
PHYSICAL REVIEW E 100, 052902 (2019)

Granular segregation induced by a moving subsurface blade
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Size-driven particle segregation can occur when an object such as a blade moves through an otherwise static
bed of granular material. Here we use discrete element method (DEM) simulations to study segregation resulting
from a subsurface blade moving through a bed of size-bidisperse spherical particles. Segregation increases with
each pass of the blade until a surface layer of mostly large particles forms above a small-particle layer adjacent to
the bottom wall. The rate of segregation decreases with each pass so that the degree of segregation asymptotically
approaches its maximum value, and the number of passes to reach a steady segregation state increases as the
bed depth is increased or the blade height decreased. In shallow beds, the characteristic number of passes for
segregation, τ , scales with the inverse of the granular inertial number, I . In deep beds with small blade heights,
the effect of the blade is more localized to its immediate vicinity, resulting in many more passes of the blade to
reach a steady segregation state, and a corresponding deviation from the shallow bed scaling of τ with I−1.
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I. INTRODUCTION

Granular materials differing in size, density, shape, or other
physical properties frequently segregate, or “de-mix,” upon
excitation. For example, size segregation occurs when small
particles fall between large particles resulting in regions of
mostly small particles below regions of mostly large particles.
This can occur due to excitation in the form of vibration or
flow. Vibration-induced segregation, sometimes referred to as
the “Brazil nut effect,” is the result of complicated interactions
between the vibrational excitation, friction at walls, convec-
tion rolls, and the interstitial fluid [1,2]. Flow-induced seg-
regation, which is considered here, depends on the interplay
between advection, collisional diffusion, and the tendency for
the particles to segregate [3–5]. While many studies have
considered segregation in gravity-driven surface flows such
as chutes, heaps, rotating tumblers, and landslides [3–5], few
have considered granular segregation resulting from flow due
to the motion of an intruder such as a moving blade, which we
consider here.

In flowing granular systems, whether driven by gravity or
the motion of an intruder, size segregation is the result of
“kinetic sieving” in which small particles preferentially fall
into shear-generated voids and both small and large particles
are pushed upward by particles below them through “squeeze
explusion” [6]. Recent work suggests the additional impor-
tance of a shear mechanism [7].

The segregation mechanism is often characterized by a
segregation, or percolation, velocity relative to the local bulk
velocity that depends on the local species concentration and
some measure of the disruption of otherwise static particles
such as the shear rate [6,8,9], the slope of the free surface
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of the particle bed driving the flow [10], or the local stress
field [11]. Most research on segregation in flowing granular
mixtures has focused on relatively shallow gravity-driven free
surface flows such as those that occur in heaps, chutes, and
tumblers [3,4,6,12–14]. However, scenarios exist where segre-
gation can occur when otherwise static particles are disturbed
by the motion of objects such as mixer blades [15–17], tines
[18], and plows [19,20], or by the movement of a burrowing or
surface locomoting organism or device [21]. Here we consider
segregation induced from a moving subsurface blade.

Much of the previous research examining an object mov-
ing through a bed of particles focuses on the forces on the
object or the localized motion of particles near the object.
Monodisperse granular flows over blades have been examined
to study forces on the blade as function of packing fraction
[22] and blade angle [23], as well as mixing of the particles
[24]. Flow of granular materials around objects is relevant to
a number of industrial processes that involve cylindrical mix-
ers with rotating bladed impellers used to homogenize solid
particle blends. Previous experimental and computational re-
search considered kinematics and mixing in bladed mixers
by employing monodisperse systems [19,20,25]. A handful
of studies have explored the effect of particle size differences
on flow and segregation in bladed mixers [17,26,27]. In these
cases, as well as most monodisperse cases mentioned above,
the blade height is nearly equal to the bed depth, and the
velocity field is examined in the surface bump that results
from the movement of the blade through the bed of particles.
Typically, a three-dimensional recirculating flow develops
around each blade [17]. However, details of the segregation
and its dependence on bed depth and blade height have not
been examined systematically, despite their practical impor-
tance. The objective here is to understand the segregation
resulting from a submerged blade moving through a bed of
size bidisperse particles.
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FIG. 1. Annulus with an equal volume mixture of 5.98 ±
0.06 mm diameter (blue) and 3.12 ± 0.13 mm diameter (gold) glass
particles and a subsurface blade (red). (a) Top view and (b) side
view of initial condition. Segregation after ten passes (c) opposite
the blade and (d) in the bump above the blade for clockwise blade
motion when viewed from above (right to left in the image).

To qualitatively demonstrate how a moving subsurface
blade causes a bed of initially mixed size-bidisperse particles
to segregate, an annulus with an inner diameter of 19.5 cm and
an outer diameter of 29.1 cm is filled with an equal volume
mixture of large (blue) and small (gold) glass beads having
diameters dL = 5.98 ± 0.06 mm and dS = 3.12 ± 0.13 mm,
respectively, such that the initial height of the particle bed h is
about five times the blade height hb. An hb = 0.72 cm blade is
moved manually through the bed of mixed particles N times
using a magnet attached to the bottom surface of the blade
coupled to another magnet below the flat bottom surface of
the annulus. Figure 1(a) shows a top view of a section of the
annulus with the initial condition of mixed particles, while
Fig. 1(b) shows a corresponding side view with the side of
the blade (red) visible. The initial condition is not perfectly
mixed as a small particle rich layer forms at the bottom wall
during bed preparation. This only marginally affects segrega-
tion measurements, as mentioned later. After ten passes of the
blade (N = 10), the mixture is well segregated, as evident by
the large-particle surface layer and small-particle base layer
visible in Fig. 1(c). In addition, as shown in Fig. 1(d), a large
bump forms in the vicinity of the blade as it moves through
the shallow particle bed.

In this paper, we use discrete element method (DEM) simu-
lations to quantify the segregation resulting from a subsurface
vertical wall “blade” moving through a bed of size-bidisperse
spherical particles. This research differs from previous studies
of segregation in two- or four-bladed mixers [15,17,26,27] in
several ways. First, both the blade height and bed depth are

varied, with the blade height always less than the nominal bed
depth. Most previous studies with mixers fix the blade height
and then fill the mixer such that the particles just cover the
blades [15,17,19,26,27]. Second, we use an effectively two-
dimensional geometry rather than the cylindrical geometry
used in previous bladed mixer work [15,17,19,26,27]. This
allows us to study the segregation phenomenon in a simpler
configuration. Moreover, the primary concern in this study is
the nature of the segregation from a fundamental standpoint,
rather than replicating conditions in industrial mixers.

Details of the geometry and DEM simulations are de-
scribed in Sec. II and the Appendix. In Sec. III, simulation
results show the impact of varying the bed depth and blade
height on segregation as well as details of the local flow
and segregation around the blade. In Sec. IV, the work is
summarized and extensions are proposed.

II. SIMULATION METHODS

DEM simulations, details of which are provided in the
Appendix, are performed in a particle bed of depth h with
periodic boundaries in the streamwise (z) and spanwise (x)
directions. The blade is a horizontally moving vertical wall
of height hb that spans the width of the bed and contacts the
bottom wall. It translates from left to right in the streamwise
(z) direction at a constant blade velocity of vb = 0.1 m/s.
The acceleration due to gravity in the vertical y direction is
g = −9.8 m/s2.

The initially well-mixed bed consists of an equal volume
mixture of large (dL = 8 mm) and small (dS = 4 mm) spher-
ical particles with a size ratio of dL/dS = 2. Each particle
species has a uniformly distributed size polydispersity of
±10% to reduce particle ordering. For a specified bed length
Lz, the bed depth h is controlled by changing the number of
particles. Since the effect of the blade is localized to regions
immediately in front of and behind the blade, Lz is kept long
enough that disturbances in front of the moving blade do not
overlap those behind the blade due to the streamwise periodic
boundary conditions. This requires Lz ≈ 9.5h for h = 5.7dL

and h = 11dL . In deeper beds, the disturbed zone is more
localized, so Lz ≈ 6.5h for h = 16.3dL .

The periodic bed width (spanwise) is Lx = 6dL for all
cases. Simulation of systems having double this width, i.e.,
Lx = 12dL, yield quantitatively similar results. The bottom
wall and blade consist of a single layer of spherical particles
with diameter dwall = 2.2 mm < ds to provide a rough surface
while avoiding large depressions between wall particles that
might overly restrict the motion of the bed particles. To
consider the simplest case, the blade extends vertically (rather
than at an angle) from the bottom wall. The blade spans the
bed width (Lx ), and its height hb is measured from the top
of the bottom wall particles to the top of the blade. Note
that hb may be a noninteger multiple of the wall particle
diameter because the lower part of the blade is allowed to
computationally pass through particles forming the wall. The
blade height is varied, but is smaller than the bed depth for all
cases. The number of particles in the simulations varies from
15 000 to 72 000, depending on h and Lz.

Initially, the blade is at rest at the extreme left of the domain
(z = 0), as shown in Fig. 2. Large and small particles are
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FIG. 2. Side-view of DEM simulation showing a blade of height
hb (at the left end) in an initially mixed bed of particles of depth
h consisting of equal volumes of large (dL = 8 mm) and small
(dS = 4 mm) particles. Periodic boundary conditions are maintained
in the streamwise (z) and spanwise (x) directions. Gravity acts in the
downward vertical direction (y). The blade translates in the positive
streamwise direction, i.e., from left to right, at vb = 0.1 m/s.

randomly assigned to nodes in a uniform three-dimensional
grid above the bottom wall. At t = 0, gravity is turned on,
and particles fall to generate a random mixture of particles
supported by the bottom wall. The particles settle within
t ≈ 2 s. At t = 3 s, the blade is translated horizontally in
the positive streamwise direction at vb = 0.1 m/s, a velocity
low enough to avoid inertial effects and maintain persistent
contacts between particles, while large enough to minimize
simulation time. When the blade travels the entire length of
the domain and exits the system on the right (z = Lz), one
“pass” is complete. The blade reenters the domain for the next
pass from the left end (z = 0). Since the blade spans the entire
bed width, the average particle flux in the spanwise direction
is zero, and the system is effectively two-dimensional.

III. RESULTS

A. Shallow beds

1. Quantifying segregation

We consider first shallow bed systems where the effect of
the submerged blade reaches the surface of the bed. Figure 3
shows a typical sequence of developing segregation with an
increasing number of passes N for h = 5.7dL and hb = 1.14dL

(h/hb = 5). When the blade begins to move, particles flow

N=0

N=10

N=35

FIG. 3. Segregation evolution with number of passes N for h =
5.7dL and hb = 1.14dL (h/hb = 5) at (top) N = 0 before the blade
starts to move, (middle) N = 10 as large particles accumulate at the
top surface and small particles accumulate near the bottom wall, and
(bottom) N = 35 when the system has segregated into two distinct
layers. Red arrows indicate the blade position in each frame.
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FIG. 4. Segregation metric YCM vs N for fixed h = 5.7dL and
h/hb = 2.5, 5, 8, 10. Segregation is slower for shorter blades (large
h/hb), but all the systems eventually reach a similar steady state value
of YCM ≈ 0.9. Curves are best fits to Eq. (2).

over the blade. However, the system is long enough that
particles far from the blade remain static. A bump forms on
the free surface above the blade with its center slightly ahead
of the blade, evident at N = 10 and N = 35 in Fig. 3 and
consistent with previous results in a bladed mixer [15,25]. By
N = 10, significant segregation has already occurred, with a
decrease in concentration of large particles at the bottom of
the bed and an increase in concentration of large particles at
the free surface. By N = 35, the system has segregated into
two layers with a slightly diffuse interface between them and
a few stray particles of the opposite size in each layer.

To characterize the evolution of segregation with the num-
ber of passes of the blade, we calculate a segregation metric
YCM using the relative center-of-mass height of the large
particle species in the region excluding the streamwise span
of the bump over the blade. For each pass, YCM is calculated
as

YCM = yL/yCM − 1

1 − cL
, (1)

where yL (yS) is the mean height of large (small) particles
with respect to the top of the rough bottom wall, cL (cS)
is the volume concentration of large (small) particles in the
region excluding the bump, and the center of mass of the entire
bed is yCM = yLcL + yS (1 − cL ), assuming cL + cS = 1. All
heights are measured with respect to the tops of the bottom
wall particles. For a well mixed particle bed, YCM = 0; for a
completely segregated bed, YCM = 1.

YCM is plotted as a function of N in Fig. 4 for the system
depicted in Fig. 3 as well as several other cases. YCM for
the passes shown in Fig. 3 are marked with black circles
around the data points. The initial ordering of small particles
near the bottom wall in the experimental setup shown in
Fig. 1 also occurs in the simulations. This results in a small
deviation in YCM from the perfectly mixed initial condition
of YCM = 0 at N = 0. With increasing N , YCM increases as
the center of mass of large particles rises, consistent with the
ongoing segregation. The segregation rate is higher for the
initial passes and decreases in subsequent passes as the system
approaches the final steady state segregation. After N ≈ 40,
the segregation reaches a steady state.
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FIG. 5. Dependence of YCM on N for fixed h/hb = 2.5 with
h/dL = 5.7, 11, 16.3. Deeper beds (larger h) take longer to segregate,
although steady state values of YCM are nearly equal. Curves are best
fits to Eq. (2).

To better understand the dependence of segregation on
blade height hb, the initial bed depth is fixed at h = 5.7dL

and the blade height is varied from 0.57dL to 2.28dL (2.5 <

h/hb < 10), as shown in Fig. 4. The simulation with the
shortest blade (largest h/hb) requires the most passes (N ≈
120) to achieve steady state segregation, whereas the sim-
ulation with the tallest blade (smallest h/hb) segregates the
fastest (N ≈ 20). The steady state value of YCM varies slightly
between cases (0.89–0.94) because of the somewhat diffuse
interface between the large and small particle layers in the
fully segregated steady state. It decreases slightly as the blade
height decreases, likely as a result of reduced influence of
the smaller blade on particles well above it. The fast initial
segregation in all cases comes about in two ways. First, as
particles in regions in front of the blade are pushed up and
over the blade, particles near the blade segregate, as will be
discussed later. Second, segregation also occurs at the surface
bump as the static bed is disrupted, forcing particles to flow
down the trailing surface of the bump. Of course, segregation
of one species depends on the local concentration of the other
species, as has been shown in previous studies [8], which
results in a decrease in the segregation rate with increasing
segregation.

It is also interesting to vary the initial bed depth h and blade
height hb proportionally (i.e., fixed h/hb), because a deeper
bed results in increasing overburden pressure, which has been
shown to decrease the segregation rate as well as the ultimate
degree of segregation [28,29]. Figure 5 shows the dependence
of YCM on N at h/hb = 2.5 for h ranging from 5.7dL to 16.3dL .
All the systems reach a similar steady state segregation value
(YCM ≈ 0.9), but the number of passes to reach the segregated
state increases with increasing depth h.

At this point it is helpful to consider the general nature
of the segregation development. In all the cases, YCM initially
rises rapidly and then asymptotically approaches a final value
near one. Since it appears that the final value for YCM is ap-
proached exponentially, we fit the evolution of YCM with N to

YCM = (Ymax − Y0)(1 − e−N/τ ) + Y0, (2)

where τ is a characteristic number of passes, Y0 is the
measured initial value for YCM at N = 0, and Ymax is the
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FIG. 6. Ten data sets for varying h/hb and h collapse onto a
single curve when YCM is scaled to lie between 0 and 1 and the
number of passes N is scaled by the characteristic number of passes
τ . Red symbols: h = 5.7dL (h/hb = 2.5, 5, 8, 10); black symbols:
h = 11dL (h/hb = 2.5, 4, 5); and blue symbols: h = 16.3dL (h/hb =
2.5, 4, 5).

maximum value for YCM at large N . Ymax and τ are the two
fitting parameters. Curves fit to this equation are shown in
Figs. 4 and 5, indicating that the evolution of YCM is well
characterized by the exponential model.

Using Eq. (2), data sets for ten different bed depths and
blade heights, including those shown in Figs. 4 and 5, can be
collapsed onto a single curve when (YCM − Y0)/(Ymax − Y0) is
plotted versus N/τ , as shown in Fig. 6. This collapse indicates
that all the cases share the same underlying segregation mech-
anism in the presence of the blade.

The dependence of τ on h and hb for data sets shown in
Figs. 6 is plotted in Fig. 7 for three different bed heights and
a range of blade heights. The figure shows that segregation
slows (τ increases) with increasing h/hb (shorter blade) at
fixed bed height, and that segregation in deeper beds is always
slower (τ is greater) than in shallow beds at the same h/hb

value. The fastest segregation occurs when h and h/hb are
smallest. For the cases studied here, this occurs when h = 6dL,
and h/hb = 2.5, for which nearly complete segregation occurs
within 15 passes, corresponding to τ = 5.1. In contrast, when
h = 16.3dL , and h/hb = 2.5, τ = 26.3 indicating that segre-
gation is more than five times slower.

FIG. 7. Variation of characteristic number of passes τ with bed
depth and blade height for ten simulations. Larger τ signifies slower
segregation.
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FIG. 8. In shallow beds, the characteristic number of passes
τ increases linearly with

√
gh5/(vbhbd̄ ), which is closely related

to the inverse of the dimensionless granular inertial number, I =
γ̇ d̄/

√
P/ρ.

It has been shown previously that the characteristic dis-
placement timescale for a particle relative to the shear
timescale of the flow can be represented by the granular
inertial number, I = γ̇ d̄/

√
P/ρ, where γ̇ is the shear rate,

d̄ is the mean particle diameter, P is the local pressure, and
ρ is the particle density [30]. Since segregation increases
with increasing shear rate [6,8], we would expect τ to be
inversely proportional to I . For the flow considered here, P
can be estimated as the lithostatic pressure at the bottom of
the bed ρgh and γ̇ as vchar/h, where the characteristic velocity
in the disturbed region around the blade, vchar, is assumed
proportional to vbhb/h (as confirmed in the next subsection).
Thus, we would expect

τ ∝ 1/I =
√

P/ρ/γ̇ d̄ ∝
√

gh5

vbhbd̄
. (3)

Plotting the data in Fig. 7 according to this relation for τ

(using d̄ = 6 mm) confirms that the dependence of τ on bed
depth and blade height is accurately described by a linear
function of the inverse of the inertia number, as shown in
Fig. 8.

The relation in Fig. 8 is not unexpected in that a smaller
inertial number [larger

√
gh5/(vbhbd̄ )] corresponds to a ten-

dency toward quasistatic flow that should slow the segrega-
tion, resulting in a greater characteristic number of passes τ .
In contrast to the strong dependence of τ on h and hb (as
well as I), we note that Ymax ≈ 0.9 for all values of h and hb

examined. That is, regardless of the details of the blade and
flow conditions, the particle bed is nearly fully segregated,
with the deviation from perfect segregation (Ymax = 1) due to
the inherent diffuse interface between the layers. However, as
in other segregating flows, Ymax is expected to be a function
of the particle size ratio, e.g., Ymax = 0 for dL/dS = 1 and
Ymax → 1 for large dL/dS .

2. Segregation kinematics

To identify the portion of the flow that drives the segrega-
tion, we consider both the local velocity field around the blade
and individual particle trajectories. To calculate the velocity
field, the bed is divided into cells of length dS in the depth

FIG. 9. Velocity field at N = 5 as the blade moves from left to
right for various blade heights with fixed bed height h = 5.7dL . Blade
height and location are indicated by the red vertical line. Vector scale
is shown at lower right of the bottom figure.

and streamwise directions and 6dL (full width) in the spanwise
direction. The average velocity in each cell is calculated over
0.1 s intervals for the duration of one pass. Then all instances
of the velocity field are aligned to the blade and averaged,
thereby providing an ensemble averaged velocity field in the
region surrounding the blade over one pass.

Figure 9 shows the velocity fields for simulations with
three different blade heights (h/hb = 2.5, 5, 10) and fixed h =
5.7dL at N = 5 evaluated in the stationary laboratory frame of
reference but centered on the blade. The blade creates a finite
zone of velocity disturbances around it, beyond which parti-
cles are static; this is consistent with previous bladed mixer
studies [24,25]. For all three blade heights, particles above
and in front of the blade are pushed forward and upward,
while particles above and behind the blade fall downward and
forward to fill in from behind. The latter results in a negative
streamwise velocity at the free surface on the back (left) side
of the bump. Particles immediately in front of and just behind
the blade have the largest velocity with a magnitude nearly
equal to the streamwise velocity of the blade, 0.1 m/s, which
is again consistent with findings for bladed mixers [17]. Since
particles behind the blade have a downward velocity as they
fill the space created by the moving blade, and particles in
front of the blade are pushed upward, the resulting movement
is much like the recirculation that occurs in bladed mixers
[17,19,20,25].

Comparing the velocity fields for different blade heights
in Fig. 9, it is clear that a taller blade establishes a larger
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FIG. 10. Mean particle speed normalized by blade speed |v|/vb

varies linearly with normalized blade height hb/h for all shallow bed
simulations (open symbols, same as earlier plots) as well as deep bed
simulations (filled symbols, see Sec. III B).

high-velocity region. The higher velocities result in higher
local shear rates, which allow more particle rearrangements
per pass that have a direct correlation with the percolation
velocity associated with segregation [8,9]. The surface bump
is also higher for taller blades, as is evident from comparing
the upper surfaces of the velocity vector plots in Fig. 9.
As a result, particles with negative streamwise and vertical
velocities on the back (left) side of the bump flow down a
slope. As they do so, segregation occurs due to kinetic sieving
as voids are created into which small particles are more likely
to fall [10]. As a result of these two effects, segregation is
greater for larger blade heights (smaller h/hb), as shown in
the previous section.

To quantify these observations regarding the velocity field,
Fig. 10 plots the mean particle speed normalized by the blade
velocity, |v|/vb, as a function of the relative blade height,
hb/h, over one pass at N = 5. The averaging region extends

through the depth of the layer and a lateral distance of 3.1h
centered on the blade (slightly more than the entire frame
shown in Fig. 9). Noting that |v| characterizes the velocity
in the disturbed region around the blade, Fig. 10 supports the
assumption that vchar ∝ vbhb/h and, thereby, that τ scales as
the inverse of the inertia number [Eq. (3)].

It is also instructive to consider individual particle trajecto-
ries during a single pass for particles starting at different initial
heights y0. To accomplish this, small and large particles within
specific height ranges and within a fixed range of stream-
wise positions with respect to the blade are tracked during
the fifth pass of the blade (N = 5). In Fig. 11, the vertical
axis shows the vertical displacement from the initial height,
y − y0, normalized by the blade height hb. The horizontal
axis indicates the streamwise displacement from z0, which
corresponds to the streamwise location where the particle is
highest in the bed, normalized by hb. The first column shows
the trajectories at the (a) top (0.877 � y0/h � 0.885), (b) mid-
dle (0.614 � y0/h � 0.622), and (c) bottom (0.177 � y0/h �
0.185) portions of the bed for h = 5.7dL and the tallest blade,
h/hb = 2.5. Similarly, the second and third columns show
the trajectories for simulations with h/hb = 5 and h/hb = 10,
respectively, at the same heights noted above. Dashed red
curves represent the trajectories of small particles, while solid
blue curves represent the trajectories of large particles.

Figure 11 shows that particles are displaced both vertically
and horizontally as the blade passes. The vertical displace-
ment of the particles is approximately 1.5hb, independent
of blade height or vertical position in the bed. Thus, the
vertical displacement of particles scales with hb through the
entire depth of the bed. The horizontal displacement increases
deeper in the bed. That is, the particles closest to the bottom of
the bed are displaced a longer streamwise distance than those
higher in bed, most likely because the particles deep in the bed
are immediately adjacent to the blade. However, the blade-
height normalized streamwise displacement is larger for a

FIG. 11. Particle trajectories at different bed heights (rows, see text) during the N = 5 pass for fixed h = 5.7dL and varying hb (columns,
h/hb = 2.5, 5, and 10 from left to right). Large (small) particle trajectories are shown in solid blue (dashed red). Horizontal lines indicate final
heights of particles after blade passes.
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taller blade (h/hb = 2.5), meaning that a taller blade impacts a
larger region of the bed in front of and behind the blade than a
shorter blade, even when scaled by the blade height in Fig. 11.

In all cases, trajectories near the bottom of the bed are
simple, consisting of a steady rise then fall as the particle
is pushed forward. In contrast, particles higher in the bed
often follow a looping trajectory (e.g., Fig. 11 for h/hb = 2.5
and 5) where they move to the right and upward but then
move slightly to the left and downward as the blade passes
below them. All trajectories show clear signs of segregation,
as indicated by the horizontal lines that mark the vertical
position of each particle after the blade has passed. That is,
generally, large particles (blue) end up above small particles
(red) after the blade passes, even though both particle types
start at the same vertical position before the blade passes.

At first glance, the net horizontal displacement of all par-
ticles with each pass seems to contradict the notion that there
is no particle motion far from the blade. However, a simple
control volume analysis resolves this apparent contradiction.
Consider a fixed control volume that is long enough to include
the length of the bump above the blade and is located midway
between the streamwise periodic boundaries. As the bump
enters the control volume, the volume of particles increases
in the control volume, reaching a maximum when the bump is
completely within the control volume. Hence, particles pass
into the control volume from the left even though particles on
the right side of the control volume are static. Likewise, as the
bump passes out of the control volume, the volume of particles
in the control volume decreases, so particles must pass out of
the right side of the control volume, again with no particle
movement far from the blade at the left side of the control
volume. Hence, there is a local horizontal displacement of
particles at the blade, but particles remain stationary far from
the blade. Of course, when the bump passes the periodic
boundary, some particles also cross the periodic boundary
with the bump. In fact, the volume of particles crossing the
periodic boundary with the bump during each pass equals the
volume of particles in the bump.

Before considering deep beds in the next section, we note
that a streamwise segregation instability is observed at large
N in cases where h and h/hb are small, that is, cases where
the bed is shallow and the blade is relatively tall. For example,
long after the system has apparently stopped segregating ver-
tically for h = 5.7dL and h/hb = 2.5, a streamwise variation
in the thickness of the segregated layers develops, as shown in
Fig. 12. The amplitude of the local variation in layer thickness
is a significant fraction of the bed height. Note also that the
entire pattern is displaced in the direction of the blade motion
on each pass. A similar and possibly related phenomenon is
observed in the formation of washboard-like bump patterns
when a wheel is repeatedly driven over a granular surface
[31,32]. Here, the wavelength of the instability in Fig. 12 is
approximately half the length of the bed. We leave a detailed
investigation of this streamwise segregation phenomenon to a
future study.

B. Deep beds

We now consider deep bed systems where the effect of
the blade is localized near the blade such that the motion of

FIG. 12. Streamwise segregation instability with wavelength
Lz/2 and manifested as variation in the segregated layer thickness
for h = 5.7dL and h/hb = 2.5 as the blade passes from left to right
through the bed at N = 150. Red arrows indicate the blade position
in each frame.

the blade causes minimal disturbance to the bed surface. This
is in contrast to shallow systems where the bed surface is
substantially raised by the passage of the blade, i.e., a large
bump is formed as shown in Fig. 12. For deep beds, the bed
depth is large, both in absolute terms as well as relative to the
blade height (e.g., for h/dL = 11, 16.3, and h/hb = 10).

The segregation and kinematics described so far change
qualitatively for deep bed systems. To illustrate this point,
Fig. 13 plots the segregation metric YCM versus N for h/hb =
10 for both a shallow bed (h = 5.7dL , same data as in Fig. 6)
and a deep bed (h = 11dL) along with best fits to Eq. (2).
It is clear from the figure that the data for h = 11dL is no
longer well described by the exponential fit using Eq. (2).
Beyond the poor fit to the data, the characteristic number
of passes τ from the fit is 166 for the associated value of√

gh5/(vbhbd̄ ) = 1857, which is nearly three times greater
than the value predicted by the linear relationship shown in
Fig. 8.

To explore why deep bed segregation differs from the
shallow bed cases discussed in the previous section, we first
examine Fig. 14, which shows side-view images of a deep

FIG. 13. Fits to Eq. (2) (solid curves) indicate that the exponen-
tial dependence of the segregation metric YCM on number of passes N
for shallow beds (e.g., h = 5.7dL and h/hb = 10, red) breaks down
in a deep bed (h = 11dL and h/hb = 10).
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FIG. 14. Segregation evolution with number of passes N for
a deep bed case with h = 11dL , hb = 1.1dL , and h/hb = 10. Red
arrows indicate the blade position in each frame.

bed as the number of passes increases. The most noticeable
difference with the shallow bed case (see Fig. 3) is the
much smaller bump above the blade in the deep bed case.
Much slower segregation is also evident. At N = 25, the only
obvious segregation is in a thin layer of small particles at
the bottom wall. Otherwise, the particles are well mixed. At
N = 180, a layer of large particles is evident on the surface.
The segregation of large particles at the bed surface can be
attributed to the passage of the very shallow bump due to
the presence of the submerged blade, as discussed earlier.
However, there remains a thick zone of mixed particles having
a concentration similar to the initial concentration between
the bottom layer of small particles and the top layer of large
particles. By N = 400 significant segregation has occurred
throughout the bed with a layer of nearly pure small particles
at the bottom wall and a layer of nearly pure large particles at
the free surface, though the layer of mixed particles persists in
between.

We next compare concentration profiles through the bed
depth for a shallow and a deep bed with increasing N . To
calculate the concentration, the bed is divided into 4 mm high
horizontal layers (bins) spanning the bed width and excluding
the localized region affected by the blade. The concentra-
tion profiles of large particles cL and small particles cS are
calculated once per pass for each horizontal bin. Figure 15
shows the depthwise concentration profiles of large particles
for a shallow bed case (h = 5.7dL) and the deep bed case
(h = 11dL ), both with h/hb = 10 as in Fig. 13. In the shallow
bed [Fig. 15(a)], the initial (N = 1) concentration of large
particles is approximately 0.5 throughout the depth of the bed.
The concentration is slightly less than 0.5 nearest the bottom
wall and slightly more than 0.5 just above it, reflecting the
layer of small particles that forms on the bottom wall during
filling as described earlier. At N = 25, cL = 0 at the bottom
of the bed as large particles have been depleted, while cL = 1
at the free surface of the bed where large particles are segre-
gating. By N = 90, the system is substantially segregated with
small particles in a layer at the bottom (cL = 0), large particles

FIG. 15. Concentration of large particles, cL , vs position above
the bottom wall, y, at various numbers of passes N for (a) h = 5.7dL ,
h/hb = 10 and (b) h = 11dL , h/hb = 10.

in a layer at the top (cL = 1), and an extended gradient in
concentration reflecting the diffuse interface between the two
layers.

For the deep bed case in Fig. 15(b), the degree of segre-
gation at N = 5 near the bottom wall and at the free surface
is similar to the shallow bed case. At N = 25, cL = 0 im-
mediately above the bottom wall, but cL ≈ 0.5 for 0.012 <

y < 0.075 m, reaching cL ≈ 0.7 only near the free surface.
The large well-mixed region persists for many passes. As N
increases, this region starts further above the bottom wall and
ends further from the free surface, where cL approaches 1 as
the large particle layer thickens. By N ≈ 400, the cL ≈ 0.5
layer is replaced by a gradually varying concentration of
large particles between layers of mostly small particles at the
bottom wall and mostly large particles at the free surface.

Lastly, we compare the deep bed velocity field shown in
Fig. 16 to the shallow bed cases in Fig. 9 for nearly the
same absolute blade height (hb/dL = 1.14, h/hb = 5, and
h = 5.7dL , middle panel) and the same relative blade height
(hb/dL = 0.57, h/hb = 10, and h = 5.7dL, bottom panel). To
aid the comparison, an expanded view at the same scale as
in Fig. 9 is shown in the upper portion of Fig. 16 with the
horizontal blue dashed line indicating the approximate bed
depth h in the shallow bed case. For similar absolute blade
height (hb/dL ∼ 1), the vector magnitudes for the shallow bed
are significantly larger in the blade vicinity than in the deep
bed case, which could be due to the larger overburden pressure
in the latter. However, for the same relative blade height
(h/hb = 10), the vector magnitudes in the blade vicinity are
similar in both cases. Although the velocity field extends
well above the blade in the deep bed case in Fig. 16, the
recirculation zone is more localized near the blade than in the
shallow bed case. As a result, the downward flow in the region
behind the blade is not as strong. Hence, the segregation that
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FIG. 16. Velocity vectors for h = 11dL , h/hb = 10, and hb/dL =
1.1 at N = 5. Velocity vectors are similar to those in Fig. 9 (h/hb =
5, h/hb = 10) for the shallow bed. The horizontal dashed blue line
corresponds to the bed depth in Fig. 9 for these parameters.

occurs in the layer immediately above the recirculation zone
in the deep bed case, which corresponds to the region that
remains mixed in Fig. 15(b), is relatively much slower. In
spite of this, the value for |v|/vb (averaged through the depth
of the bed and a lateral distance of 3.1h centered on the
blade) fits the relation shown in Fig. 10 (filled data points),
indicating that vchar remains proportional to vbhb/h in deep
beds.

IV. CONCLUSIONS

In this paper, we have explored segregation induced by
a submerged moving blade in a size-bidisperse particle bed.
When a blade moves through an initially well-mixed bed of
size-bidisperse particles, the particles segregate, after repeated
passes, to form a layer of large particles above a layer of
small particles, consistent with segregation patterns observed
in bladed mixers [17,27].

The final segregation state is approached asymptotically
and is well fit for shallow beds by an exponential model for a
segregation metric having a characteristic number of passes,
or “time constant,” τ . The characteristic number of passes
increases with both the absolute bed depth and the height of
the bed relative to the blade height. While the final segregation
state is also approached asymptotically for deep beds, the
same exponential model does not characterize the evolution
toward a segregated state as well, most likely because of a
relatively thick layer of slowly segregating mixed particles
between a layer of small particles near the bottom wall and
a layer of large particles at the free surface.

As the blade moves through the bed of particles, it creates
a finite zone of disturbance in front of and behind the blade
beyond which particles remains stationary. Segregation likely
occurs by a sieving mechanism where small particles fall
in voids created when the particles are disturbed locally by
the movement of the blade. In shallow beds, the localized
region of moving particles around the blade extends to the
free surface, where a bump is formed above and slightly in

front of the blade. The volume of the bump corresponds to
the volume of particles that are displaced in the streamwise
direction with each pass of the blade. As the blade moves,
particles flow down the back side of the bump resulting in
additional segregation at the free surface.

A different situation arises for systems with large bed depth
to blade height ratios h/hb, as well as large bed depth h,
i.e., systems with large bed depth relative to both the particle
diameter and the blade height. While these “deep” systems
segregate, the time to achieve steady state segregation is much
longer than for the shallow cases. This occurs because, while
velocity disturbances extend through the depth of the bed
above the blade, they are relatively weak at large distances
from the blade. Furthermore, the bump above the blade is
quite small for deep beds, thereby minimizing the surface
segregation that occurs as particles flow down the back side
of the bump. Hence, the large particles that segregate upward
from the bottom where large velocities occur near the blade
can only gradually move upward through the remainder of the
bed above the blade. Similarly, small particles move slowly
downward above the blade due to the relatively small velocity
disturbances there. Hence, relatively rapid segregation occurs
in the first few passes for both shallow and deep beds because
of the large relative velocity in the immediate vicinity of the
blade and the bump at the free surface, but segregation slows
in deep beds as particles migrate through the thick layer of
mixed particles between the top of the blade and the free
surface.

There are several questions remaining. First, we have
only begun to explore the segregation parameter space. The
segregation likely also depends on various other parameters
including the relative particle concentrations, the particle size
ratio, the absolute particle sizes dL and dS , and the blade
velocity, particularly at higher velocities. The effect of parti-
cle shape and frictional properties should also be studied. The
blade inclination can also be modified to study how it impacts
segregation as in bladed mixer studies [15,17,19,26,27].

Perhaps of more importance is to relate the segregation due
to the blade to the various models for segregation. Clearly,
the segregation mechanism is related to the disruption of
the static bed of particles by the blade. Near the surface
of the bed, the bump results in particle segregation much
like that which occurs as particles flow down a sloped free
surface, which has been explained in terms of the free surface
angle [10] and the local shear rate [8,9]. However, deep
in the bed the segregation mechanism is less clear. Mecha-
nisms based on both the local shear rate [6,8] and the local
stress field [11] have been proposed, but it is not clear how
these mechanisms relate to segregation due to a subsurface
blade or even to each other. Unlike the canonical chute,
heap, and tumbler flows frequently used to study segregation,
segregation from a moving subsurface blade may allow a
better understanding of how these various mechanisms may
interact.
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APPENDIX: DEM METHODS

Particle interactions are modeled using a linear spring
dashpot normal force and a combination of linear spring
and Coulomb friction tangential force using code previously
developed in our laboratory and validated against experiments
and other DEM codes [9,29,33]. The bottom wall and blade
are made up of particles having the same properties as bed
particles but with a smaller diameter, dwall = 2.2 mm, to pro-
vide a rough surface. Interactions between these surfaces and
bed particles are modeled using the same contact equations.
For particles in contact, the normal force is

f n
i j = [knζ − 2γnmeff (Vi j · r̂i j )]r̂i j

and the tangential force is

f t
i j = min

{|ktβ − 2γt meff (Vi j × r̂i j )|,
∣∣μFn

i j

∣∣}sgn(β )ŝ,

as in previous work [34–36]. Here kn and kt represent the
normal and tangential spring stiffnesses, ζ and β are the nor-
mal and tangential relative displacements, and γn and γt are

the normal and tangential damping coefficients, respectively.
The unit vector in the tangential direction is ŝ. Vi j = Vi − V j

denotes the relative velocity of two contacting particles i
and j, and r̂i j is the unit vector between particle centers.
The effective mass is meff = mimj/(mi + mj ). To model static
tangential contact [37], the static friction force is calculated
using the tangential displacement β(t ) = ∫ t

to
V t

i jdt , where V t
i j

is the instantaneous tangential velocity between contacting
particle surfaces, t is the time, and to is the time of initial
contact [35]. In the case of sliding tangential contact, the fric-
tion coefficient μ = 0.4 for both particle-particle and particle-
wall/blade interactions. The specified collision parameters are
related to the contact time, tc, and the restitution coefficient, ε,
by kn = [(π/tc)2 + γ 2

n ]meff and γn = − ln (ε)/tc. Tangential
parameters are kt = 2/7kn and γt = 2/7γn [35]. In this work,
ε = 0.8 and tc = 0.5 × 10−3 s. This value of tc lies within the
range sufficient for modeling hard spheres, consistent with
previous simulations [29]. The symplectic Euler integration
algorithm is used to update particle positions and velocities
[38].
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