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Birth and decay of tensional wrinkles in hyperelastic sheets
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We demonstrate with experiments that wrinkling in stretched latex sheets occurs over finite strains, and that
their amplitudes grow and then decay to zero over a greater range of applied strains compared with linear elastic
materials. The wrinkles occur provided the sheet is sufficiently thin compared to its width, and only over a finite
range of length-to-width ratios. We show with simulations that the Mooney-Rivlin hyperelastic model describes
the observed growth and decay of the wrinkles in our experiments. The decrease of wavelength with applied
tension is found to be consistent with a far-from-threshold scenario proposed by Cerda and Mahadevan in 2003.
However, the amplitude is observed to decrease with increasing tensile load, in contrast with the prediction of
their original model. We address the crucial assumption of collapse of compressive stress, as opposed to collapse
of compressive strain, underlying the far-from-threshold analysis, and test it by measuring the actual arc-length
of the stretched sheet in the transverse direction and its difference from the width of a planar projection of
the wrinkled shape. Our experiments and numerical simulations indicate a collapse of the compressive stress
and reveal that a proper implementation of the far-from-threshold analysis is consistent with the nonmonotonic
dependence of the amplitude on applied tensile load observed in experiments and simulations. Thus, our
work support and extend far-from-threshold analysis to the stretching problem of rectangular hyperelastic
sheets.
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I. INTRODUCTION

Wrinkling instabilities are well known to occur in thin
elastic sheets due to a subtle competition between bending
and stretching energetics under a variety of applied boundary
conditions [1–3]. A particularly interesting example is a thin
rectangular elastic sheet which when clamped at its two short
ends and stretched displays periodic wrinkles oriented parallel
to the direction of applied tensile strain ε [4]. It has been
proposed that hindered Poisson contraction near the clamped
edges leads to the formation of wrinkles above a critical value
of ε = εc [5], which eventually extend throughout the whole
sheet when ε � εc. Subsequent scaling arguments inspired
by the classical Föppl–von Kármán (FvK) equations for thin
Hookean (i.e., linear elastic) sheets were used to predict the
behavior of the observed wrinkle amplitude and wavelength
with applied strain [6]. However, this approach has been
criticized as introducing an ad hoc geometrical constraint that
a transverse strain is eliminated by the formation of wrinkles
[7], leading to incorrect conclusions on the growth of the
wrinkle amplitude above threshold [8]. In fact, the prediction
of an unbounded growth of the wrinkles amplitude has been
found to be inconsistent with results of simulations with
neo-Hookean (NH) models [8–12]. In these simulations, the
wrinkles are found to grow, decay, and finally disappear with
increasing strain at large but finite values. Interestingly, the
same scaling analysis was found to yield consistent results for
the evolution of the wrinkle wavelength with strain [5,7,10].

More recent simulations [13,14] have noted that the NH
and Mooney-Rivlin (MR) models of elastic materials predict

wrinkles at higher strains than first reported with the Saint
Venant–Kirchhoff (SVK) model [8], in addition to qualitative
differences in the region of parameter space where wrinkles
are expected to appear. The situation with respect to exper-
iments and reported observations remains even less clear.
Some studies with silicone rubber sheets appear to show wrin-
kles over a large range of applied strain where simulations find
wrinkles to flatten out completely [9]. Experimental errors,
material imperfections, and orthotropicity have been proposed
as explanations for this apparent discrepancy [12,15]. In stud-
ies with polyethylene sheets, it was found that the observed
wrinkles also persist to larger strains compared with finite
element simulations implementing hyperelastic constitutive
models [10]. Furthermore, it was shown that these materials
are strain rate-dependent and deform plastically as strain is
increased [10].

The far-from-threshold analysis proposed in Ref. [6] has
been pursued and developed further in studies that addressed
simpler systems, yielding analytic progress and elucidating
key aspects of this physical approach [2,16–19]. Specifically,
it was noted that rather than elimination of compressive strain
that was invoked in Ref. [5], wrinkling of thin sheets in the
far from threshold regime completely relaxes the in-plane
compressive stress in the solid. For the stretching problem
addressed here, this implies that the ratio between the wrinkle
amplitude and wavelength is determined by the difference
between the measured arc-length of the wrinkled width of the
sheet and the planar projection of this shape, in a manner that
is different from the one obtained in the original version of the
far-from-threshold model [6]. However, to our knowledge, an
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experimental assessment of the relevant assumption underly-
ing a proper implementation of far-from-threshold analysis—
collapse of compressive strain versus stress—has not been
conducted.

Indeed, experimental investigations remain few, and a
quantitative agreement between experiments and numerical
predictions in the case of elastic materials has not been
demonstrated in spite of recent efforts to implement more
elaborate numerical models that include geometrical non-
linearities and various nonlinear rate-dependent and rate-
independent constitutive laws for stretching and bending de-
formations [13,14,20,21]. Thus, a combined numerical and
experimental investigation of tension-induced wrinkles on
simpler materials is highly needed to clarify the nature of the
wrinkles and their persistence to higher strains in the case of
elastic sheets.

Here we investigate tensional wrinkling patterns by using
highly stretchable latex sheets, which are shown to be hyper-
elastic under the application of a large range of strain. In this
case, we show that wrinkles indeed arise and flatten out at
finite strains, in apparent contrast with the proposed amplitude
growth [6], but which are also nonetheless quantitatively
different from those reported by recent numerical work on
nonlinear plate models using Hookean [8,12] and hyperelastic
materials [10,13,14,22]. We observe that the wrinkles in fact
persist to far greater strains and show that the observed
evolution is consistent with simulations using the MR model
after the material parameters are matched appropriately. Thus,
we show that the nature of the material nonlinearity affects
significantly the region in the parameter space where wrin-
kling occurs. We then show that the growth and decay of
the measured amplitude is inconsistent with the assumption
of collapse of transverse strain [5]. Rather, we show it to be
consistent with a far-from-threshold approach derived from
assuming a collapse of compressive stress. Our experimen-
tal and numerical work not only validates this assumption,
but also shows its applicability to hyperelastic materials in
capturing the growth of the wrinkle amplitude along with its
wavelength.

II. EXPERIMENTAL SYSTEM

The experimental system consists of a natural latex sheet
obtained from MSC Industrial Direct Co. with initial length
Lo, width Wo, and thickness to, mounted horizontally between
two rigid parallel clamps which are further attached to trans-
lating stages, similar to the one used previously to study
the shape and strain experienced by unwrinkled thick elastic
sheets [23]. The clamps are moved axially through prescribed
separation distances L, while maintaining their orientation,
resulting in an applied longitudinal strain ε = �L/Lo = (L −
Lo)/Lo. Experiments were performed with latex sheets with
thicknesses in the 140–500 μm range. The sheets are steamed
and ironed to remove any creases, and then used over a period
of days. In order to obtain consistent results, care has to be
taken in preparation of the sheets and in their handling, in-
cluding storing the sheets in air-tight containers, until they are
ready to use. If these precautions are not taken, rubber sheets
become somewhat thinner and brittle over longer periods.

FIG. 1. (a) Applied stress T normalized by the Young’s modulus
Y versus measured strain for latex while strain is increased and
decreased. The differences are within the experimental error, which
is of the order of the size of the symbols. The data are well described
by the MR hyperelastic model for soft elastic solids. The measured
Y = 1 MPa. Dashed and dashed-dotted curves show, respectively,
best fits to NH and SVK models. (b) T/Y vs strain for increasing
aspect ratios is observed to be similar and well described by the MR
model.

To characterize the elastic properties of the sheets, com-
plementary measurements were performed by stretching and
relaxing sheets of the materials by varying the applied strain
ε. The measured nominal stress T (defined throughout this
paper as f orce/area rather than f orce/length) scaled by the
Young’s modulus Y , corresponding to the initial slope of the
curve, is plotted as a function of ε in Fig. 1(a) over a range
of applied strains which is used to investigate wrinkling. The
response does not show any significant plasticity, as can be
seen from the close overlap of the points corresponding to
when the strain is increased and decreased in Fig. 1(a). It can
be also observed that the stress-strain curve is nonlinear above
ε ≈ 0.1 compared to the linear elastic constitutive law used
in the SVK model. Limited experiments were also performed
with PDMS sheets, where similar results were observed, but
are not reported here for simplicity of presentation.
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FIG. 2. Wrinkles are formed in the central region of a sheet
(Lo/Wo = 2 and to/Wo = 1 × 10−3) which is clamped at two ends
and then stretched uniaxially. The applied strain ε = 0, 0.1, 0.2, 0.32,
and 0.46.

The stress response of rubber is typically described with
the MR model [24]. We implement the extension of the
sheet with the same dimensions Lo = 28 cm, Wo = 14 cm,
and to = 140 μm used in our experiments using the MR
model in ABAQUS. The four-node shell element (S4R) is
applied with a mesh area concentration given by (area of
single element/area of sheet) 1.25 × 10−5; this mesh size is
used because no obvious changes of wrinkling patterns are
observed when increasing mesh density. We first do buckling
analysis with linear perturbation to obtain the first eigenmode,
then use static Riks method to simulate the stretching. The
fitting parameters in the MR model which describe the data
are found to be D1 = 0 Pa corresponding to the volumetric
response, C01 = 1.58 × 105 Pa, and C10 = 6.21 × 104 Pa, the
material constants related to the distortional response. The
corresponding curve is plotted in Fig. 1(a) and is observed
to be in excellent agreement with the data. We also compared
the curve with the SVK model, where we assume Young’s
modulus to be similar to the initial measured response of latex
used and an ideal incompressible material. While the small
strain response is observed to be well described by the SVK
model, systematic deviations are observed with increasing
strains. Then we compare the data with a NH model which
has fitted parameters C10 = 1.91 × 104 Pa, C01 = 0, D1 = 0.
Here the data are described to higher strains by the NH
model in comparison to the SVK model. However, systematic
deviations are still observed, confirming that the relevant
hyperelastic response over applied strains of interest is indeed
given by the MR model. We have further measured the stress-
strain response with higher length to width aspect ratios by in-
creasing the length of the sheet as shown in Fig. 1(b). We find
the nonlinear response to be similar to within experimental
error for the three cases and well described by the MR model.
Thus, having established the appropriate hyperelastic model
in the sheets used, we next describe the experiments and
measurements on wrinkling of the sheet, before comparing
with the corresponding simulations.

III. WRINKLING OBSERVATIONS

Figure 2 shows a sequence of images of a planar rectangu-
lar latex sheet with length Lo = 28.0 cm, width Wo = 14.0 cm,

FIG. 3. (a) An image of the wrinkled sheet with a cross section
illuminated by a laser sheet. (b) A surface rendering of the scanned
sheet with deflection mapped to the color map. The scanned area
corresponds to 80% of the central section of the sheet. (c) The
corresponding simulated profile under the same conditions (Lo/Wo =
2; to/Wo = 1 × 10−3, ε = (L − Lo)/Wo = 0.12).

and thickness to = 140 ± 1 μm, as the applied longitudinal
strain is increased. We choose the coordinate system (x, y)
such that x is the long axis (along which tension is applied),
and the origin (0,0) is the center of the rectangular sheet.
Here the sheet is viewed directly from above while being
illuminated with a pair of lights to the side, and thus the
regions with greater slope appear darker. One observes that
wrinkles form at the central regions of the sheet and grow
in amplitude before flattening out. Thus, we establish that
wrinkles appear as an instability of a planar deformation, after
a finite strain is applied, and then indeed disappear when
sufficiently large strain is applied. Hence, our experimental
results are qualitatively consistent with recent theoretical and
simulation work, which found that wrinkles occur only over
a finite range of applied strains [8,10]. However, one can
also observe that wrinkles persist to far greater strains than
the range 0.1 to 0.23 reported previously in elastic sheets of
similar dimensions in a wide range of models [8,10,13].

A. Laser scanned wrinkle profiles

To observe the growth and decay of the wrinkles with strain
more quantitatively, we use laser profilometry [25]. In this
technique, a thin vertical light sheet is used to illuminate the
elastic sheet perpendicular to its surface, and the resulting
illuminated intersection is imaged from an angle. A sample
image is shown in Fig. 3(a). The deflection of the illuminated
sheet from a straight line is obtained using standard image
processing, and after appropriate calibration, the amplitude of
deflection of the sheet is detected to within a few microns, well
within the thickness of the sheet. A rendering of the scan of the
wrinkled sheet, performed at 0.01Lo intervals along the length
of the sheet, is shown in Fig. 3(b). The deflection amplitude
is mapped to the color bar, which is between ±3.5 × 10−3Wo,
or about ±2.5to. Here the central 80% of the sheet is scanned
because the flat areas near the clamped edges are not obtained
as accurately due to eclipsing by the clamping armature.

We plot the deflection amplitude of the sheet across the
width of the sheet midway between the clamped edges in
Fig. 4(a) to further illustrate the development of the wrinkles
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FIG. 4. (a) Plots of the measured amplitude profile of the sheet
midway between the clamps in the experiments. The profiles are
shifted up by a factor proportional the applied strain ε noted on
the vertical axis. (b) The corresponding MR model profiles obtained
with numerical simulations. The wrinkles appear to grow and decay
similarly with increasing strain (Lo/Wo = 2; to/Wo = 1 × 10−3).

with quantitative measurements. Here we have plotted each
profile shifted up by a factor proportional to the applied strain
ε as noted on the left axis. As ε is increased, we observe that
the wrinkles increase rapidly in amplitude, before decreasing
more slowly to essentially zero at the greatest strains applied,
confirming the trends shown in the images in Fig. 2. Thus,
we clearly demonstrate that a cleanly prepared planar sheet
wrinkles at finite applied strain, and then flatten out as applied
strain is increased further.

B. Numerical simulations with the Mooney-Rivlin model

We now discuss the results of the simulations performed
with the MR model with parameters matched to capture
the stress-strain response discussed in the previous section.
Figure 3(c) shows an example of the simulated sheet surface
corresponding to the example shown in Fig. 3(b). We observe
that wrinkles obtained in the simulations appear similar and
are localized in the center of the sheet as in the experiments.

FIG. 5. (a) The measured amplitude versus applied strain com-
pared with amplitudes determined using simulations of the MR
model (Lo/Wo = 2 and to/Wo = 10−3). The shaded area corresponds
to the experimental error. The experimental data are in agreement
with MR simulations. (b) Measured wavelengths with Lo/Wo = 2
and to/Wo = 10−3 as a function of strain compared with Eq. (2) and
simulations with the MR model.

To compare the overall development over the range of
applied strains with the experiments, we also plot the profiles
across the midpoint between the clamps in the simulations
in Fig. 4(b). There it can be noted that the profiles are
antisymmetric in both the experiments as well as the sim-
ulations. We also observe that the overall development and
relaxation of the wrinkles appear to be similar as a function
of strain. We next make quantitative comparisons between the
wrinkle amplitude and wavelength observed in experiments
and simulations.

C. Amplitude growth comparisons

We obtain the maximum wrinkle amplitude A in each
profile shown in Fig. 4(a) in the case of the experiments and
Fig. 4(b) in the case of the simulations. The measured values
of A are normalized by the thickness of the sheet to and plotted
as a function of applied strain in Fig. 5(a). The errors due to
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the material variation in the sheet thickness and the calibration
of the profiles are shown by the shaded areas. The experiments
and our simulations with the MR model are in good overall
agreement, not only for the peak amplitude and the strain
at which it is reached, but also for the range over which
the wrinkle amplitudes decay to zero. This agreement, along
with overall trends in the surface profiles shown in Figs. 3
and 4, show that the MR model is an excellent descriptor of the
elastic response of latex sheets, and specifically the wrinkle
patterns in them.

We also compared the observed amplitude against the
simulations reported by Nayyar et al. [10] using the NH
hyperelastic model for perspective. We observe that while the
experimental data are overall consistent with the increase and
then decrease observed in these simulations, the measured
amplitude extends over a significantly higher strain ε besides
being systematically greater. Li and Healey [13] and Fu et al.
[14] have also reported simulation results using the MR model
with a sheet with similar dimensions where the maximal
strain at which wrinkles disappear was around 0.3, notably
smaller than the experimentally observed value and our own
simulations. This can occur because the material constants
used in those simulations may be different, even if the sheet
dimensions used are the same.

Thus, it appears that the persistence of wrinkles to higher
strains is strongly affected by material nonlinearities [14].
Interestingly, the SVK plate model which implements a
Hookean thin plate model using a geometrically exact stretch-
ing energy and FvK-like bending energy is also able to capture
qualitatively the disappearance of the wrinkles at large strain
[8], but at much lower strains. Thus, nonlinearities stemming
from the strain-displacement relation have to be included to
quantitatively model the tensional wrinkles in hyperelastic
sheets.

D. Aspect ratio dependence

According to Li and Healey’s analysis of the FvK equa-
tions [13], the wrinkling instability can occur even below
Lo/Wo = 1.5 for to/Wo = 10−3 at sufficiently large ε as well as
for arbitrarily large Lo/Wo. However, their analysis of the NH,
SVK, and MR models find only an “island” in the parameters
space where wrinkling occurs over the range 1.5 � Lo/Wo �
2.6 in case of the NH and MR models, and slightly higher
values for SVK model.

In order to elucidate this issue, we performed fur-
ther experiments and simulations with ratios Lo/Wo =
1.5, 1.8, 2, 2.5, 3.0, and 3.5, while holding Wo and to at
constant values. The maximum observed amplitude max(A)
normalized by the sheet thickness is plotted in Fig. 6(a).
No wrinkles are observed in case of Lo/Wo = 1.5 in our
experiments and simulations with the MR model.

Further, we also compare the measured occurrence of
wrinkling with sheets with various thickness-to-width ratio
(to/Wo), for Lo/Wo = 2. We observe that the wrinkles occur
over a similar range of parameters in our experiments and MR
simulations, and the wrinkle amplitudes are also consistent
within experimental errors.

Comparing our results with previous reports, we note that
wrinkling is observed in the case of Lo/Wo = 3, at which

FIG. 6. (a) The maximum amplitude versus strain for various
Lo/Wo when to/Wo = 1 × 10−3. (b) The maximum amplitude versus
Wo/to when Lo/Wo = 2.

value no wrinkles are predicted according to the analysis of
Li and Healey [13]. In comparing with the NH simulations
by Nayyar et al. [10], a slightly higher cutoff is observed in
Lo/Wo, below which wrinkles are not observed. But a similar
upper cutoff is observed in Lo/Wo above which wrinkles are
not observed. Thus, we find that while the qualitative trends
in terms of an increase and decrease of wrinkling amplitude
occurs in our experiments and various elastic models used
in the simulations reported previously [10,13,14], quantitative
differences exist depending on the nature of the hyperelastic
model chosen.

IV. FAR-FROM-THRESHOLD ANALYSIS

A. The Cerda-Mahadevan model

In 2003, Cerda and Mahadevan (CM) proposed to study the
wrinkle pattern in this system, and specifically the apparent
reduction of the characteristic wavelength upon increasing the
tensile load, by focusing on the system far from the instability
threshold of the planar state. The rationale of this proposal was
motivated by combining two observations: First, considering
the planar state of a stretched Hookean sheet with Poisson
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ratio ν > 0, it is known that imposing tensile strain ε induces
a proportional amount of transverse compressive strain νε.
Second, planar sheets buckle when subjected to compressive
strain that exceeds a threshold value εc, which vanishes with
the sheet’s thickness or more precisely, εc(to/Wo) → 0 as
to/Wo → 0. Rather than focusing on the near-threshold regime
(ε � εc), which is the realm of classical pattern formation
theory, CM proposed that observed wrinkle patterns in suffi-
ciently thin sheets may be understood by studying a Hookean
far-from-threshold regime:

εc � ε � 1. (1)

In this regime, wrinkles are fully developed and affect the
stress field in the sheet nonperturbatively, which means that
one can no longer approximate it through the stress of the
planar state which is unwrinkled. On the other hand, since for
sufficiently thin sheets the threshold value εc becomes arbi-
trarily small, far-from-threshold conditions may be realized
even for ε � 1. This observation allows a quantitative study
of this wrinkling phenomenon with linear (Hookean) elasticity
and thereby FvK equations, for which the only source of
nonlinearity is the geometric dependence of in-plane strain on
out-of-plane deformations.

The original CM model yielded two primary predictions,
for the characteristic wavelength of wrinkles λ and their
amplitude A. According to their model, the wavelength is
given by

wavelength (CM): λ =
√

2πLoto
[3(1 − ν2)ε]1/4

. (2)

Importantly, this prediction for the wavelength λ stems from
analysis of periodic solutions to the FvK equations and does
not depend on the actual value of the amplitude A of wrinkles
(the only assumption made is that the wrinkled shape is of
small slope, namely, A/λ � 1). Regarding the amplitude, the
model predicts

amplitude (CM): A ∼ λ
√

νε . (3)

In order to understand the rationale underlying Eq. (3), let
us consider the wrinkle profile away from the clamped edges
(e.g., the center of the sheet) and denote by Wact the actual
arc-length of the sheet in the transverse (ŷ) direction, and by
Wproj the projected width of the wrinkled sheet onto the plane.
Assuming Wact − Wproj � Wproj, we have the purely geometric
relation

A ≈ Cλ�, �2 ≡ Wact − Wproj

Wproj
, (4)

where �2 is the fraction of the arc-length that is “wasted” by
the undulations of the shape, and C is a numerical constant
that depends on the actual wrinkled shape. For instance, if
the shape is a sinusoidal undulation ζ (y) = A cos(2πy/λ),
one obtains C = 1/π . The assumption underlying Eq. (3)
is that in the far-from-threshold regime (a) the compressive
(transverse) strain vanishes, hence Wact = Wo, where Wo is the
original width of the sheet in the undeformed state, and (b) the
planar projection of the stretched sheet continues to contract
in width, even after the formation of wrinkles, according to
the Hookean Poisson relation: Wproj ≈ Wo(1 − νε).

B. The wavelength

We tested the proposed scaling for the wavelength against
our experimental data. The wavelength of the observed wrin-
kles was obtained by measuring the distance between neigh-
boring central peaks in Fig. 4(a). In Fig. 5(b) the wavelength
λ/Wo normalized by the initial width of the sheet correspond-
ing to the experiments and the MR model simulations is
plotted as a function of applied tensile strain ε. The data
from our experiments and simulations are observed to collapse
reasonably well with no fit parameters. Further, the overall
decreasing trend with strain can be described by Eq. (2)
after multiplying by a factor 0.8 to the data and using ν =
0.5 corresponding to a perfectly incompressible material. In
examining the trends, it should be noted that the proposed
scaling for the wavelength was derived assuming ε � εc.
Consequently, discrepancy should be expected near threshold
and is indeed observed. Thus, we conclude that for the range
of parameters addressed by our experiments and simulations
the overall decrease in wavelength is captured reasonably well
by the CM model. This conclusion is also similar to that
reached by Nayyar et al. [10] based on simulations with NH
model.

Although the data in Fig. 5(b) provide support to the
prediction Eq. (2), even for values of the applied strain that
are beyond the asymptotic range Eq. (1) assumed by the CM
model, we note that in Fig. 5(b) the normalized wavelength
λo/Wo is in the interval (0.9,0.17), and it is not obvious that
these data are sufficient to confirm the validity of the scaling
law Eq. (2) (i.e., in the relevant asymptotic limit ε � 1). More
generally, Eq. (2) is a particular example of a broader scaling
law, λ ∼ (B/Keff )1/4, which was proposed already in Ref. [6]
and expanded in Ref. [17], whereby the wrinkle wavelength
derives from a balance between the bending modulus B of the
solid sheet and an effective stiffness Keff . The effective stiff-
ness may originate from a real substrate attached to the sheet
(e.g., a liquid bath or a compliant solid foundation), a global
curvature that may be imposed on the sheet or a tension T
exerted along wrinkles. In the latter case, the effective stiffness
is T/	2, where 	 is a characteristic scale in the nonoscillatory
direction over which the wrinkle amplitude varies. In our case,
there is no actual substrate nor global curvature (since the
wrinkled sheet remains close to the original plane), and Eq. (2)
follows immediately if one assumes that the characteristic
longitudinal scale 	 ∼ Lo. We note that the data plotted in
Fig. 5(b) may be actually consistent with 	 ∼ Lα

o W 1−α
o , with

α 	= 0. In order to test the dependence of the longitudinal
scale 	 on the aspect ratio Lo/Wo one would have to perform
experiments and/or simulations on a broad range of Lo/Wo,
which is beyond the scope of the current work.

C. The amplitude

In contrast to the prediction of the CM model for the
wavelength, Eq. (2), whose consistency with experimental
data and simulations has been noted already [10], the model
prediction for the wrinkle amplitude, Eq. (3), appears to
be inconsistent with observations. Notably, Eqs. (2) and (3)
predict that for a given sheet (i.e., fixed values of to,Wo, Lo)
the amplitude scales as ∼ε1/4 upon increasing the tensile load.
However, experiments and simulations exhibit the opposite
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trend, whereby the amplitude starts to decrease already at
rather small values of ε.

Furthermore, the very reasoning underlying the transition
from the geometric relation (4) to (3) is unclear. The cal-
culated transverse stress σ̄yy, normalized by the tensile load
σ̄xx = Y ε, is shown in Fig. 7(a) as a function ε for Lo/Wo =
2. For comparison, σ̄yy/σ̄xx is also plotted for the flat state
where no wrinkles occur. (This planar stress distribution is
obtained by adding to the simulation of the stretched sheet
a very large energetic penalty for any deviation of the shape
from the planar state, such that the amplitude remains zero
everywhere regardless of the value of ε). One observes that the
curves deviate from one another above the onset of wrinkles
corresponding here to εc ≈ 0.015 and remerge at ε ≈ 0.4
where wrinkles are observed to flatten out. We also plot
σ̄yy/σ̄xx across the centerline midway between the clamps in
Figs. 7(b) and 7(c) for exerted strains slightly above onset of
wrinkles, and well above onset where the deviations shown
in Fig. 7(a) are relatively the largest, respectively. While
these graphs show that the planar state exhibits transverse
compressive stress because σyy < 0, its value can be seen
to be only a very small fraction of the stress −νσ̄xx that
would have been induced in the sheet had the transverse
strain been zero because ν = 0.5. In fact, the compressive
transverse strain εyy ≈ −νε necessary to achieve near elim-
ination of the compressive stress and reduction in elastic
energy of the deformation is precisely the Poisson effect [26].
Consequently, the “inextensibility” condition assumed in the
CM model to characterize the far-from-threshold behavior
(εyy = 0 ⇒ Wact = Wo) would therefore lead to an enhance-
ment of transverse stress in the sheet from the very small
values in the planar state, as shown in Fig. 7, to σyy ≈ νY ε.
Paradoxically, this would result in a higher elastic energy in
the wrinkled state compared to the energy of the planar state.
The experimental and numerical observations, along with the
conceptual difficulty in Eq. (3), led subsequent researchers
[8,10] to attribute the wrinkling instability in this system to
effects of non-Hookean elasticity.

A deeper perspective on the wrinkle amplitude requires us
to address first the basic principles of the mechanics in the
far-from-threshold regime, Eq. (1). While the nontrivial effect
of clamping the short edges is crucial for understanding the
origin of compression and wrinkling in our problem, there
exist other setups that exhibit a similar type of tension-induced
wrinkling, but are amenable to analytic solution due to their
inherent axial symmetry. A notable example is the Lamé
setup of an annular sheet that exhibits radial wrinkles when
subjected to distinct tensile loads at its inner and outer radii
[2]. Studies of the far-from-threshold mechanics in this and
other systems [16,18,19] revealed three important principles:

(a) It is the transverse stress (i.e., stress component in the
direction of wrinkly undulations), rather than strain, whose
“collapse” is enabled by the formation of wrinkles. More
generally, a theoretical framework for analyzing the far-from-
threshold wrinkled state consists of an expansion of the
equilibrium equations around a limit state, which is free of
any compressive stress. This singular limit state, which is the
subject of “tension field theory” [27–29], is attainable only for
a hypothetic sheet with zero bending rigidity. Nevertheless,
this framework does characterize the stress in the wrinkled

FIG. 7. (a) Comparison between the normalized transverse stress
averaged over y at the central line of the sheet, in the planar (red)
and wrinkled (blue) states, upon increasing ε. The vertical dashed
line corresponding to the numerical calculated value εc ≈ 0.015.
The difference between the compression levels in the planar and
wrinkled states vanishes at sufficiently larger values of ε. Tension
field theory predicts that for sufficiently thin sheets, the blue curve
above threshold becomes infinitesimally close to 0. (b) and (c) The
numerically calculated transverse stress normalized by the exerted
tensile load with to/Wo = 10−3 and Lo/Wo = 2 with threshold εc ≈
0.015 under applied strains ε = 0.026 (b) and ε = 0.1 (c). The
curves show that near-threshold, the stress deviates slightly from
the planar state (b), but this deviation increases substantially upon
increasing ε (c).

state of a physical, highly bendable sheet as the system is
strained far from the wrinkling threshold [2]. The vanishing
of the transverse stress in our system can be observed as well
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by examining σ̄yy/σ̄xx with increased applied strain as shown
in Fig. 7(a).

(b) The collapse of compressive stress requires a specific
displacement of material lines, which is obtained by solving
the corresponding tension field theory equations [27–29]. In
problems of axial symmetry [2,18,19], this implies a certain
dependence of the radial displacement (ur (r)) on the exerted
tensile load imposed on the sheet [e.g., Eqs. (13) and (17) in
Ref. [2]].

(c) Conditions (a) and (b) underlie a “slaving condition,”
which connects the amplitude-wavelength ratio to the excess
length that must be “wasted” by the wrinkling undulations,
to enable the desired collapse of the compressive stress. In
axisymmetric setups, this excess length was called a “confine-
ment function,” �2(r) = ur (r)/r [e.g., Eqs. (14) and (15) in
Ref. [2] and Eq. (2) in Ref. [17]].

The above principles (a–c) encapsulate the rationale of
tension field theory and provide a conceptual framework
for understanding the transition from a near-threshold to a
far-from-threshold parameter regime. In the former, the for-
mation of wrinkles affects only a small perturbation to the
planar (prebuckling) stress and can be addressed through a
standard perturbation (postbuckling) analysis; in the latter,
the wrinkle pattern is subjected to the constraints described
by tension field theory, and the corresponding stress field
cannot be assumed to be a small perturbation to the planar
stress. However, in contrast to the examples mentioned above
[2,16,18,19], implementing this theoretical approach in our
study faces hurdles set up by several difficulties. First, the lack
of spatial symmetry implies that there is no simple coordinate
system (cartesian [16] or polar [2,18]) that can be used to
reduce the force balance equations of tension field theory to an
ordinary differential equation; instead, a fully fledged partial
differential equation must be solved numerically in order to
find the principal directions of the compression-free stress
field at each point [12]. We do not have at our disposal analytic
methods to address such a problem. Second, as is shown
in Fig. 7, the magnitude of transverse compressive stress in
the planar state is already very small (less than a percentile)
in comparison to the tensile load, Y ε. Hence, although the
formation of wrinkles suppresses further the transverse com-
pression [Figs. 7(a) and 7(c)], which is an essential element
of the transition from near- to far-from-threshold regime, the
overall change in the stress field (and the corresponding elastic
energy) is far less dramatic than in other systems (compare,
e.g., Figs. 6 and 7 of Ref. [16]).

Notwithstanding these caveats, the principles underlying
tension field theory [(a)–(c) above] are crucial for understand-
ing our observations. Specifically, we recognize Eq. (4) as the
amplitude-wavelength slaving condition, whose satisfaction
guarantees the “collapse” of compressive stress in the wrin-
kled zone. The collapse of compressive stress implies that the
actual arc-length, Wact, approaches Wo(1 − νε). As this prop-
erty already characterizes the planar, prebuckling state be-
cause of the negligible magnitude of transverse compression
in comparison to Y ε (as shown by Fig. 7), we should expect
Wact ≈ Wo(1 − νε) as ε is increased, instead of Wact evolving
towards the value Wo, as was assumed in Ref. [6]. Finally, a
“confinement function,” �2(x) = (Wact − Wproj )/Wproj, which
is the analog of �2(r) = ur/r for problems of axial symmetry

TABLE I. Implementation of the “slaving condition,” Eq. (4).

Current version Original CM model

Wact ≈Wo(1 − νε) Wo

Wproj Tension field theory Wo(1 − νε)

[and whose x dependence is omitted in Eq. (4) for simplicity],
derives from a suitable solution of the equations of tension
field theory [item (b) above].

The differences between this implementation of far-from-
threshold theory and the assumptions made in the original CM
model [6] are summarized in Table I.

In order to test our proposed revision of the CM model,
Eq. (4), with Wact,Wproj in Table I, we first extract from
our simulations the actual width Wact of the wrinkled sheet
at increasing values of the applied tensile load ε. The plot
[Fig. 8(a)] for Lo/Wo = 2, shows that the decrease of Wact is
given by Wact ≈ Wo(1 − νε) as wrinkles develop for ε < 0.1.
At greater ε, non-Hookean effects become important leading
to deviations from the linear decrease, in accord with the non-
linear stress-strain response in Fig. 1. This decrease implies
the near-absence of transverse compressive stress |σyy| � Y ε)
and the consequent presence of transverse compressive strain,
even beyond the Hookean regime of small strains.

Next, we plot in Fig. 8(b) the evolution of �2 as a function
of the applied tensile load ε measured across the central width
of the sheet, x = 0. Below the threshold εc for wrinkling
instability, the projected and actual width are trivially equal,
such that �2 = 0. For ε > εc, we observe that �2 increases
and then decreases, eventually becoming zero beyond a finite
value of ε (above which wrinkles vanish and the planar state
becomes stable again). The important lesson to draw from this
figure is that the actual behavior of �2, which derives from
a solution of tension field theory, is dramatically different,
being an order of magnitude smaller, from the one assumed
by the original CM model (�2 ≈ νε) [6]. Specifically, the
confinement �2 exhibits a nonmonotonic dependence on ε

even for rather small values of ε, at which the mechanics is
still well approximated by Hookean mechanics (see Fig. 1.)

In Fig. 8(c) we plot the measured amplitude A versus the
measured values of λ�, for Lo/Wo = 2. It should be noted that
A/to increases first as ε is increased and then decreases after
reaching a maximum value with the large strain, as indicated
by the arrows. We find that the experimental data and the
MR model simulations match well, and both agree with the
geometric relation, Eq. (4), with a single numerical constant
C = 1, even at large strains.

In Fig. 8(d) we show the same analysis with three different
aspect ratios in the experiments (markers) and corresponding
MR model simulations (dashed curves) that span the range
over which wrinkles are observed. The collapse of the data is
remarkable considering the relatively small amplitudes of the
wrinkles, which are here of order of the thickness of the sheet.
The somewhat systematic shift of the experimental data points
to the right relative to the numerical curves can be attributed
to the fact that there is higher cumulative error which occurs
in obtaining � from the experimental data compared with A.
The theoretical prediction of Eq. (4) with best-fit fixed value
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FIG. 8. (a) The actual width Wact (at the center of the sheet, x = 0), extracted from simulations, plotted as a function of the applied tensile
load, ε (Lo/Wo = 2). It can be observed that Wact decreases consistent with Wact = Wo/

√
1 + ε according to the MR model, indicating that a

small compressive stress (rather than compressive strain) characterizes both the planar state (Poisson effect) as well as the fully developed,
far-from-threshold, wrinkled state of the sheet. Nonlinear elastic effects—similar in nature to those observed in the stress-strain response
shown in Fig. 1—lead to deviations at larger ε. (b) The normalized difference �2 between the actual arc-length Wact and its planar projection
Wproj (plotted at the center of the sheet, x = 0) increases and then decreases as the wrinkles exhibit a nonmonotonic dependence on the applied
tensile load ε, as wrinkles appear and then disappear with increasing ε. (c) The normalized amplitude A/to vs �λ/to for Lo/Wo = 2 plotted
over the whole range of the applied strain ε, when the measured strain is greater than experimental errors. The arrows indicate the trajectory
of the points as ε is increased. (d) Same as (c), for several values of Lo/Wo.

of the constant C = 1 corresponding to the highest applied
strains is shown by the solid line. The systematic deviations
observed between the data points and solid line indicates
that the wrinkle profile slightly varies upon increasing the
applied tensile load, affecting a weak ε dependence [namely,
C → C(ε)] in Eq. (4).

V. CONCLUSIONS

We have demonstrated with experiments that a sufficiently
thin elastic sheet wrinkles when stretched over a finite range of
strains. We provided clear evidence that the wrinkle amplitude
first grows upon increasing applied strain, but then decreases
as the strain is increased further. By using simulations of
the MR model, we showed that all the trends observed in
the experiments are observed with this model within experi-
mental error, once the material parameters are appropriately
calibrated. The wrinkles are observed at higher strains in
comparison with SVK and NH models.

While non-Hookean mechanics is needed to explain certain
aspects of the wrinkle pattern, most notably the persistence
of wrinkles to applied strain ε ≈ 0.4, the basic aspects of the

phenomenon are describable by far-from-threshold analysis,
which employs the asymptotic vanishing of the instability
threshold with the sheet’s thickness (εc → 0) and addresses
the asymptotic regime (1) through Hookean elasticity. This
approach was pioneered by the original CM model [6], which
yields a powerful prediction for the wavelength λ, but the
“inextensibility” assumption (i.e., vanishing transverse com-
pressive strain, εyy = 0) that underlies the model prediction of
wrinkle amplitude that increases with tensile load is revoked
by an opposite trend observed in experiments and simulations.
We showed that this assumption must be replaced by the
collapse of transverse compressive stress (σyy = 0 ⇒ εyy =
−νε), such that the amplitude-to-wavelength ratio is deter-
mined by a “confinement function,” �2(x), whose dependence
on the applied tensile load ε is determined by a corresponding
solution of tension field theory. In setups of high degree of
symmetry, analytic solutions of tension field theory have been
found and were shown to provide a basis for a far-from-
threshold analysis of wrinkle patterns [2,16,18,19]. In the
current setup, despite the deceptive simplicity of the wrin-
kle pattern, the boundary conditions implied by combining
clamping (at the short edges) and free boundaries (the long
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edges) require one to obtain a numerical solution of the
tension field theory (see Ref. [12] for details); our experiments
and simulations show that the confinement function, �2(x),
that should result from such a numerical solution [Fig. 8(b)]
is quite nontrivial. We hope that our findings will motivate
a systematic effort to develop far-from-threshold analysis in
nonsymmetric setups and beyond the Hookean asymptotic
regime given by Eq. (1).
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