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Two-step unconventional protocol for epitaxial growth in one dimension with hindered reactions
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We study the effect of hindered aggregation and/or nucleation on the island formation process in a two-step
growth protocol. In the proposed model, the attachment of monomers to islands and/or other monomers is
hindered by additional energy barriers which decrease the hopping rate of the monomers to the occupied sites
of the lattice. For zero and weak barriers, the attachment is limited by diffusion while for strong barriers it is
limited by reaction. We describe the time evolution of the system in terms of the monomer and island densities,
N1 and N . We also calculate the gap length, the capture zone and the island distributions. For all the sets of
barriers considered, the results given by the proposed analytical model are compared with those from kinetic
Monte Carlo simulations. We found that the behavior of the system depends on the ratio of the nucleation barrier
to the aggregation barrier. The two-step growth protocol allows more control and understanding on the island
formation mechanism because it intrinsically separates the nucleation and aggregation processes in different time
regimes.
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I. INTRODUCTION

The study of growth processes has attracted the attention
of the scientific community not only because of their aca-
demic importance but also for their industrial applications.
For instance, epitaxial growth (EG) is used in film growth
to fabricate nano- and microelectronic devices. EG involves
intriguing out-of-equilibrium phenomena which are not yet
fully understood. For instance, the functional forms and the
information about the growth process contained in some
measurable quantities, such as capture zones, gap lengths,
and island size distributions, have generated some controversy
and discussion [1–7]. For these reasons, it is not surprising
to find several theoretical studies devoted to this subject in
one dimension (1D) [6–14] and in two dimensions (2D)
[1–5,15–25]. Experimental studies in 1D and 2D can be found
in [26–39] and [40–46], respectively. A principal focus of
these works is to understand the microscopic mechanisms
involved in growth. This is a fundamental requirement to
achieve control of the properties of the formed material. Basic
models of growth involve three fundamental processes: mass
transport (diffusion), formation of stable clusters (nucleation),
and growth of stable clusters (aggregation) [5–8,20,47]. The
basic growth units (atoms or molecules) are usually called
monomers and the stable clusters are called islands. Most of
the studies about island formation are based on a one-step
growth protocol (1SG) where the monomers are deposited at
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a controlled constant rate F . After deposition, the monomers
diffuse over the substrate and eventually begin to interact,
forming clusters.

In the standard 1SG protocol, for short times the system
evolves basically by nucleation. Thus, in this regime, the
relevant processes are nucleation, deposition, and diffusion.
Consequently, at least three time scales are required to de-
scribe the microscopical processes. For long times, the system
reaches a quasisteady state where the the density of monomers
is much smaller than that of the islands. In this regime,
the nucleation term in the rate equation for the density of
monomers can be neglected in comparison to the aggregation
term. However, it is well known that the nucleation term is
crucial to calculate the time evolution of the islands density.
Thus, in the quasisteady state, nucleation and aggregation
have to be considered simultaneously, and the time scale
associated with aggregation has to be also taken into account
[6,8,15,18,47,48].

In an effort to make the control and understanding of
the growth processes easier, an unconventional deposition
protocol has been recently proposed by Tokar and Dreyssé
in Refs. [14,49]. Basically, their protocol consists of two
different steps of growth (2SG). In the first step, a small
quantity of monomers are deposited simultaneously on the
substrate. Experimentally, this can be done by a fast deposi-
tion of monomers onto a substrate at low temperature in such
a way that the hopping rate is negligible. After deposition,
the temperature of the substrate is raised, increasing the
diffusivity; thus, the monomers diffuse and eventually form
islands. Note that, at the end of the first step, the system
reaches an equilibrium state characterized by the absence of
free monomers. In the second step, additional monomers are
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deposited sequentially at a constant rate F . Those monomers
predominantly aggregate onto the islands formed in the first
step. In the second step only the aggregations are relevant
because the nucleations are rare events because the typi-
cal time between consecutive depositions, τ̄d , is selected in
such way that it is much larger than the typical aggregation
time, τ̄a. Accordingly, the simultaneous presence of two free
monomers on the substrate is unlikely. In the 2SG protocol,
nucleation and aggregation occur at different times. In the
first step, aggregation is negligible while in the second step
nucleation is. The physics involved in the 2SG protocol is
intrinsically simpler than that of the 1SG, mainly due to the
direct separation of reactions into different steps. In 1SG it
is common to delineate two stages, which are traditionally
identified as transient and steady state. However, in the 2SG
there are actually two different steps of growth. Additionally,
it is important to make clear that the 2SG deposition protocol
is a theoretical proposal which offers an alternative to the
standard 1SG protocol, seeking to offer more control of the
formation of islands. To the best of our knowledge, the 2SG
protocol has not yet been implemented experimentally.

In the diffusion-limited aggregation (DL, distinct from
DLA in fractal growth) regime, nucleation and aggregation are
considered instantaneous because the typical times associated
with aggregation and nucleation are negligible compared to
the diffusion time of a monomer on the substrate. Most of
the literature is devoted to the DL regime [1–25]. However,
there are experimental results which suggest the existence
of additional nucleation and/or aggregation energy barriers
[27–30,34–41,50,51].

For high enough barriers, the typical reaction time
can be much longer than the diffusion time; this is the
reaction-limited regime (RL) [48,52–59]. In the RL regime,
the monomers require many attempts before attaching to
a cluster or monomer. Thus, the free monomers den-
sity is more spatially uniform in the RL regime than
in the DL regime. The description of island formation
in the 1SG protocol for the DL and RL regimes leads
to a complex set of self-consistent equations which have
to be solved numerically because it is not possible to
find analytical expressions for the quantities of interest
[6,18,19,60].

There are basically two ways to model the interaction
range of the attachment reaction. In the Shi, Shim, and Amar
model (SSA model) [15], in order to react a monomer must
hop onto an already occupied site. In contrast, the model
proposed by Evans and Bartelt (EB model) [24] includes an
implicit short-range interaction. In the EB model a monomer
reacts if it reaches a site which is the nearest neighbor of
an occupied site. Thus, in the SSA model, there is no short-
range interaction, while in the EB there is what amounts to
a very strong nearest-neighbor attraction. In this paper our
simulations use the SSA model.

Motivated by the work of Tokar and Dreyssé in Ref. [14],
and based on previous theoretical and experimental work
[48,58–62], we present a one-dimensional growth model
based on the 2SG protocol where nucleation and/or aggre-
gation are hindered by additional energy barriers. For zero
and weak barriers, the system is in the DL regime, while for
large barriers the system reaches the RL regime. In the limit

FIG. 1. Schematic representation of the basic processes in the
first step of growth. The point islands are represented by red spheres
and occupy just one lattice site. The monomers are represented by
green spheres. For leftward arrows, the illustrated processes are, from
left to right, aggregation, nucleation, and diffusion to empty sites.
The green arrows represent hops to an empty site (diffusion), the
blue arrow a hop to a site occupied by a monomer (nucleation), and
the red arrow a hop to a site occupied by an island (aggregation).

τ̄d � τ̄a, the physics involved in the second step of the 2SG
protocol is much simpler than that in the first step. In this
limit, the second step can be understood from the analytical
study of a single monomer diffusing between two islands.
In contrast, in the first step the nucleation process in which
there are several monomers must be addressed. Taking this
into account along with the formation of almost all the islands
in the first step, we focus this paper on the first step of the
2SG protocol. We emphasize that this work is a theoretical
exploration of the capabilities of the 2SG protocol; thus most
of our results cannot be applied and/or compared directly to
previous studies based on the 1SG protocol.

This paper is organized as follows. In Sec. II the considered
model is explained in detail. In Sec. III an analytical study
of the model is presented. In Sec. IV the results of extensive
kinetic Monte Carlo (kMC) simulations are compared with
those from the analytical expressions. Finally, in Sec. V we
present some conclusions and an illustrative example of how
our model can be applied. In particular, we use an analytical
expression for the island size distribution to describe experi-
mental data on the formation of one-dimensional atomic Ag
wires on a Pt(997).

II. MODEL DESCRIPTION

In order to describe the first step of growth in the 2SG
protocol, we consider a one-dimensional defect-free substrate
with length L. At t = 0, a small number of mobile monomers
are randomly and simultaneously deposited. After deposition,
the monomers diffuse with a diffusion constant D0. Even-
tually, the monomers meet, forming stable clusters called
islands. This process is known as nucleation (See Fig. 1.).
Distinctively in 1D, the islands divide the substrate into inde-
pendent sections called gaps [6–14]. For the sake of simplicity
we assume a critical nucleus size i = 1; i.e., in our model just
two monomers are required to form a stable and static island.
An aggregation event occurs when a mobile monomer is
captured by an island. This process increases the island size by
one unit. Monomers which belong to an island do not diffuse.
Given that the initial density of monomers is small, we assume
the point-island model, where the islands occupy just a single
site on the substrate, and their size is given by the number
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of monomers which belong to the island. In Refs. [6,60] it
is shown that, for low coverages, the more realistic model of
extended islands gives similar results to those obtained by the
point-island model. As mentioned in Sec. I, for short times
aggregation is usually negligible and the nucleation is the
dominant reaction. However, at the end of the first step there
are always some aggregations due to the existence of gaps
with a single monomer inside. Therefore, within the first step
there are two regimes: the nucleation regime, where almost
all the islands are formed, and the second one, where the
surviving monomers attach to the existing islands. Eventually,
all the mobile monomers disappear because they are captured
by the islands. Then, the second growth step begins with the
deposition of more monomers at a constant rate F . As usual,
the deposition rate satisfies F � D0. Thus the monomers
deposited in the second step are more likely to aggregate to
the islands formed in the first step than to find and join with
another free monomer. In the proposed model the two key
reactions, nucleation and aggregation, are hindered by addi-
tional energy barriers εn and εa, respectively. These barriers
act to decrease the hopping rates of monomers to occupied
sites of the lattice. Thus the hopping rates of a monomer to a
site occupied by another monomer and by an island are given
by Dn = D0 exp[−εn/(kB T )] and Da = D0 exp[−εa/(kB T )],
respectively. Usually, the asymmetry between the diffusion
rates is quantified through the associated lengths, ln and la,
which can be written as D0/Dn = ln + 1 and D0/Da = la + 1
[48,56,58–63]. For large values of εn and εa, la, ln � 1, the
nucleation and aggregation are hindered and the system is
in the RL regime. In this regime, monomers require many
attempts in order to be incorporated into the monomers or
islands. In contrast, for zero and weak barriers the system
is set in the DL regime and the monomers attach to the
monomers or islands once they reach the interaction range.

There are several quantities which can be used to character-
ize the properties of the growth process. Two are the density of
islands with size s, Ns, and the density of monomers, N1. Both
densities give information about the average rates associated
with nucleation and aggregation processes. From Ns, it is
possible to define the island size distribution Ps = Ns/N with
N = ∑

s>1 Ns the total density of islands. A particularity of
the 1D systems is that the islands divide the substrate into
independent segments called gaps. As a consequence of this
geometrical constraint, each monomer inside a given gap
must eventually either aggregate to one of the islands at
one end of the gap or meet another monomer to nucleate,
forming a new island inside the gap. The segment between
bisections of the gaps at both sides of a given island defines
its capture zone. The structure formed by the islands can be
partially characterized in terms of the gap length and capture
zone distributions, pg(�) and PCZD(y), respectively. These two
distributions are related in a nontrivial and unknown way.
However, they can be measured experimentally and, therefore,
can be used to obtain from experimental results information
about the growth processes, such as the key microscopic
parameters. We emphasize that the formation of islands in
the second step is negligible; thus the structure formed by
the islands only depends on the first step. For this reason
we focus on the study of the first step of growth in the
2SG protocol.

III. ANALYTICAL MODEL FOR THE FIRST STEP

A. Rate equations

The time evolution of N1 and Ns in the first step can be
described by standard rate equations (RE) [6,8,18,64,65]. For
N1 we can write

dN1

dt
= −2 ku N2

1 − N1

∑
s�2

ks Ns, (1)

where the first term in the right side of Eq. (1) represents
nucleation while the second one takes into account the aggre-
gation. The time-dependent factors ku and ks are the capture
rates for nucleation and aggregation, respectively. In the same
way, the evolution of Ns is given by

dNs

dt
= N1(ks−1 Ns−1 − ks Ns), (2)

where ks=1 = ku [60]. The two terms of Eq. (2) represent the
aggregation of monomers to islands with size s − 1 and s,
respectively. Let θ0 be the initial density of monomers. Thus,
at t = 0, the densities satisfy N1 = θ0 and Ns ≈ 0. The total
density of islands is defined by N = ∑

s�2 Ns. Equations (1)
and (2) can be written in terms of N as follows:

dN1

dt
= −2 ku N2

1 − k̄ N1 N (3)

and

dN

dt
= ku N2

1 . (4)

In Eq. (3) the average aggregation rate, k̄, is defined as

k̄ = 1

N

∑
s�2

ksNs. (5)

Adding Eqs. (3) and (4), and integrating the result with respect
to the time, we arrive at

N1 (t ) + 2N (t ) = θ0 −
∫ t

0
dt k̄ N1 N. (6)

The solution of the RE depends on the relative values of
the barriers associated with nucleation and aggregation, which
in turn are given by the characteristic lengths la and ln. We
considered four different cases: weak and zero barriers (ln =
la = 0), strong aggregation barrier (la � 1 and ln = 0), strong
nucleation barrier (ln � 1 and la = 0), and strong barriers
(ln, la � 1). No matter the value of the barriers, nucleation
is the dominant reaction for short times, while aggregation is
dominant for long times. Thus, for short times, the REs can be
reduced to

dN1

dt
≈ −2 ku N2

1 ,
dN

dt
≈ ku N2

1 , (7)

and Eq. (6) reduces to 2 N + N1 ≈ θ0, implying that there are
just islands with size s = 2. For long times, the nucleation is
negligible; thus aggregation is the relevant process:

dN1

dt
≈ −k̄ N1 N,

dN

dt
≈ 0. (8)

However, in order to make analytic progress solving the REs,
the time dependence of ku and ks must be estimated by
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taking into account the spatial fluctuations of the density of
monomers.

B. Nucleation rate

As mentioned before, for the 2SG protocol, the nucleation
regime occurs at short times in the first step of growth. An
equivalent way to write Eq. (7) is

dN1

dt
≈ −D0

N1

ξ 2
, (9)

with ξ the capture length of monomers associated with nu-
cleation. On the other hand, the local density of monomers
η1(x, t ) around a given monomer placed at x = 0 evolves
according to [10,15,17–19]

∂η1

∂t
= D0

∂2η1

∂x2
− D0

η1

ξ 2
. (10)

Subtracting Eq. (9) from Eq. (10) and using the approximation
∂η1/∂t ≈ dN1/dt , we can eliminate the time dependence:

∂2η1

∂x2
− ξ 2(η1 − N1) ≈ 0, (11)

with boundary conditions η1(∞) = N1 and η1(0) =
ln ∂η1(x)/∂x|x=0 [48,58–60,66]. The solution of this
differential equation is given by

η1(x) = N1

(
1 − exp(−x/ξ )

ln
ξ

+ 1

)
. (12)

Now, by comparing the global and local nucleation rates, we
can calculate the nucleation rate [6]

2 ku N1 = 4 D0
dη1

dx

∣∣∣∣
x=0

, (13)

which gives

ku = 2 D0

ξ + ln
. (14)

From Eqs. (7) and (9) the capture length and the nucleation
rate are related by

ξ−2 = 2 N1 ku

D0
. (15)

Using Eqs. (14) and (15) we obtain

ξ = 1 + √
1 + 4 N1ln
8 N1

. (16)

Using Eqs. (14) and (16), we find that, for zero and weak
barriers ku = 8 D0 N1, while for strong barriers ku = 2 D0/ln
becomes time independent.

C. Aggregation rate

For long times, the first step of the 2SG protocol is dom-
inated by the aggregation of monomers which were unable
to find another monomer with which to nucleate. Thus we
can write the following equation for the time evolution of
monomers at position x inside of a gap of size y, n1(x; t )

[67,68]:

∂n1(x; t )

∂t
= D0

∂2n1(x; t )

∂x2
, (17)

with boundary conditions

n1(0; t ) = la
∂n1(0; t )

∂x
,

n1(y; t ) = −la
∂n1(y; t )

∂x
.

(18)

The solution of this differential equation depends strongly on
the value of la. The aggregation rate k̄ can be calculated as
follows. From the solution of Eq. (17), the average density of
monomers can be estimated from

n̄1(y) = 1

y

∫ y

0
dx n1(x; t ). (19)

Thus the total number of monomers on the substrate, N1, can
be calculated from [60,66]

N1 =
∑

y

n̄1 pg(y)N , (20)

and the associated average density, N1 = N1/L, is given by

N1 = N〈n̄1 y 〉, (21)

where the 〈· · · 〉 denotes an average over the distribution of
gaps. Equation (21) implicitly contains information about the
aggregation time τa. However, we note that calculation of the
mean value in Eq. (21) requires knowledge of the gap-length
distribution, pg(y).

D. Gap size distribution

Since few monomers are deposited randomly onto the
substrate in the first step, the nucleations can reasonably be
considered to be uncorrelated events. Under this assumption,
pg(�) can be calculated from the convolution of two gap-
length distributions between a pair of adjacent monomers,
q(�). In order to illustrate this idea, we consider two neigh-
boring monomers of a given island, as shown in Fig. 2.
We assume that both �1 and �2 follow the distribution q(�).
Inspired by the Gruber-Mullins approximation [69], we allow
just the monomer in the middle to be mobile. Thus nucleation
occurs when the mobile monomer reaches the static monomer.

Naturally, nucleations can occur in other positions; there-
fore, our approximation underestimates the variance of pg(�).
The probability that a nucleation event creates a gap of length
� is given by

pg(�) =
∫

d�1 d�2 q(�1) q(�2) δ(� − (�1 + �2)). (22)

Under the assumption that the positions of the monomers
are uncorrelated, the length distribution between consecutive
monomers is given by q(�) = a θ0 exp(−a θ0 �) with 0 < a <

1 a time dependent parameter which is related with the frac-
tion of nucleated monomers. In this way, the average distance
between two consecutive monomers is 1/(a θ0) with a θ0 the
fraction of non-nucleated monomers. Consequently, the gap
length distribution between adjacent islands can be written as

pg(�) = a θ2
0 � exp(−a θ0 �). (23)
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FIG. 2. Scheme of the nucleation process in the case where
the positions of the monomers are uncorrelated. As before, the
islands and monomers are represented by red and green spheres,
respectively.

For t = 0, there are no islands implying a = 2 N1/θ0, while
for long times there are no monomers and a = 2 N/θ0.

The gap length distribution gives information about nucle-
ation around a given island. In general, pg(�) can be written in
the form

pg(�) = c(�) exp

(
−

∫ �

0
c(y)dy

)
, (24)

with c(x) the density of islands at a distance x from a given
island at position x = 0. Naturally, c(x) is related to the
probability of nucleation; for example, in the mean-field (MF)
approximation the probability of nucleation is written as the
square of the density of monomers, i.e., c(x) ∼ n1(x, t )2 [70].

E. Island size distribution with constant rates

The island size distribution Ps = Ns/N can be determined
explicitly from the REs in the case of time-independent rates
as follows. First, we suppose that ks = k̄ for all s, which is
valid for point islands. Second, we assume that the aggre-
gations begin when all the islands are formed only by two
monomers; thus Ps = δs,2. Finally, we assume that for long
times the nucleations are rare events, so that the total number
of islands can be considered constant. Under these approxi-
mations and using the change of variable τ = ∫ t

tc
dt k̄ N1, the

REs are reduced to
dNs

dτ
= Ns−1 − Ns (25)

and
dN2

dτ
= −N2, (26)

with tc the crossover time between nucleation and aggrega-
tion, and N2(τ = 0) = Nδs,2. Now, after a Laplace transform,

we find

Ñs = Ñ2

(τ̄ + 1)s−2
(27)

and

Ñ2 = N

(τ̄ + 1)
. (28)

After taking the inverse Laplace transform and the large-time
limit, we can write Ns as

Ns(τ ) = N

(s − 2)!
τ s−2 exp(−τ ). (29)

Finally, taking s̄ = ∑∞
s=2 s Ps, we see that s̄ = τ + 2. Equation

(29) gives a parametric expression for the island size distribu-
tion, where the parameter s̄ is the average size of islands.

IV. RESULTS AND DISCUSSION FOR THE FIRST STEP

A. Case I: Weak and zero barriers (ln = la = 0)

As shown by Eq. (14), for short times and zero barriers,
ku ∼ N1. Consequently, the solution of the REs in this regime
is given by

N1 ≈
(

1

32 D0 t + θ−2
0

)1/2

, N ≈ θ0

2
− 1

2

(
1

4 D0 t + θ−2
0

)1/2

.

(30)

On the other hand, the explicit solution of Eqs. (17) and (18)
satisfies [67,68]

n1(x; t ) =
∞∑

m=0

4 θ ′

π (2m + 1)
e
− (2m+1)2π2D0t

y2 sin

[
(2m + 1)πx

y

]
,

(31)

where y−1
∫

dx n1(x; 0) = θ ′ is the average density of
monomers at the beginning of aggregation regime [θ ′ =
N1(tc)].

For long times it is possible to approximate Eq. (31) as

n1(x; t ) ≈ 4θ ′

π
exp

(
−π2D0t

y2

)
sin

[
πx

y

]
. (32)

The average density n̄1 of monomers inside a gap with length
y can be written as

n̄1 = 1

y

∫ y

0
dx n1(x; t ) = 8 θ ′

π2
exp

(
−π2D0t

y2

)
. (33)

From Eq. (33) we conclude that the typical aggregation time
for a gap with length y is given by τa = y2/(π2D2

0), which
agrees with previous results [48,59,61,62,66]. The mean value
in Eq. (21) can be calculated by using the approximate expres-
sion for pg(�) given by Eq. (23) and evaluating the resulting
integral by means of the saddle-point approximation [67,68]:

N1 ≈ N
∫ ∞

0
dy n̄1 y pg(y)

∼
∫ ∞

0
dy y2 exp

(
−t

[
Ny

t
+ π2D0

y2

])

∼ t−1/6 exp

(
−3

2
(2π2N2D0t )1/3

)
. (34)
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FIG. 3. Time evolution of the densities N1 and N for zero and
weak barriers (la = ln = 0). Dots correspond to kMC results while
continuous lines to analytical expressions. The inset shows the
behavior of N for short times.

The argument of the exponential function gives the average
aggregation time in the entire system, τ̄a = 1/(2 π2N2D0),
which agrees with an earlier study [47]. Taking into account
that the average gap length is given by ȳ = 1/N , we can write
τ̄a = ȳ2/(2 π2 D0). It is important to note that the local aggre-
gation time, τa, is proportional to the square of the gap length,
while the global aggregation time τ̄a goes like the square of
the average gap length. Thus the average aggregation rate can
be calculated by inserting Eq. (8) into Eq. (34):

k̄ =
(

2 π

t

)2/3(D0

N

)1/3

. (35)

The comparison between the results obtained analytically
with those from the kinetic Monte Carlo (kMC) simulations
are shown in Fig. 3. The inset shows the behavior for short
times, the analytical model suggests N ∼ t , while the kMC
results give N ∼ t δ , with the exponent δ between 3/4 and 1.
The predicted slope for short times given by Eq. (30) is about
2 × 10−3, which is close to the numerical value suggested
by the kMC results. The discrepancies are due to the small
but nonzero probability to deposit at random two or more
consecutive monomers at t = 0. The probability of having n
consecutive monomers after a random deposition, Pn, satisfies
θ0/

∑∞
i=1 mi = ∑∞

i=1 i Pi, where mi is the number of domains
with size i. On the other hand, the probability to deposit n
monomers in an equal number of consecutive sites is θn

0 . Thus,
neglecting the formation of monomer domains with length
larger than two units, we find that since θ0 � 1, m2 ≈ θ3

0 .
Finally, at very short times, about half of the domains formed
by two consecutive monomers will give rise to islands of size
two. In our case θ0 = 0.05, which leads to m2 ≈ 1.25 × 10−4

and N (0) ∼ 10−5, as shown in Fig. 3. On the other hand,
for long times, the fit is excellent, validating the analytical
considerations used to write Eq. (34). In writing Eq. (34) the
time origin is taken at t = tc, when the islands are completely

formed. Consequently, it is necessary to use a time translation
in order to compare Eq. (34) with kMC results. In the main
panel the function N1 + 2 N is also included, showing that the
aggregation plays an important role for times greater than 10,
while for short times the dominant reaction is nucleation, and
N1 + 2 N ≈ θ0.

Figure 4 shows the results obtained for the gap length dis-
tribution using the scaled distance � → �/�̄. The fit given by
Eq. (23) is very good, validating the nucleation mechanism for
the formation of gaps illustrated in Fig. 2. From Eq. (24) the
results clearly suggest that the density of monomers becomes
constant far from the islands but decreases quickly near them,
forming a depletion region. In fact, to recover Eq. (23) from
Eq. (24) the argument of the exponential in Eq. (24) must be
written as

∫ x

0
c(y) dy ∼

∫ x

0
Pn dy = Pn x, (36)

with Pn(x) ≈ Pn, where Pn is the uniform nucleation prob-
ability at a distance x from a given island. For x � 1 the
nucleation probability must be uniform in such a way that the
gap size distribution decays exponentially, as in Eq. (23). On
the other hand, for x � 1 we have that c(x) ∼ x, so that the
density of monomers and therefore the nucleation probability
go to zero in the neighborhood of islands. Equation (23)
shows that the density of islands close to a given island
grows linearly with x, implying Pn ∼ x. However, Eq. (32)
predicts a linear behavior for the monomer density close to an
island, leading to Pn ∼ x2. Thus, the MF approximation for the
description of nucleation must not be valid for small values
of x. Figure 4(b) confirms the linear behavior of the left tail
of the distribution and the exponential behavior of the right
tail. The kMC results support the assumption of statistical
independence between consecutive gaps. Thus the formation
events of consecutive islands are uncorrelated because most
of the nucleations occur when the system is still well mixed
and the density of monomers can be considered homogeneous.
In this way, the capture zone distribution, PCZD(y), can be
determined from the convolution product:

PCZD(y) ≈
∫

d�1 d�2 pg(�1)pg(�2)δ

(
y − (�1 + �2)

2

)
, (37)

which gives explicitly

PCZD(y) ≈ 8
3 a4θ4

0 y3 exp(−2 a θ0 y). (38)

The numerical results agree with the formula in Eq. (38);
see Fig. 4(c). Finally, the behavior of the island size distri-
bution is shown in Fig. 5. Again, the results obtained from
the kMC simulations and the ones given by Eq. (29) agree
with each other. Consequently, we conclude that Ps can be
determined assuming that ku and k̄ are time independent. We
note that the work of Tokar and Dreyssé neglects aggregation
in the first step of growth. However, Fig. 5 shows that some
aggregation events occur, due to the fact that there are islands
with size larger than s = 2. This is also suggested by Fig. 3
because N + 2N1 is no longer a constant at long times.
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FIG. 4. Gap length distribution and capture zone distribution for cases I and II. As before dots correspond to kMC results and lines to the
analytical approximations. (a) pg(�) for la = ln = 0 (squares) and la = 250 with ln = 0 (circles); (b) the same distributions in logarithmic scale
to highlight the behavior for large and small values of s. (c) PCZD(y) for the same sets of barriers. The continuous lines in (a) and (b) correspond
to Eq. (23), while in (c) to Eq. (38).

B. Case II: Strong aggregation barrier (la � 1 and ln = 0)

By definition, the aggregation barrier does not affect nu-
cleation. Therefore, the behavior of the system for the short
times is the same as that found in case I given by Eq. (30).
Nevertheless, for long times, the aggregation barrier plays
an important role by increasing the typical time associated
with aggregation. From Eq. (17), the density n1(x, t ) can be
calculated following the same procedure used in case I. In this
way, we found

n1(x, t ) = B1e− 2D0t
lay

(
sin

√
2

lay
x + la

√
2

lay
cos

√
2

lay
x

)
, (39)

with B1 a parameter dependent on the initial condition. The
average density of monomers inside a gap takes the form

n̄1 ≈ B1

y
(2lay)1/2 exp

(
−2D0t

y la

)
. (40)

Again, the argument of the exponential function gives the typ-
ical aggregation time, τa = la y/2 D0, which is much longer
than the one found in case I. For zero and weak barriers, the
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FIG. 5. Comparison between the kMC results for the island size
distribution and Eq. (29) for case I (la = ln = 0). Dots represents the
results of kMC simulations, while the line represents Eq. (29).

aggregation time is equal to the typical time that a monomer
needs to reach one of the islands at the gap edges.

Using Eq. (21) in conjunction with pg(�), we can calculate
the average density of monomers. Given that the mechanism
of island formation is not modified by the existence of the
aggregation barrier, it is reasonable to expect that the gap
length and capture zone distribution remain close to the ones
found in case I. This can be seen in Fig. 4, which shows that,
in the case of a strong aggregation barrier, the kMC results
for pg(�) and PCZD(y) are well fitted by Eqs. (23) and (38),
respectively. In fact, the fit is even better than the one found in
case I. As in case I, the spatial fluctuations are only relevant
in the neighborhood of the islands or monomers; they can
be neglected far away from the islands. The behavior of the
average density of monomers for long times is given by

N1 ≈ N
∫ ∞

0
dy n̄1 y pg(y) (41)

∼
∫ ∞

0
dy y3/2 exp

(
−t

[
Ny

t
+ 2D0

yla

])
(42)

∼ t−3/8 exp

(
−

[
N D0 t

la

]1/2
)

∼ t−3/8, (43)

where the condition N D0 t/la � 1 has been used. After the
same process used in case I, the average aggregation rate takes
the form

k̄ = 3

8 t N
. (44)

Due to the action of the barrier, aggregation becomes an
infrequent event, implying that the approximation N + 2N1 ≈
θ0 works even better than in case I. It is also worth noting
that N1 now decays algebraically: N1 ∼ t−3/8; see Fig. 6(a).
Additionally, Fig. 6(b) shows that the existence of the barrier
decreases the mean size of the islands because, typically, only
islands with very few monomers form. In fact, practically all
islands have sizes s = 2 and 3. The case of strong aggregation
barrier is closer to the ideal model proposed by Tokar and
Dreyssé, where the aggregation in the first step of growth is
neglected. The results given by Eq. (29) fit well the island size
distribution found in kMC simulations.
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FIG. 6. Results for case II (la = 250, ln = 0). (a) Time evolution of the densities N1 and N . The inset shows the behavior of N for short
times. (b) Island size distribution. In both figures, dots correspond to the results obtained from kMC simulations, while continuous lines to
analytical expressions.

C. Case III: Strong nucleation barrier (la = 0 and ln � 1)

The nucleation barrier does not affect the behavior of the
densities at long times. Nevertheless, the formation process
of islands is strongly affected by the barrier. In the limit
of strong nucleation barriers, the monomers require many
encounters before having a nucleation. The existence of εn

increases the repulsion force between monomers, inducing
correlations between their positions. Thus the simple model
of two monomers used in cases I and II, represented in Fig. 2,
is not viable.

As we showed in Sec. III, in the limit of strong nucleation
barriers, Eq. (14) reduces to ku ≈ 2 D0/ln. In this way, for
short times the global densities take the form

N1 ≈ θ0(1 − ku θ0 t ), N ≈ ku θ2
0 t . (45)

Taking into account that the nucleation barrier does not affect
aggregation, we expect that for long times the densities satisfy
Eq. (34), as shown in Fig. 7(a).

Given the effect of the nucleation barrier, we expect that
in the aggregation regime most of the islands have size s > 2.
Then, we propose that pg(�) can be written as the convolution
of three q(l ) distributions instead of two as in cases I and II.
Due to the strong nucleation barrier, it is reasonable to expect
that nucleations occur in configurations where there are three
consecutive monomers in the neighborhood of a preexisting
island. As in cases I and II, we consider just the monomer
in the middle as mobile. Due the repulsion of the island,
the movement of the mobile monomer is biased in favor of
the direction away from the island. Therefore, a new gap
is formed when the mobile monomer reaches the monomer
furthest from the island. Hence we propose the following
semiempirical expression based in the convolution of three
q(�) distributions:

pg(�) ≈
∫ [

3∏
i=1

d�i q(�i )

]
δ(� − (�1 + �2 + �3))

≈ (1/2)a3θ3
0 �2 exp(−a θ0 �), (46)
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FIG. 7. Results for case III (la = 0, ln = 250). (a) Time evolution of the densities N1 and N . The inset shows the behavior of N for short
times. (b) Island size distribution. In both figures, dots correspond to the results obtained from kMC simulations, while continuous lines to
analytical expressions.
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FIG. 8. Gap length distribution and capture zone distribution for cases II and III. As before dots correspond to kMC results and lines to
the analytical approximations. (a) pg(�) for la = 0, ln = 250 (triangles) and la = 250 with ln = 0 (circles); (b) the same distributions on a
logarithmic scale to highlight the behavior for large and small values of �. (c) PCZD(y) for the same sets of parameters.

rather than the one used in the two previous cases, Eq. (23),
which is obtained from the convolution of just two q(�)
distributions. Comparing Eq. (24) with Eq. (46) we conclude
that the density of monomers is approximately constant far
away from the islands, with important fluctuations in the
neighborhood of them; see Fig. 8(a). The results suggest that,
for small x, the island density grows as c(x) ∼ x2. In this case,
the nucleation rate is ku ≈ 2 D0/ln ≈ 0.008; consequently, the
slope of N (t ) is approximately 0.00002. This value is very
close to the numerical value found by kMC simulations; see
Fig. 7(a). As expected, given the presence of the nucleation
barrier, island formation occurs for later times than in the
two previous cases. Additionally, the island size distribution is
well described by Eq. (29), with small differences for islands
of size s = 3.

The effect of the correlations between nucleation events
implies a weak time dependence of ku and k̄. Given that the
typical time for nucleation is longer than the aggregation one,
the aggregations are favored over the nucleations, making
possible the formation of islands having several monomers.
In that case, the average island size is larger than the ones
found in cases I and II. We emphasize that in this case the
gap length distribution is affected significantly, implying an
important change in the nucleation mechanism. In this case,
the positions of monomers are correlated and the fluctuations
of the monomer density near the islands are stronger than
in cases I and II. On the other hand, for large gaps, the
distribution decays exponentially as before, meaning that the
monomer density stays uniform far away from the islands, i.e.,
for x � ξ , with ξ the capture length1. The capture zone dis-
tribution can be calculated satisfactorily as before, i.e., from
the convolution of two gap size distributions [Eq. (46)]. This
means that in spite of correlations between the positions of
monomers, the consecutive gaps can be considered statistical
independent. This result is consistent with our model for gap
formation, where it is only necessary to consider statistically
independent spacings between few monomers (two for ln = 0

1Following Ref. [8], the local density of monomers around a given
island can be written as n1(x) = N1(1 − exp(−x/ξ )), where the
capture length ξ is given by Eq. (16). Thus, the monomer density
becomes constant for x � ξ .

and three for ln � 1) around a given island, regardless of any
other islands or monomers of the system.

D. Case IV: Strong barriers (la � 1 and ln � 1)

Finally, the case where both nucleation and aggregation
barriers are strong is considered. Figures 9(a) and 9(b) show
the results for the gap length distribution. We note that the
distribution decays exponentially for large values of �, in
agreement with Eq. (23). In this case, the spatial fluctuations
in the neighborhood of islands and monomers are quite impor-
tant, which is reflected in the slope of pg(�) for small values
of �.

The temporal evolution of densities is shown in Fig. 10(a).
For short times, the system behaves very similarly to the case
la = 0 and ln = 250, and nucleation is the dominant process.
For late times, the densities have the same behavior as those
found in case II. The nucleation barrier delays the formation
of islands. For late times N1 only changes by aggregation.

Figure 10(b) shows the behavior of the densities as a
function of time. The scale behavior is found by using the
transformation t → k̃ t with k̃ = ku = k̄. This transformation
causes the curves for parameters to collapse onto a single
curve, as predicted by the RE.

We note that Figs. 3, 6(a), 7(a), and 10 show that the
time at which N ≈ N1 satisfies the relation N (≈ N1) ≈ θ0/3,
regardless of the values of the barriers and in agreement with
the predictions of Eq. (6). Figure 10(c) shows the behavior
of Ps for four different sets of barriers. The distribution is
basically the same for all the sets of barriers. We conclude
that the island size distribution seems to be less sensitive
to the barrier values than the gap length and capture zone
distributions. This is exemplified by comparing pg(�) for the
cases la = ln = 0 and la = ln = 250; see Figs. 4(a) and 9(a).
Note that pg(�) is similar for both sets of barriers for large
values of s, with considerable differences for small values.
Many experimental and theoretical works have focused on
calculating just the island size distribution or the capture zone
distribution. However, our results show that the two distri-
butions give complementary and not necessarily equivalent
information about the microscopic processes of the system.
Therefore, both distributions should be taken into account to
obtain a more complete description of growth.
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FIG. 9. Gap length distribution for case IV (la = ln = 250). For ease of comparison, case II (ln = 0 , la = 250) has been included. As
before, the sets of points correspond to the kMC results.

V. CONCLUSIONS

A brief summary of the key results is shown in Table I.
In 2SG, most of the islands are formed in the first step of
growth, while in the second step the islands just increase their
size by aggregation. The 2SG protocol suggested by Tokar and
Dreyssé intrinsically separates nucleations from aggregations,
allowing us more control and understanding of the growth
process. This advantage is more pronounced in the case of
large aggregation barriers. In contrast, in 1SG, nucleation
and aggregation often occur simultaneously, requiring us to
consider many time scales to describe the evolution of the
system. Consequently, it is easier to treat 2SG analytically
than 1SG.

It is well known in the literature that generally in the
systems in the RL regime, the spatial fluctuations can be
neglected; consequently, the reaction rates can be taken as
constants in the respective REs. However, we found that, for
the case in which two monomers form a stable island, the
spatial fluctuations in the density of monomers are relevant
in the spatial region close to the monomers, even in the
case of a strong nucleation barrier. This is not an unexpected
result because the nucleation reaction has an upper critical
dimension dc = 2/i, while the aggregation reaction has dc =
∞. The effect of the spatial fluctuations in the monomers

density is always present in the slope of pg(�) and PCZD(y)
for small values of � and y, respectively.

Our results suggest that, in the 2SG protocol, PCZD(y)
decays exponentially regardless of the values of the barriers.
On the other hand, some of us have argued that the general-
ized Wigner surmise should account for the CZD [71]. The
behavior that we found in this work is quite different from
the Gaussian tail of the generalized Wigner surmise [1,2].
Extensive simulations in one dimension by Shi et al. [15]
for the 1SG model and zero barriers found good agreement
with the Wigner surmise for the exponent β = 4 (so no
generalization needed):

PCZD(y) = (64/9π )3 y4 exp[−(64/9π ) y2], (47)

with different asymptotic behavior for both small and large
y. Additionally, the right tail of the CZD has been studied
numerically for the DL regime in the 1SG protocol suggesting
PCZD(y) ∼ exp(−const y3) [7,9]. From Eq. (24) it is clear that
the growth protocol modifies the probability of nucleation
around a given island, changing the behavior of pg(�) and
PCZD(y). We conclude that the behavior of the CZD is not
universal and strongly depends on the growth mechanism. In
the 2SG protocol most of the islands are formed when the
system is still well mixed, leading to a exponential tail in pg(�)

FIG. 10. (a) Time evolution of the densities N1 and N for case IV (ln = la = 250). (b) Scale behavior of N1 and N for different sets of
barriers which satisfy ln = la. (c) Island size distribution for all cases for the same sets of barriers used in panel (b). As before, dots correspond
to kMC results and lines to analytical expressions.
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TABLE I. Key results.

la = 0 and ln = 0 la � 1 and ln = 0 la = 0 and ln � 1 la � 1 and ln � 1

pg(�) ∼ �ϑ with � � 1 ϑ = 1 ϑ = 1 ϑ = 1 ϑ → ∞
pg(�) ∼ exp(−const �) with � � 1 const = 2 const = 2 const = 3 const = 2
Eqs. (29) and (37) Valid Valid Valid Valid
N1 ∼ t−ξ exp[−const(t/τ̄a)ζ ] ξ = 1

6 and ζ = 1
3 ξ = 3

8 and ζ = 0 ξ = 1
6 and ζ = 1

3 ξ = 3
8 and ζ = 1

2
τ̄−1

a 2π 2N2D0 N D0/la 2π 2N2D0 N D0/la

and PCZD(y). In contrast, for the 1SG the numerical evidence
suggests that the probability of nucleation around an island
cannot be taken as a constant, even at large distances from the
island.

The distributions calculated in this work, Ps, pg(�), and
PCZD(y), can be determined experimentally. Therefore, these
distributions can be used to describe the microscopic pro-
cesses involved in EG.

Our results suggest that different sets of barriers could lead
to the same island size distribution. In order to differentiate
those cases, it is necessary to calculate pg(�) and/or PCZD(y),
the latter seeming more sensitive to the energy barriers. In
all cases, Ps is well described by Eq. (29), which assumes
constant kernels and neglects the time dependence due the
spatial fluctuations. However, both pg(�) and PCZD(y) can only
be well described if the spatial fluctuations of the monomer
density are taken into account. In all cases pg(�) decays
exponentially, implying that Pn can be taken as a constant
for points far away from the islands. In contrast, for small
distances the monomer density and Pn strongly depend on
the distance from the island. It is clear that Ps, pg(�), and
PCZD(y) give complementary but not necessarily equivalent
information about the microscopic growth processes. Thus,
for the analysis of experimental results, those distributions
must be considered jointly and not separately, as was done
in several previous works.

The spatial fluctuations in the monomer and island den-
sities are more important in one dimension than in higher
dimensions. When the spatial dimension is higher than the
critical dimension, the monomers tend to remain well mixed.
For nucleation, dc = 2 for i = 1; thus, neglecting logarithmic
corrections, the spatial fluctuations are less important for two-
dimensional systems than they are for one-dimensional ones.
Therefore, the mean-field description of the 1SG presented
here should work even better in two-dimensional systems.
Thus we can expect that the advantages offered by the 2SG
protocol and discussed in this paper should also be present
in the most relevant case of growth on two-dimensional sub-
strates. Finally, we believe that the experimental implementa-
tion of 2SG could offer another approach to the experimental
groups which use EG, simplifying the understanding and
analysis of the growth processes.

As a closing illustrative example, we consider the rather
extensive experimental data in Gambardella et al. [42] on
the formation of one-dimensional atomic Ag wires on a
Pt(997) surface, with an array of steps with very few kinks
and nearly uniform terrace widths. Because of the increased
binding energy at step sites, monomers deposited on vicinal
surfaces can self-assemble—for suitable temperature—into
chainlike structures along the step edges. In this case, there is

no deposition; the equilibrium gap-size distribution is found
to decay monotonically, as predicted by their equilibrium
analysis. From Eq. (24), this implies that the density of islands
around a given island, c(�), is uniform even for small values
of �. Thus the positions of the islands are uncorrelated, in
contrast with the 2SG protocol (where there are fluctuations
for small values of �). On the other hand, the analytical
model proposed in Ref. [42] for the island size distribution
also decays monotonically and so disagrees with their exper-
imental data. Given that the system remains uniform during
growth, the nucleation and aggregation rates are presumably
time independent. Consequently, Eq. (29) can be applied to
describe the island size distribution. Figure 11 shows the fit
found for Eq. (29) with the experimental data reported in
Ref. [42]. The agreement given by Eq. (29) is clearly better
than that of the equilibrium model of Gambardella et al.,
especially for small values of s.
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equilibrium model reported in Ref. [42] with the island size distri-
bution given by Eq. (29).
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FIG. 12. Uniformly distributed number R determines the particle
which might move and the direction of that possible motion.

APPENDIX: kMC SIMULATIONS

The kMC simulations were carried in the usual way [72].
Let ri

l and ri
r be the hopping rates of the ith monomer to the

left and to the right, respectively. As mentioned in the main
text, ri

r = D0 exp[−ε/(kB T )] with ε = εa, ε = εn, and ε = 0

if the right neighbor is an island, a monomer, or an empty site,
respectively. The rate ri

l is defined analogously. At each time
step, a list of all monomers is created, and the hopping rates
associated with each one are calculated. Then, the sum of the
hopping rates r = ∑

i(r
i
r + ri

l ) is calculated, and a uniformly
distributed random number, R, between zero and r is gener-
ated. R determines which particle can move and the associated
direction for the corresponding simulation step. For instance,
in Fig. 12 ri

r < R < ri
l ; thus the ith monomer is selected to

move to the next site at its right. Finally, the time is increased
by log(p)/r, where p is another uniformly distributed random
number between zero and 1. This procedure is repeated for
each time step.
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