a certain scale
range [5]. This concept was formalized by Barenblatt [2–4]
with the method of dimensional analysis, supplying a univer-
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sal and coherent view of the physical theory and applications
in various areas [6–9]. This methodology is expected to be
effective for the complex problems involving plural physical
properties though the scale range in which a dimensionless
number is extremely large or small is focused. The method is
not always applicable and limited to some extent, particularly
in the case where problems turn to be self-similar solutions of
the second kind. A self-similar solution of the second kind is
the problem in which dimensionless parameters have power-
law behaviors, and generally these behaviors cannot be clari-
fied within dimensional analysis but occasionally deduced by
technical means such as renormalization group theory or a
method for nonlinear eigenvalue problems.

The present work focuses on the intermediate-scale range
of dimensionless parameters in which several physical prop-
erties are incorporated, based on the concept of dimensional
analysis and intermediate asymptotics. Here I discuss the re-
lation between dimensionless number and complex behaviors.
The problem is the dynamical impact of a solid sphere onto a
militextured elastic surface. The dynamical collision is seen
in abundant phenomena in our daily lives and is interesting
for industry [10] and sports [11,12]. Since Hertz described
the collisional dynamics between two elastic bodies [13], the
theory was developed as contact mechanics [14]. Recently the
collision dynamics between a macrotextured and immersed
sphere is studied by Chastel et al. [15,16]. A militextured
surface can be described by an elastic-foundation model [17],
of which the stress profile is simplified.

Chastel et al. [15] have already obtained the scaling be-
havior of dynamical impact of a sphere onto a militextured
surface. However, I will show that this scaling behavior is
an intermediate asymptotic valid in a certain scale range by
applying dimensional analysis. We will recognize the problem
belongs to a self-similar solution of the second kind. Finally
I attempt to obtain the fundamental dimensionless functions
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FIG. 1. (a) Sketch of experimental setup. The solid sphere is
suspended by an electromagnet which is capable of dropping the ball
in arbitrary timing. The velocity of the impact can be adjusted by
changing the height of the part in which the sphere is suspended. The
position of the elastic surface made of PDMS can be changed with a
motorized actuator. (b) View from above the PDMS elastic surface.
The striped-pattern rectangular pillars are engraved on the surface.

to describe the global power-law behaviors of this problem
by referring to the solution obtained by energy conservation
complementally. These theoretical predictions are compared
with experimental results to verify the validity of the method.

II. EXPERIMENT

The experiments have been performed using a militextured
surface made of polydimethylsiloxane (PDMS) (Sylvard 180,
Dow Corning) as the elastic surface, with elastic modulus
E � 1.6 MPa (see Fig. 1). The periodic, striped-patterned,
rectangular pillars were engraved on the surface, with height
of pillar h = 3.5 mm, thickness of short sides of pillar b =
2.5 mm, length of long side d = 60 mm, interdistance of
channel c = 1.5 mm, and fraction of surface φ = bd/(b +
c)d = 0.625 [Fig. 1(b)]. The metallic sphere (Bearing Option
Ltd, steel balls) is suspended by an electromagnet (Mecalec-
tro, F91300 Massy, No. 5,18,01) of which the magnetic force
is controlled and capable of dropping the sphere in arbitrary
timing. The collision impacts were recorded with a high-speed
camera (Phantom V7.3) of which the flame rate is 10000
images per second, and its resolution is 512 × 512 pixels. The
collision velocity is varied by changing the height of position
from which the sphere is dropped (1.5–50 cm). The radius of
sphere R differs as 3.0, 4.0, 4.5, 5.0, and 7.0 mm, of which
density ρ = 7800 kg × m−3. The collision experiments were
performed for 30–40 times in each condition, changing the
position of the elastic surface every 2.0 mm with a motorized

FIG. 2. The geometrical parameters involved in the collision
between an elastic surface and solid sphere. Deformation δ and
diameter of contact a are generated by the collision onto the elastic
PDMS surface.

actuator (Standa, 122851) so that the effect of peculiarity
between the pillars and sphere was normalized. The infor-
mation about velocity, deformation, and compression time
was extracted from the movies with image analysis using a
software programmed using MATLAB.

III. THE SCALING RELATION: THE RESULT BY
CHASTEL et al.

First, I show the scaling solutions of this problem obtained
by Chastel et al. [15].

The collision of a sphere falling with a velocity of v onto
the surface generating the parabolic deformation δ is sketched
in Fig. 2. In small deformation, the parabolic deformation is
due to the geometrical relation, and thus it is described as
δ(r) = δ[1 − (r/a)2]. According to the theory of Hertz, the
contact radius a is important parameter, which is obtained
geometrically, a2 = R2 − (R − δ)2 � 2Rδ, as well. First, the
kinetic energy of the sphere is easily obtained as

Eki = 2

3
πR3ρv2. (1)

Following the procedure of Chastel et al. [15], as the normal
stress is σ (r) = Eδ(r)/h, the force of deformation is F =∫ a

0 φσ (r)2πr dr = πEφRδ2/h by eliminating a by a2 = 2Rδ.
Thus the elastic energy is obtained as

Eel =
∫ δ

0
F (δ′) dδ′ = πEφδ3R

3h
. (2)

Thus the conservation equation for kinetic energy and elastic
energy at instant t after the collision are described as follows:

2

3
πR3ρv(t )2 + πEφRδ(t )3

3h
= 2

3
πR3ρv2

i . (3)

where vi is the initial velocity in which the sphere touches
the surface. The maximum penetration δm0 is reached when
v(t ) = 0, and then the following relation is obtained:

δm0

R
=

(
2

φ

) 1
3
(

h

R

) 1
3
(

ρv2
i

E

) 1
3

. (4)

Compression time τc, which is defined as the duration time
at which the sphere contacts with the surface [18], is obtained
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as follows:

τc = 2
δm0

vi

∫ 1

0

d (δ′/δ)√
1 − (δ′/δ)3

= 2

3
B

(
1

3
,

1

2

)
δm0

vi
, (5)

where B(x, y) is a beta function. Thus following equation is
obtained from Eq. (4):

τcvi

R
= C0

φ
1
3

(
h

R

) 1
3
(

ρv2
i

E

) 1
3

, (6)

where C0 = 2 3
√

2/3 B( 1
3 , 1

2 ) � 3.533.
These are the results of Chastel et al. [15]. However, next I

show that these scaling relations are intermediate asymptotics
which are valid in a certain range.

IV. DIMENSIONAL ANALYSIS: SCALING BETWEEN
� and η

Based on the recipe of Barenblatt [19], first, the func-
tion to study δm0 = f (a, R, ρ, E , vi, h, φ) is proposed. As-
suming a LMT unit, the dimensionless parameters are con-
structed. Here I selected R, ρ, vi as the governing parame-
ters with independent dimensions, which are the parameters
which cannot be represented as a product of the remain-
ing parameters. As δm0 = L, R = L, a = L, ρ = M/L3, E =
M/LT 2, vi = L/T, h = L, φ = 1, the following dimension-
less parameters are obtained:

� = δm0

R
, ξ = a

R
, η = ρv2

i

E
, κ = h

R
. (7)

Thus the function is transformed to � = �(ξ, η, κ, φ), where
� is an arbitrary dimensionless function. Here let us assume
that the problem belongs to the self-similar solutions of the
second kind [20] as follows:

� = φγ1κγ2ηγ3�(ξ ζ1κζ2φζ3ηζ4 ). (8)

Self-similar solutions of the second kind are the dimensional
analysis solutions, which are expressed by the products of
dimensionless parameters raised to the powers, though the
power exponents of dimensionless parameters are not ob-
tained within dimensional analysis in principle. However,
in our case, power exponents γ1 · · · γ3 can be deduced via
Eq. (4). ζ1 · · · ζ4 are obtained by utilizing Eq. (4) and a2 =
2Rδ, and then it is ξ ∼ φ−1/6κ1/6η1/6. Therefore Eq. (8) leads
to

� =
(

κ

φ

) 1
3

η
1
3 �

[(
φ

κ

) 1
6

ξ/η
1
6

]
. (9)

Equation (9) is the fundamental dimensionless function which
describes the dynamical impact of the solid sphere on
the militextured surface. Supposing new parameters � =
�φ1/3κ−1/3η−1/3 and � = ξφ1/6κ−1/6η−1/6, Eq. (9) is de-
scribed as � = �(�). Note that � is a function with di-
mensionless parameter �. It suggests that the scaling relation
derived from the result by Chastel et al. [15] is confirmed
as long as � does not interfere. In this case the following
intermediate asymptotic is obtained:

� = const

(
κ

φ

) 1
3

η
1
3 , (10)

which corresponds to Eq. (4). This condition holds true in the
case that � is small enough to consider � ∼ const. Here we
have recognized that � is an important parameter dominating
the power-law behavior.

Next, let us move on to the case in which � contributes
to the behavior. It is quite interesting to think what kind of
intermediate asymptotic is obtained in another scale region.
Equation (9) was obtained by the dimensionless parameters
via the selection of governing parameters with independent
dimensions as R, ρ, vi. However, this choice is arbitrary.
Barenblatt [19] suggested that the numerical estimation of
dimensionless parameters can help us to choose. If the dimen-
sionless parameters to consider are too small or large, these
dimensionless parameters can be considered to be negligible.
The choice of R, ρ, vi is appropriate in the case in which these
three parameters play a dominant role. However, the scale
range in which � contributes must have a large enough to be
considered as ξ = a/R increases �. In this case, a should be
considered as a dominant parameter.

Now let us apply the dimensional analysis using another
selection of governing parameters with independent dimen-
sions as a, ρ, vi. In this case the following dimensionless
parameters are finally obtained:

�′ = δm0

a
, ξ = a

R
, η = ρv2

i

E
, κ ′ = h

a
. (11)

The difference from Eq. (7) is that � and κ are replaced by �′
and κ ′ while � = ξ�′ and κ = ξκ ′. Similarly, assuming self-
similarity of the second kind and using Eq. (4) and a2 ∼ Rδ,
the following intermediate asymptotic is obtained in another
scale region:

�′ = const

(
ξκ ′η
φ

) 1
6

. (12)

Equation (12) is another intermediate asymptotic in the case
where a is comparatively large enough.

The following calculation will justify our interpretation. In
order to see the behavior of Eq. (9) in a wider scale region
from small �, series expansion of � in a power of � is applied
as follows:

� =
(

κ

φ

) 1
3

η
1
3 {A1 + A2 � + A3 �2 + · · · }

= A1

(
κ

φ

) 1
3

η
1
3 + A2 ξ

(
κ

φ

) 1
6

η
1
6 + A3 ξ 2 + · · · , (13)

where A1, A2, A3 are constants. Here let us focus on the fact
that two dimensionless parameters having different power
exponents appear in Eq. (13). Suppose one fits Eq. (13) with
an arbitrary power equation of η as ην ∼ A1 φ−1/3κ1/3η1/3 +
A2 ξφ−1/6κ1/6η1/6 + A3ξ

2, the power exponent ν is locally
determined and varies in the range 1/6 � ν � 1/3, depending
on the contribution of the first term and second term in
Eq. (13). This balance critically depends on parameter η and
ξ . We can see that in case of small η and large ξ , the power
exponent of the second term 1/6 is dominant. On the other
hand, in the case of large η with small ξ , the first term is large
and dominant, then ν should be fitted with 1/3. This interpre-
tation corresponds to each intermediate asymptotics [Eq. (10)

053004-3



HIROKAZU MARUOKA PHYSICAL REVIEW E 100, 053004 (2019)

and Eq. (12)] as small � indicates that the contribution of the
second term is extremely small.

This is spontaneously understood as � is given by ratio of
the first and second terms as ξφ−1/6κ1/6η1/6/φ−1/3κ1/3η1/3 =
ξφ1/6κ−1/6η−1/6 = �. In the end, series expansion of �(�)
gives two intermediate asymptotics which are obtained by
different selection of governing parameters with independent
dimensions, and � represents the ratio between two interme-
diate asymptotics.

V. DIMENSIONAL ANALYSIS: SCALING BETWEEN
ω and η

Next let us apply the same way to construct the dimen-
sionless function concerning Eq. (5). The function to study is
τc = fτ (a, R, ρ, E , vi, h, φ). Assuming the governing param-
eters with independent dimensions as R, ρ, vi, the following
dimensionless parameters are to be prepared:

ω = τcvi

R
, ξ = a

R
, η = ρv2

i

E
, κ = h

R
(14)

to obtain ω = �τ (ξ, η, κ, φ). Here we assume the self-similar
solution of second kind, and we find the fundamental dimen-
sionless function

ω =
(

κ

φ

) 1
3

η
1
3 �τ

[(
φ

κ

) 1
6

ξ/η
1
6

]
(15)

by referring to Eq. (5) and a2 = 2δR. Defining � =
ωφ1/3κ−1/3η−1/3, here we find the relation as � = �τ (�),
suggesting the dependence between � and �. Equation (15)
gives an intermediate asymptotic corresponding to Eq. (5) as
far as � is uninfluential, then we have ω ∼ η1/3. However, in
the scale range in which a starts to play a role and � is large
enough, another intermediate asymptotic appears,

ω = const ξ

(
κ

φ

) 1
6

η
1
6 , (16)

which is obtained by the series expansion of �τ as the
second term, or corresponds to the solution obtained through
the dimensional analysis by the selection of the governing
parameters with independent dimensions as a, ρ, vi. In this
case, the scaling relation ω ∼ η1/6 appears.

VI. COMPARISON WITH EXPERIMENTAL RESULTS

Once the sphere is released from the electromagnetic force,
it starts to free fall and collides with the PDMS surface
to generate the maximum deformation from 0.87 –2.8 mm,
depending on the size of sphere and height from which the ball
drops [see Figs. 3(a)–3(c) and the Supplemental Material for
the movie [21]]. The number of rectangular pillars contacted
by the sphere also depends on the size. The smallest sphere
(R = 3.0 mm) contacted 1–2 pillars, while the middle spheres
(R = 4.0, 4.5 mm) contacted generally two pillars, and the
larger sphere (R = 5.0, 7.0 mm) contacted 2–3 pillars. How-
ever, the difference of the number of pillars is normalized as
the experiments of one fixed condition (height, size of sphere)
are performed for 30–40 times, while the position of PDMS
surface changed by the equipped actuator for 2.0 mm on every

FIG. 3. The images of the dynamical impact of sphere (R =
4.0 mm) onto the elastic surface at vi = 2.4 m/s with a flame rate
of 10000 images per second and a resolution of 512 × 512 pixels.
(a) The image before impact. (b) The moment of contact. (c) The
moment of maximum deformation at t = 10 ms after contact. (d) The
image releasing from surface at t = 60 ms after contact. The movie
is available in the Supplemental Material [21].

impact. The deformations and contact times are estimated by
averaging these results. After a certain compression time τc

(2.0–6.0 ms), it takes off out of the surface [Fig. 3(d)].
In order to compare with the theoretical prediction, nu-

merical results were nondimensionalized following defined
dimensionless parameters, �, η, ξ , and κ . Figure 4(a) is the
plots of � and η with different sizes of sphere. It is clearly
found that the power-law behavior varies depending on the
size of sphere. The largest sphere R = 7.0 mm follows the
1/3 power-law behavior, corresponding to Eq. (10). On the
other hand, the smallest spheres R = 3.0 mm reveal different
power-law behavior, following the 1/6 power law, which
corresponds to Eq. (12).

Figure 4(b) is the plots of � = �(�) using experimental
data. It is useful to see in which scale range each plot belongs.
We can see that plots of the small sphere (R = 3.0 mm), which
follows a 1/6 power law, belong to larger �, while the plots
with high velocity decrease �. Contrarily it is found that
the large sphere (R = 7.0 mm) belongs to smaller �, though
plots with small velocity belong to comparatively larger �,
which reveals different behavior. Meanwhile, we can find the
groups of intermediate size of sphere (R = 4.0, 4.5, 5.0 mm),
which belong to � = 1.1–1.4, follow intermediate power-law
behaviors. It can be considered that these plots belong to an
intermediate-scale region in which two power exponents are
competing.

The different power-law behavior depending on size of the
sphere can be seen in the plots of ω and η as well [Fig. 5(a)].
The dimensional analysis predicted two power-law behaviors,
ω ∼ η1/3 at small � and ω ∼ η1/6 at large �. The plots of
the largest sphere (R = 7 mm), having small � as is shown in
Fig. 5(b), follows 1/3 power-law behavior which corresponds
to Eq. (6). The plots of the smallest sphere (R = 3 mm) reveal
mixed behavior, though the plots having smaller η, belonging
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FIG. 4. (a) Power-law relation between � and η, (b) plots of �

vs � with different sizes of the sphere, R = 3.0 mm (•), 4.0 mm
(�), 4.5 mm (×), 5.0 mm (�), and 7.0 mm (�), where � = δm0/R,
η = ρνi/E , � = �φ1/3κ−1/3η−1/3, and � = ξφ1/6κ−1/6η−1/6. The
two dashed lines indicate the slope of 1/6 and 1/3.

to large � in Fig. 5(b), follow a 1/6 power-law behavior of
Eq. (16). The plots of the intermediate size sphere follow
intermediate behavior. Focusing on � in detail, we can find
that it consists of φ, κ , ξ and η. φ and κ are dimensionless
parameters which belong to elastic surface; here we focus on
the others. η, which corresponds to the Cauchy number, which
is defined as the ratio of inertial force and elastic force in fluid
mechanics, plays a dominant role on the impact. This param-
eter reflects the degree of contribution derived from elasticity
and inertia. Therefore I would like to call the impact following
the 1/6 power law the elasticity-dominant impact, and the one
following the 1/3 power law the inertia-dominant impact [22].

FIG. 5. (a) Power-law relation between ω and η, (b) plots of �

vs � with different sizes of the sphere, R = 3.0 mm (•), 4.0 mm
(�), 4.5 mm (×), 5.0 mm (�), 7.0 mm (�), where ω = τcνi/R, η =
ρνi/E , � = ωφ1/3κ−1/3η−1/3 and � = ξφ1/6κ−1/6η−1/6. The two
dashed lines indicate the slope of 1/6 and 1/3.

Not only η but also ξ is a key parameter. The second term
of Eq. (13), which corresponds to the intermediate asymp-
totic of the elasticity-dominant impact, is multiplied by ξ ,
indicating that the contribution of the second term is critically
weakened by small ξ . ξ measures the relative degree of sub-
sidence into the surface. A smaller sphere subsides relatively
deeper than larger one (Fig. 6), which is the reason why the
small sphere (R = 3.0 mm) follows a 1/6 power behavior. In
the end, this physical interpretation of � corresponds to the
analytical interpretation of Eq. (13), which proves the validity
of the application of dimensional analysis.

Ledesma-Alonso et al. discussed the elastic contact be-
tween a spherical lens and a patterned surface [23], showing
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FIG. 6. Comparison of wall-sphere contact generating geometri-
cal dimensionless parameter ξ = a/R in a smaller (left) and larger
value (right).

that the indentation behavior is changed depending on the
fraction φ. φ may differ locally in the smaller sphere because
the smallest one (R = 3.0 mm) is not quite larger than the
thickness of the rectangular pillar (b = 2.5 mm, c = 1.5 mm).
However, these effects are normalized by collecting the data,
while the position of elastic surface is slightly (2.0 mm)
changed on every impact for every condition. Furthermore,
φ is also related to power-law behavior in our case as φ is
included in �. As Fig. 4(a) shows, a plot of R = 7.0 mm
which belongs to larger � shows different behavior even if its
size is equal. It suggests that fundamental behavior is decided
by �, not by single dimensionless parameters.

As periodic, striped-pattern pillars are inscribed, each pil-
lar is independent against deformation. Thus, each pillar is
mainly deformed in a vertical line even in the impact of a
small sphere, in which the contact radius a can be smaller
than the surface of the rectangular pillar b. It signifies that
the present model, the elastic foundation model, in which the
stress profile is simplified for normal stress, is still valid for
the impact of the small sphere.

These new intermediate asymptotics [Eq. (12) and
Eq. (16)] are obtained in the course of dimensional analysis,
not in an analytical manner. Not all the solutions obtained
by dimensional analysis are solved analytically either, as
this method is developed and applied for the problems in
which the analytical treatment is difficult. However, Eq. (9)
is obtained naturally by following Chastel’s solution with
assumption of a self-similar solution of the second kind, and
that it gives the solution from series expansion in Eq. (13).
These theoretical results are consistent with the experimental
results and physical interpretation that the power-law behavior
is decided by the competition between elasticity and inertia.
This consistency justifies the conclusion though analytical
expression can remain a problem.

In other reports of contact mechanics, the property of
deformation is changed from elastic contact to plastic con-
tact giving different power laws, depending on the scale
of interference [24]. The high-speed impact generates the
plastic deformation depending on the dimensional parameters
[25]. The present work discovered another scale-dependent

phenomenon of contact mechanics. The scale dependence of
power-law behavior is occasionally observed in self-similarity
of the second kind [26,27], while the dependence is sometimes
semiempirical [28]. This work clearly identified the depen-
dence of the dimensionless parameter as the competition
between two power exponents.

VII. CONCLUSION

In conclusion, the above discussion with experimental
results confirms the validity of Eq. (9) and Eq. (15) as the
fundamental dimensionless functions of this problem. Equa-
tion (9) and Eq. (15) include the information of global scaling
behaviors, which give two intermediate asymptotics locally,
depending on �. This scale locality was quite important
for understanding this phenomenon as even the power-law
behavior depended on the scale.

The present work is unique on the point that the
intermediate-scale range in which two physical properties are
incorporated is focused upon, and the crossover of power-
law behaviors is explained as the result of competition be-
tween two intermediate asymptotics each representing dif-
ferent physical properties. Generally, the cases in which the
uniformity of a physical property can be assumed tend to
be concentrated, while the intermediate region is avoided.
However, this work dealt with this intermediate region, and
the crossover of power-law behavior was confirmed with
experimental results. Furthermore, the two different methods
were combined complementally in this work: dimensional
analysis and the solution obtained by the equation of kinetic
energy and elastic energy. Generally the latter solution is
considered to be enough, but the scale dependence would
not have been recognized without dimensional analysis. This
suggests that this combined dimensional analysis with the
concept of an intermediate asymptotic is quite effective to
analyze the mesoscale phenomena incorporating two or more
physical properties, revealing different behaviors depending
on the scale.

In this work, self-similarity of the second kind is under-
stood as the competition between two intermediate asymp-
totics. This is also a quite interesting insight for the concept
of self-similarity in general.
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